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Abstract: The paper presents an approach to efficiently detect local defect resonances (LDRs) in
solids with localized defects. The 3D scanning laser Doppler vibrometry (3D SLDV) technique is
applied to acquire vibration responses on the surface of a test sample due to a broadband vibration
excitation applied by a piezoceramic transducer and modal shaker. Based on the response signals
and known excitation, the frequency characteristics for individual response points are determined.
The proposed algorithm then processes these characteristics to extract both out-of-plane and in-plane
LDRs. Identification is based on calculating the ratio between local vibration levels and the mean
vibration level of the structure as a background. The proposed procedure is verified on simulated
data obtained from finite element (FE) simulations and validated experimentally for an equivalent
test scenario. The obtained results confirmed the effectiveness of the method in identifying in-plane
and out-of-plane LDRs for both numerical and experimental data. The results of this study are
important for damage detection techniques utilizing LDRs to enhance the efficiency of detection.

Keywords: local defect resonance; damage detection; structural dynamics; non-destructive testing;
laser vibrometry; structural health monitoring

1. Introduction

The increasing use of advanced materials in modern engineering structures demands
new inspection strategies offering reliable and accurate data. In recent years, a wide range of
non-destructive testing (NDT) methods and structural health monitoring (SHM) techniques
have been developed for assessing the structural integrity of engineering materials [1–3].
Among them, methods based on the analysis of non-linear vibration/acoustic phenomena,
such as higher and subharmonics generation and elastic waves modulation, have been
gaining special attention [2–8]. This is mainly due to their better sensitivity to small damage
severities than their linear counterparts. In this context, a novel non-invasive procedure
that uses sonic or ultrasonic frequency excitation tuned to the local dynamic properties
of defect to activate a resonant response was recently proposed by Solodov et al. [9]. The
principle behind this is that the presence of embedded defects results in a local loss of
stiffness that gives rise to characteristic resonant frequencies of the defect itself, known
as Local Defect Resonances (LDRs). As for the classical modal testing approach, the
match between excitation and LDR frequency corresponds to the maximum wave–defect
interaction. The energy delivered by the impinging wave is selectively trapped within
the damaged area, leading to a significant increase in the defect response amplitude. This
increase is strongly localized in the defect area, providing an excellent contrast between
the damage and the intact specimen. Solodov et al. further applied the concepts of LDR
to a Flat Bottom Hole (FBH) [10]. Experimental results were validated through numerical
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modeling, and an analytical formulation was proposed to determine the LDR frequencies
of defects such as FBH, delaminations in composite materials, and laminar defects in rolled
sheet metals. The effects of local defects on the non-linear ultrasonic response were also
investigated in the literature, revealing that the defect excited at its LDR frequency exhibited
a transition to a non-linear regime. Consequently, the input energy was efficiently converted
into non-linear frequencies components, such as sub- and higher harmonics inside the
damaged region [11,12]. LDR frequencies have also been used to enhance the thermal
response of a damaged structure [13]. Solodov et al. [14] developed an analytical solution
for different planar defect shapes, which was validated through a series of experimental
tests. In the experiments, a wide-bans chirp signal was used to excite the specimens, and
the laser vibrometer was used for response measurements. Laser Doppler vibrometry
has been used by other researchers to extract LDR frequencies of aluminum and PMMA
plates with FBHs, and delaminations in glass-fiber reinforced polymer (GFRP) and carbon-
fiber reinforced polymer (CFRP) [15,16]. Moreover, it has been demonstrated that LDR
behavior does not limit itself to out-of-plane direction but can be extended towards in-plane
characteristics [17,18]. Experiments on different types of defects, i.e., FBHs, surface cracks
and BVIDs (Barely Visible Impact Damage), showed a clear in-plane LDR at an elevated
frequency range due to the high in-plane bending stiffness.

Even though many papers deal with the LDR frequencies for imaging damage, only
a few attempts were made to develop a robust algorithm to identify the LDR frequencies
among the system’s natural frequencies, making the procedure cumbersome and time-
consuming, starting from the analytical formulation proposed in [14], which can be applied
only for a few classes of idealized defects and only when the geometry and position of the
fault are known. More recently, in [19,20], the authors proposed an approach based on the
bicoherence analysis to obtain the LDR of FBH in an aluminum plate and of delamination
in a GFRP composite plate.

The current study proposes a novel algorithm for the efficient detection of LDRs. The
main goal of the algorithm is to automate the process of identifying LDR frequencies, which
is a particularly tedious task for structures with a considerable number of resonances. It is
designed to exhibit unique features, including:

• Possibility of investigating structures with multiple defects;
• Detection of multiple frequencies (and their mode shapes) for the same defect, which

is needed for in-plane LDRs extraction associated with higher-order modes;
• Possibility of examining structures without a priori knowledge of defects’ locations or

limits regarding their size.

The above-listed features make the proposed approach novel with respect to the
existing approaches, such as the algorithm proposed in [12], which is based on a similar
index to that presented in this paper. However, the processing procedure of the proposed
index is modified to improve the algorithm’s features.

In this paper, we present the work carried out to develop, validate and verify the
effectiveness of the method of searching the LDRs (both out-of-plane and in-plane) in the
broad spectrum of vibration modes. Firstly, we describe the algorithm in Section 2. The test
sample, experimental setup, and finite element models are presented in Section 3. Damage
detection and localization results are presented in Section 4. Finally, the paper is concluded
in Section 5.

2. Materials and Methods

As a result of the local loss of stiffness, the LDRs are specific for the selected area
of a structure. Hence, vibrations in the corresponding frequencies are increased in dam-
aged regions, and a negligibly small background response is observed simultaneously. It
indicates that for the local modes, the vibration amplitudes in the areas of damage are
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significantly higher than the mean value of the amplitudes of the whole structure. Based
on this observation, we introduce the Average Ratio (AR):

ARi, f =
Ai, f

E
[

A f

] , (1)

where Ai, f is the velocity amplitude of vibration of the single point i in the single frequency

f, and E
[

A f

]
is the mean value of amplitudes of all points in the single frequency. Having

frequency response functions (FRF) for all the points of a structure, we can create the M × N
matrix of absolute FRF values, where M is the number of points and N is the number of
frequencies. This allows for the calculation of the AR matrix. Then, selecting the maximum
AR value in each column gives the ARmax characteristic (see Figure 1).
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Figure 1. Example of the ARmax characteristic.

The ARmax characteristic contains information about the relative differences between
points with the highest amplitudes and mean values for a whole structure. The higher
the value is, the more distinct LDR is detected. Two parameters determine the threshold
for LDR frequency selection. The first one is the sum of the mean and standard deviation
of prominence to define the minimum peak prominence. The second one is the standard
deviation of ARmax values, respectively, for the whole characteristic to define minimum
peak height. The algorithm’s sensitivity is controlled by the maximum number of peaks to
be detected. Usually, it is set to 9–24. The concept and main steps of the calculations are
schematically summarized in Figure 2.
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To sum up, the algorithm works as follows: the FRF computed for measured or sim-
ulated data is the input for the algorithm. Firstly, the absolute value of FRF is computed.
Next, the AR matrix is calculated according to Equation (1) and the ARmax index is calcu-
lated as introduced above. Then, the peaks of the ARmax are found, taking into account
threshold and sensitivity presets. Frequencies corresponding to those peaks are interpreted
as LDR frequencies.

3. Examination Setup
3.1. Test Sample with FBHs

The test sample made of poly(methyl methacrylate) (PMMA) was manufactured for
the experimental testing of the algorithm’s operation. The dimensions of the plate are
as follows: 300 × 300 × 18 mm. Damages of FBH-type were introduced in the plate to
represent three sizes of deep defects with nominal diameters of 58, 40, and 18 mm. The
designed depth of all FBHs was 17 mm, which corresponds to the 1 mm thickness of the
residual material in the damaged area. The test specimen’s dimensions are presented in
Figure 3A. Please note that the sample is presented from the intact-side view, while in
Figure 3B the manufactured sample is presented from the damaged-side perspective.
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Figure 3. PMMA test sample with FBHs: nominal dimensions in [mm] (A) and the sample prepared
for experiments (B).

A preliminary study revealed that non-negligible differences were observed between
the simulated and experimentally measured natural frequencies, which was not expected
for a relatively simple structure under consideration. Therefore, we decided to verify the
geometrical dimensions of the sample with respect to their desired nominal values in order
to tune the numerical model accordingly. The dimensions of FBHs of the test sample are
summarized in Table 1.

Table 1. Design and measured dimensions of the test sample.

Dimension Type Nominal Value Identified Values

Thickness of plate 18 mm 18.455 mm
FBH “Ø58 mm” diameter 58 mm 57.646 mm

FBH “Ø58 mm” residual thickness 1 mm 0.686 mm
FBH “Ø40 mm” diameter 40 mm 39.64 mm

FBH “Ø40 mm” residual thickness 1 mm 0.707 mm
FBH “Ø18 mm” diameter 18 mm 17.566 mm

FBH “Ø18 mm” residual thickness 1 mm 0.715 mm

It has been confirmed that the differences observed between the designed and mea-
sured dimensions of FHBs were the reason for the inconsistencies between the preliminary
results of the numerical calculations and the experiments. The following formula allows for
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the prediction of the LDR frequencies for FBHs, and it was used to determine the influence
of the variation of FBHs’ dimensions on LDR frequencies:

fLDR =
6.4t
a2

√
E

12ρ (1 − v2)
(2)

where t is the defect’s residual material thickness, a is the diameter of the FBH, E is the
Young’s Modulus, ρ is the density, and v is the Poisson ration of the material.

The data shown in Figure 4 prove that a slight change in the residual thickness or the
diameter of the damage can significantly shift the LDR frequency.
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3.2. Experimental Modal Analysis

In experiments, the sample was freely suspended to avoid boundaries’ nonlinearities.
Preliminary studies have shown that a model shaker is required to excite the largest FBH’s
normal modes effectively. At the same time, the piezoceramic transducer was needed to
excite higher-frequency modes of LDRs. A frequency sweep signal was used to excite the
sample in the following frequency ranges: 0.5–3 kHz using a modal shaker and 0.5–20
kHz in the case of using a piezoceramic transducer. The excitation amplitudes were set
as 0.2 V and 8 V for the shaker and piezoceramic transducer, respectively. An external
signal generator generated the signal, and next the power amplifier amplified it ten times
and passed it on to the piezoceramic transducer. In the case of using a modal shaker, the
generated signal was amplified using a built-in amplifier. In both cases, the test sample’s
response was measured using 3D scanning laser Doppler vibrometry (3D SLDV). The
sample surface was mapped with 362 equally spaced measurement grid points. The Polytec
PSV400 3D laser vibrometer was used for non-contact measurements of vibration responses.
The sampling frequency and single point measurement duration were 5 kHz and 1.6 s in the
shaker measurement and 125 kHz and 2.048 s in the piezoceramic transducer measurement.
For both acquisitions, we used three averages per point. The Frequency Response Functions
(FRFs) were calculated from the experimental input and output data using the Polytec PSV
software v9.0. The experimental arrangement for measurements is presented graphically in
Figure 5.
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3.3. Numerical Models

Numerical simulations can be used to predict the dynamic properties of a structure. In
the context of this work, a computational modal analysis and FRF synthesis were used to
generate input data for the identification algorithm. Two numerical models employing the
Finite Element Method (FEM) to simulate the test specimen with FBHs were formulated.
The first model was based on 3D 8-node brick Finite Elements (FEs) and is assumed to
accurately reflect the real structure’s response. The second proposed model, based on 2D
4-node shell FEs, is supposed to allow for a rough determination of LDRs in a shorter
computing time. Both models were formulated using the Altair HyperMesh v2020 software
and computed with the MSC.Nastran v2020 solver.

Figure 6 presents the FE mesh used in the 2D and 3D numerical models. The geometric
dimensions of the model correspond to the measured ones. The thickness of shell 2D FEs
corresponds to the thickness of the material in a given area of the sample. The thicknesses
of shell FEs used in the 2D model are described in the legend in Figure 6A. The influence
of the piezoceramic transducer was modeled as constraints in X and Y directions on
the transducer’s montage side. The division of elements in the XY plane is the same in
both models.
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A mesh convergence analysis was carried out, comparing the first LDR frequency
of the damage. According to the outcomes of this analysis, the recommended number of
FEs per FBH diameter was determined as 16. Three FEs were modeled on the thickness
of the residual material in the damaged area in the case of the 3D model and eleven FEs
in the intact area of the plate. The material parameters adopted in the simulations are
summarized in Table 2.
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Table 2. Material properties of the material used in numerical models.

Parameter Value

Young’s modulus 4919 MPa
Poisson ratio 0.4

Density 1.204 g/cm3

A comparison of selected normal models was carried out to check the correctness of
the material model parameters. The numerical results of the natural frequencies of the test
sample were compared with the measured ones. One of the analyzed normal modes is
presented in Figure 7—hereinafter referred to as global mode ‘B’.
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3D FE model (C).

Analogous comparisons were made for two other global normal modes, called ‘A’ and
‘C’. The results of the validation are presented in Table 3.

Table 3. Natural frequencies of the test sample.

Model with 2D FEs Model with 3D FEs

Global Mode Experiment Simulation Error Simulation Error

‘A’ 478 Hz 476 Hz 0.4% 480 Hz 0.4%
‘B’ 1207 Hz 1121 Hz 7.1% 1151 Hz 4.6%
‘C’ 2360 Hz 2181 Hz 7.6% 2296 Hz 2.7%

The obtained results confirm a good agreement of the numerical model formulated
with 3D FEs with the experimental results. The maximum error was observed for the
normal mode marked as ‘B’, which was less than 5% between the model and experiment.
This error is more significant for the model made of 2D FEs, and amounts to a maximum of
7.6% for the ‘C’ normal mode. The model made of 3D FEs can be considered to be more
accurate. It should be noted that the thickness of the test sample in numerical models was
assumed to be constant, but in reality it most likely varied over the sample, which may be
the reason for the discrepancy between numerical results and experimental ones in global
normal modes.

4. Results and Discussion
4.1. Out-of-Plane LDRs

Four datasets for the detection of out-of-plane LDRs were examined. The results were
derived from experiments with a piezoceramic transducer, a modal shaker (described in
Section 3.2) and the numerical results (2D and 3D FE models defined in Section 3.3). The
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determined ARmax characteristics for datasets were computed and analyzed, and finally
LDR frequencies were found by the proposed algorithm. Exemplary results of the ARmax
index for experimental data and the 3D numerical model are presented in Figure 8. Similar
results were computed for the 2D numerical model, but are not presented here to limit
the manuscript’s size. The maximum number of peaks to be detected in the algorithm
was limited to nine. The LDR frequencies determined by the algorithm are marked with
red triangles.
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Figure 8. Computed ARmax characteristics and LDR frequencies selected by the algorithm for
experimental data (A) and the numerical results (B).

When comparing numerical and experimental results, it can be noticed that the damp-
ing in the actual structure is higher than in the numerical model, as the ratio of amplitudes
shown in the ARmax characteristic is lower. The higher frequencies in the real system are
damped more. The numerical models consider a 0.3% modal damping, which is the same
for all modes. Normal mode shapes corresponding to the first and second LDRs were
determined by the algorithm and are visualized in Figures 9–11 for subsequent datasets.
The results are presented for experimental data and numerical ones using the 3D FE model.
Similar results were obtained for the 2D FE model.

The visualizations of LDRs of the FBH Ø58 mm allow for determining its location and
shape. The algorithm identified similar frequencies to LDRs for numerical and experimental
data. The first out-of-plane LDR turned out to occur below 1 kHz, so it was necessary to
use a modal shaker instead of a piezoceramic transducer in the experimental setup. Piezo-
stack was used to excite the structure at higher frequencies, but it was ineffective in the
low-frequency range. It resulted in heavily noised signals, so using the detection algorithm
on low-quality data did not make sense. For this reason, the tests for the low-frequency
range were repeated using a modal shaker. It allowed for correct excitation of the first
mode of out-of-plane LDR for the largest FBH. Unfortunately, the excitation of the second
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out-of-plane mode of LDR of FBH Ø58 mm was accompanied by the first out-of-plane
mode of LDR of FBH Ø40 mm. As a result, the average vibration level was high, and
thus the ARmax index was low. The same observations were noted in experimental and
numerical results (both 2D and 3D models)—see Figure 9B,D. This caused a false negative
indication for the second out-of-plane LDR mode of FBH Ø58 mm. It must also be noted
that the algorithm also found higher LDRs, but the presentation is limited to the first two
ones (first and second out-of-plane modes).
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In the FBH Ø40 mm case, the algorithm correctly identified the first two modes of
out-of-plane LDRs. The discrepancies between the experimental data and the results of
the 3D model are minor, as presented in Figure 10. However, it should be added that
these conclusions apply only to the model based on 3D FEs. The algorithm working on the
numerical results from the 2D FEs model did not correctly indicate the second out-of-plane
mode of LDR of FBH Ø40 mm (false negative indication). On the other hand, the first
out-of-plane mode was correctly extracted.

The FBH Ø18 mm is the only defect for which the algorithm’s indications are only
true positive. It applies to all datasets, i.e., experimental data and 2D and 3D FE models.
The visualizations of first and second out-of-plane LDRs of FBH Ø18 mm extracted by the
algorithm for various datasets are depicted in Figure 11.

The summary of detected modes for three FBHs is presented in Table 4. The LDR
frequencies determined by the algorithm were compared for different datasets to assess the
accuracy of the numerical models. The summary is given in Table 4, and is limited to the
first and second detected LDR frequencies for given defects and presents relative errors
for the two proposed FE models (based on 2D and 3D FEs). It can be observed that the
results obtained from numerical models correspond very closely with the experimental
results, which prove the successful validation of the numerical models. As expected, when
focusing on the first out-of-plane mode of the LDR, the 3D model turned out to be more
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accurate—the maximum error was observed for FBH Ø40 mm, and it amounted to 0.7%
compared to the experimental data.
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Table 4. Comparison of out-of-plane LDRs frequencies detected by the algorithm for numerical
models and experiments.

The Model with 2D FEs The Model with 3D FEs

Defect Type Experiment Simulation Error Simulation Error

First LDR
(out-of-plane)

FBH Ø58 mm 857 Hz 855 Hz 0.23% 859 Hz 0.23%
FBH Ø40 mm 1867 Hz 1859 Hz 0.43% 1854 Hz 0.70%
FBH Ø18 mm 9189 Hz 9455 Hz 2.90% 9250 Hz 0.67%

Second LDR
(out-of-plane)

FBH Ø58 mm Not found Not found — Not found —
FBH Ø40 mm 3997 Hz Not found — 3924 Hz 1.83%
FBH Ø18 mm 19,350 Hz 19,771 Hz 2.18% 19,684 Hz 1.73%
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The maximal error in the 2D model was observed for the FBH Ø18 mm, which
amounted to 2.9% compared to the experimental data, but it was still an acceptable result
in most applications. Similarly, when comparing the second out-of-plane mode of LDRs,
the 3D FE model proved slightly more accurate. The maximum error was observed for FBH
Ø18 mm, but the difference was not as evident as for the first out-of-plane mode of LDRs,
i.e., 1.73% and 2.18% for 3D and 2D FE models, respectively. It must also be noted that for
any datasets, the algorithm found the second out-of-plane mode of FBH Ø58 mm. This
problem was addressed earlier in the text. Unfortunately, the second out-of-plane mode of
FBH Ø40 mm was also not recognized by the algorithm working with 2D FE model results.

It can therefore be summed up that 3D modeling gives more realistic results. In
the case of 2D modeling, the results showed a more significant maximum divergence
compared to the experiment than the results of the 3D FEs model. The algorithm working
on the experimental data and the results from the 3D model correctly indicated the second
out-of-plane mode of LDR (FBH Ø40 mm), which was not shown in the 2D data. On
the other hand, the 2D model deserves attention, as it is much faster to formulate and is
characterized by a three times lower computing time than for the 3D model. It can be
successfully employed for a rough determination of the first out-of-plane LDR modes.
Moreover, the 2D FE model allows the easy manipulation of the material’s thickness, saving
a lot of time in the model-tuning process. The simulations were performed on a workstation
with an AMD Ryzen® 9 5950X 16-core processor.

4.2. Damage Size Assessment

The higher order out-of-plane LDR modes allowed for a more accurate identification
of the FBH damage size. Figure 12 presents a visualization of the detected out-of-plane
modes of FBH Ø40 mm using the discussed algorithm. The view was limited only to the
damaged area. The algorithm’s sensitivity was increased to 24 peaks across the entire
frequency spectrum. It allowed for the identification of higher out-of-plane LDRs of the
FBH Ø40 mm damage. Horizontal lines were drawn to allow the quantification of the
damage size based on the shape of the highest noted mode (23,062 Hz). The determined
size of the damage was Ø37 mm. This indication was therefore underestimated in relation
to the nominal damage diameter by 3 mm. Nevertheless, the lower modes underestimated
the damage diameter to a much greater extent. The first out-of-plane mode, especially,
underestimated the damage diameter by about 15 mm, which resulted in a damage size of
Ø25 mm.
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Figure 12. Comparison of the diameter of FBH Ø40 mm based on different LDR modes.

4.3. In-Plane LDRs

The proposed algorithm successfully detects out-of-plane modes of LDRs. Nonethe-
less, another examination was performed to check the possibility of identifying the in-plane
LDRs using the presented algorithm. In this case, the ARmax characteristic was computed
based on the velocity amplitude of vibrations in the XY plane instead of the velocity Z
component. In the case of experimental data, visualization was provided with the Y (verti-
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cal) component of vibration velocities. The algorithm’s sensitivity was set to 24 because
in-plane LDRs are usually related to higher mode shapes.

Although the analysis concerned in-plane modes, most detected resonance frequencies
corresponded to out-of-plane modes of LDRs. Further investigation showed that out-
of-plane modes are, in fact, always accompanied by increased vibrations in the in-plane
directions, as presented in Figure 13, where for the same eigenvalue (3925 Hz) the out-of-
plane (Figure 13A) and in-plane (Figure 13B) vibration components are depicted.
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The assessment of the normal modes determined by the algorithm showed that all
indications referred to the FBHs introduced into the plate. None of the indications was a
false-positive, proving the validity of the proposed approach. As mentioned earlier, most
indications referred to the out-of-plane modes, for which significant in-plane vibrations
were also observed. For this reason, these indications cannot be considered incorrect even
though they do not correspond to ‘clear’ in-plane modes. In the determined results, two
modes could be recognized as ‘clear’ in-plane modes. Those modes refer to the Ø58 mm
and Ø40 mm FBHs, and are visualized in Figure 14. No ‘clear’ in-plane LDRs of FBH Ø18
mm were found, which is likely to be out of range of the analysis. The summary of detected
in-plane LDRs is presented in Table 5.

Table 5. Comparison of in-plane LDRs detected by the algorithm for numerical models and experiments.

The Model with 2D FEs The Model with 3D FEs

Defect Type Experiment Simulation Error Simulation Error

FBH Ø58 mm 19,895 Hz 23,164 Hz 16.43 % 20,966 Hz 5.38%
FBH Ø40 mm 29,402 Hz 33,443 Hz 13.74 % 29,623 Hz 0.75%
FBH Ø18 mm Not found Not found — Not found —

In the case of using the algorithm to identify in-plane LDR modes, the developed
approach also proved to be very effective. It can be noticed that the 3D numerical model
allows the representation of in-plane modes of FBHs more accurately than the model
based on 2D FEs. The errors reported for the 2D FE model (more than 13%) questioned
the correctness of in-plane LDR frequency representation for this modeling technique.
The observed differences with the experimental results were more significant than for the
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out-of-plane modes for both FE models. It was associated with a worse representation of
real structures by numerical models in the higher frequency range.
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5. Conclusions

This paper presents a method for determining the frequencies of local defect reso-
nances. The algorithm was based on the observation that the vibration amplitudes were
significantly higher for the local defect’s mode shape than the mean value of the whole
structure. Based on that observation, the ARmax was computed as a ratio between the
maximum amplitude of vibrations for a given frequency and the mean vibrations level.
The algorithm found the ARmax index’s peaks and identified them as LDR frequencies.

To sum up, the most significant achievements reported in this paper are as follows:

• A novel algorithm for the automatic extraction of LDRs was developed. The algorithm
was successfully implemented to identify out-of-plane and in-plane modes of LDRs.
Various datasets, including experimental and numerical data of a test specimen with
FBH of different diameters, were examined;

• The algorithm allowed the determination of higher-order LDR modes, which usually
better represented FBH shape and size. Finding higher-order LDRs was also essential
to correctly extract in-plane modes. This feature was a significant improvement
compared to the current state-of-the-art methods;
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• Two numerical models based on the FEM were developed. One employed 3D FEs, and
the other was based on 2D FEs. The algorithm worked successfully with the results
provided by both models;

• The indicated LDRs proved that, in most cases, the 2D model was sufficient for
determining FBH-type out-of-plane LDRs. The recorded error between corresponding
LDRs in experiments and results of the 2D FE model was less than 3%. On the other
hand, a false negative indication was noted for this dataset. The results provided by
the 3D FE model were better fitted with an actual structure, which corresponded with
the relative error of less than 2% in out-of-plane modes;

• The 3D FE numerical model allowed the capturing of in-plane modes of FBHs more
accurately than the 2D FE model. The errors of in-plane LDRs called into question the
applicability of the 2D modeling technique to represent in-plane modes.

It should be emphasized that the presented work is the basis for further research.
Future works will concern the use of the developed algorithm for LDRs detection for other
types of damage, such as delaminations in composites or fatigue cracks.

Author Contributions: Conceptualization, A.K., M.K., G.L. and P.Z.; methodology, M.O., M.K.;
software, M.O., M.K. and P.Z.; validation, P.Z., M.K. and G.L.; formal analysis, P.Z. and M.K.;
investigation, M.K. and P.Z.; and resources, Ł.P. and F.A.; data curation, M.K. and G.L.; writing—
original draft preparation, P.Z., G.L. and M.K.; writing—review and editing, Ł.P.; visualization, P.Z.;
supervision, A.K. and F.A.; project administration, A.K. and Ł.P.; funding acquisition, A.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Center, Poland, within the project no.
2018/29/B/ST8/02207.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moore, P.O. Nondestructive Testing Overview; The American Society for Nondestructive Testing: Columbus, OH, USA, 2012;

ISBN 978-1-57117-187-0.
2. Stepinski, T.; Uhl, T.; Staszewski, W. Advanced Structural Damage Detection: From Theory to Engineering Applications; John Wiley &

Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-53612-4.
3. Kundu, T. Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation; Springer International Publishing AG:

Cham, Switzerland, 2019; ISBN 978-3-319-94474-6.
4. Delsanto, P.P. Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluations and Ultrasonics; Springer: New

York, NY, USA, 2006; ISBN 978-0-387-33860-6.
5. Jhang, K. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis.

Eng. Manuf. 2009, 10, 123–135. [CrossRef]
6. Pieczonka, L.; Klepka, A.; Martowicz, A.; Staszewski, W.J. Nonlinear vibroacoustic wave modulations for structural damage

detection: An overview. Opt. Eng. 2015, 55, 011005. [CrossRef]
7. Broda, D.; Mendrok, K.; Silberschmidt, V.V.; Pieczonka, L.; Staszewski, W.J. The Study of Localized Crack-Induced Effects of

Nonlinear Vibro-Acoustic Modulation. Materials 2023, 16, 1653. [CrossRef] [PubMed]
8. Kim, Y.; Choi, S.; Jhang, K.Y.; Kim, T. Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces.

Materials 2021, 14, 2988. [CrossRef] [PubMed]
9. Solodov, I.; Bai, J.; Bekgulyan, S.; Busse, G. A Local Defect Resonance to Enhance Acoustic Wave-Defect Interaction in Ultrasonic

Nondestructive Evaluation. Appl. Phys. Lett. 2011, 99, 211911. [CrossRef]
10. Solodov, I.; Bai, J.; Busse, G. Resonant Ultrasound Spectroscopy of Defects: Case Study of Flat-Bottomed Holes. J. Appl. Phys.

2013, 113, 223512. [CrossRef]
11. Solodov, I. Resonant Acoustic Nonlinearity of Defects for Highly-Efficient Nonlinear NDE. J. Nondestruct. Eval. 2014, 33, 252–262.

[CrossRef]
12. Pieczonka, L.; Zietek, L.; Klepka, A.; Staszewski, W.J.; Aymerich, F.; Uhl, T. Damage Imaging in Composites Using Nonlinear

Vibro-Acoustic Wave Modulations. Struct. Control Health Monit. 2018, 25, e2063. [CrossRef]

https://doi.org/10.1007/s12541-009-0019-y
https://doi.org/10.1117/1.OE.55.1.011005
https://doi.org/10.3390/ma16041653
https://www.ncbi.nlm.nih.gov/pubmed/36837281
https://doi.org/10.3390/ma14112988
https://www.ncbi.nlm.nih.gov/pubmed/34072984
https://doi.org/10.1063/1.3663872
https://doi.org/10.1063/1.4810926
https://doi.org/10.1007/s10921-014-0229-9
https://doi.org/10.1002/stc.2063


Materials 2023, 16, 3084 16 of 16

13. Hedayatrasa, S.; Segers, J.; Poelman, G.; Paepegem, W.V.; Kersemans, M. Vibro-Thermal Wave Radar: Application of Barker
Coded Amplitude Modulation for Enhanced Low-Power Vibrothermographic Inspection of Composites. Materials 2021, 14, 2436.
[CrossRef] [PubMed]

14. Solodov, I.; Rahammer, M.; Kreutzbruck, M. Analytical Evaluation of Resonance Frequencies for Planar Defects: Effect of a Defect
Shape. NDT E Int. 2019, 102, 274–280. [CrossRef]

15. Derusova, D.A.; Vavilov, V.P.; Druzhinin, N.V.; Shpil’noi, V.Y.; Pestryakov, A.N. Detecting Defects in Composite Polymers by
Using 3D Scanning Laser Doppler Vibrometry. Materials 2022, 15, 7176. [CrossRef] [PubMed]

16. Hettler, J.; Tabatabaeipour, M.; Delrue, S.; van den Abeele, K. Detection and Characterization of Local Defect Resonances Arising
from Delaminations and Flat Bottom Holes. J. Nondestruct. Eval. 2017, 36, 2. [CrossRef]

17. Segers, J.; Kersemans, M.; Hedayatrasa, S.; Calderon, J.; van Paepegem, W. Towards in-Plane Local Defect Resonance for
Non-Destructive Testing of Polymers and Composites. NDT E Int. 2018, 98, 130–133. [CrossRef]

18. Segers, J.; Hedayatrasa, S.; Verboven, E.; Poelman, G.; van Paepegem, W.; Kersemans, M. In-Plane Local Defect Resonances for
Efficient Vibrothermography of Impacted Carbon Fiber-Reinforced Polymers (CFRP). NDT E Int. 2019, 102, 218–225. [CrossRef]

19. Roy, S.; Bose, T.; Debnath, K. Detection of Local Defect Resonance Frequencies Using Bicoherence Analysis. J. Sound Vib. 2019,
443, 703–716. [CrossRef]

20. Roy, S.; Bose, T. Efficient Determination of Local Defect Resonance Frequencies from Bicoherence Plots Using Double Excitations.
Mech. Syst. Signal Process. 2019, 127, 595–609. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/ma14092436
https://www.ncbi.nlm.nih.gov/pubmed/34067174
https://doi.org/10.1016/j.ndteint.2018.12.008
https://doi.org/10.3390/ma15207176
https://www.ncbi.nlm.nih.gov/pubmed/36295244
https://doi.org/10.1007/s10921-016-0380-6
https://doi.org/10.1016/j.ndteint.2018.05.007
https://doi.org/10.1016/j.ndteint.2018.12.005
https://doi.org/10.1016/j.jsv.2018.12.006
https://doi.org/10.1016/j.ymssp.2019.03.017

	Introduction 
	Materials and Methods 
	Examination Setup 
	Test Sample with FBHs 
	Experimental Modal Analysis 
	Numerical Models 

	Results and Discussion 
	Out-of-Plane LDRs 
	Damage Size Assessment 
	In-Plane LDRs 

	Conclusions 
	References

