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Abstract

In this paper, we investigate enhanced target localization with mitigation

of Non-Line-Of-Sight (NLOS) wireless links. Our approach is based on the

acquisition, at the receiver, of a sequence of consecutive measurements of

the Received Signal Strength Indicator (RSSI) of the signals transmitted by

reference nodes, denoted as anchors. The RSSI is available in commercial

mobile devices, including Internet of Things (IoT) devices. After the estima-

tion of the status of each target-anchor link, on the basis of relevant statistical

features extracted from RSSI values, a NLOS link is “transformed” into an

equivalent LOS one and the corresponding distance is then estimated. The

estimated distances feed “agnostic” localization algorithms, operating as if all

1F. Carpi, M. Martalò, and A. Cilfone were with the IoT Lab of the University of
Parma when contributing to this work
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links were LOS. We experimentally assess the performance of our approach

in indoor (IEEE 802.11-based) and outdoor (Long Term Evolution, LTE-

based) scenarios, considering both geometric and Particle Swarm Optimiza-

tion (PSO)-based localization algorithms. Our results show the effectiveness

of the proposed NLOS mitigation strategy towards accurate localization. In

particular, the considered classifier, based on RSSI statistical features, per-

forms similarly to other schemes appeared in the literature. Our results show

that a relatively high (even for IoT scenarios) localization accuracy can be

achieved especially in the IEEE 802.11-based indoor case (with six anchors).

Key words: Line-Of-Sight (LOS), Non-LOS (NLOS), channel status

identification, IEEE 802.11, LTE, NLOS mitigation, positioning.

1. Introduction

User localization is a crucial requirement for modern networks (e.g., cel-

lular networks), since it allows providers to offer enhanced location-based

services [1]. The Internet of Things (IoT) will benefit from these services, as

adding location information will limit human intervention [2].

Radio-based positioning relies on distance estimates between the target

and a few reference (with known positions) nodes, denoted as anchors. Such

estimates can be obtained from relevant parameters, depending on the con-

sidered radio technology, such as: Received Signal Strength Indicator (RSSI),

Angle of Arrival (AoA), Time of Arrival (ToA), Time Difference of Arrival

(TDoA) [3]. In [4], an enhanced fingerprinting method is considered, by re-

lying on crowdsourced data kept from smartphones. In [5], a few positioning

techniques are analyzed considering various experimental IoT wireless tech-
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nologies: Zigbee, Bluetooth Low Energy (BLE), and WiFi (2.4 GHz band).

In [6], AoA fingerprinting is improved by leveraging the available Channel

State Information (CSI). In [7], RSSI-based localization is improved by means

of Machine Learning (ML)-based techniques and, in particular, using Deep

Reinforcement Learning (DRL).

User and device localization has been already exploited in IoT-based ap-

plications by leveraging various technologies. In the presence of large net-

working scenarios, the number of acquired RSSI data may explode. In or-

der to reduce the amount of acquired RSSI data, a compression method is

proposed in [8]. Low-complexity data processing for positioning in resource-

constrained devices is also addressed in [9]. In [10], low-complexity RSSI-

based localization in WiFi networks is proposed. In [11], visible light com-

munications are considered to achieve a centimeter level accuracy. Range-free

methods can also be considered to limit the complexity of the localization

system, as shown in [12].

Radio-based positioning algorithms are impaired by physical obstructions

and interference present in the surrounding environment, especially in indoor

scenarios. In particular, in the presence of Line-Of-Sight (LOS) communi-

cations between the target and the anchors, the reliability of the position

estimate may be very high. On the other hand, in the presence of Non-Line-

Of-Sight (NLOS) links, the reliability of the position estimate may drastically

reduce [13]. Therefore, the problem of channel status (i.e., LOS/NLOS) iden-

tification is crucial in radio-based localization—see, for example, [14] and ref-

erences therein. In [15, 16], the LOS/NLOS classification problem is tackled,

from an experimental point of view, in indoor IEEE 802.11-based scenar-
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ios. In [16], the authors propose a Deep Learning (DL)-based method in

which RSSI and CSI data are jointly used for classification. In [17], DL is

used for LOS/NLOS link classification in Ultra-WideBand (UWB) scenarios.

In [15], we have proposed channel status identification based on thresholding

of simple RSSI statistical features. The use of thresholding on simple RSSI

statistical features for LOS/NLOS identification purposes is also considered

in Radio Frequency IDentification (RFID) schemes. For instance, in [18]

the authors propose a threshold-based method on the variance of RSSI and

received phase values.

In general, the performance of a localization strategy can be improved

by properly taking into account the presence of NLOS links. In [19], the au-

thors discuss NLOS identification and mitigation in UWB scenarios: channel

identification and mitigation algorithms are based on ML techniques fed by

fine-grained features extracted from the received waveform (e.g., received

energy, maximum amplitude, rise time, etc.) and acquired with extensive

experimental measurement campaigns. A similar scheme is proposed in [20].

In [21], the authors propose identification and mitigation in indoor WiFi sce-

narios, by relying on fine-grained CSI at the physical layer. In [22], a UWB

identification and mitigation approach based on a Convolutional Neural Net-

work (CNN) architecture is proposed. This method leverages the availability

of the Channel Impulse Response (CIR), which obviously provides more in-

formation on the channel status than simple RSSI. However, the use of RSSI

is attractive in IoT scenarios with constrained nodes.

In this paper, we consider a static localization scenario and focus on mit-

igating NLOS ranging errors using RSSI measurements in IEEE 802.11 and
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Long Term Evolution (LTE) scenarios. It is known that RSSI in NLOS links

can be characterized by statistical features, such as skewness, kurtosis, and

others—see, e.g., [15, 16]. We leverage the identification method proposed

in [15] to define and implement a NLOS mitigation scheme for enhanced

localization. In particular, we use the feature-based classifier in [15] as a

first processing stage to detect the presence of NLOS communication links;

then, we exploit a linear combination of the same features for mitigating

NLOS ranging errors. Finally, after NLOS measurements are “corrected,” a

localization algorithm is applied to estimate the target position.

Unlike previous literature works, we do not rely on fine-grained CSI, but

we exploit RSSI values, which can be easily obtained with Commercial Off-

The-Shelf (COTS) devices, such as IoT devices and smartphones. More

precisely, our proposed localization approach involves the following two steps.

• The first pre-processing step consists in extracting five statistical fea-

tures from N consecutive RSSI measurements from each link with an

anchor. These features are then compared to pre-determined thresh-

olds to classify the status of the link [15]. Finally, these features are

regressed to derive a common correction parameter for NLOS links,

in order to mitigate the link distance error induced by NLOS effects

and, thus, “transform” NLOS links into equivalent LOS ones. This ap-

proach is different from previous literature works, see, e.g., [23, 24], in

which the correction is achieved by means of more sophisticated algo-

rithms requiring an a-priori statistical characterization of LOS/NLOS

communication channels.

• In the second step, all estimated link distances are given as input to an
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“agnostic” localization algorithm, which operates as if all links were in

LOS conditions. In other words, we investigate the suitability of exist-

ing localization algorithms to be integrated with the proposed NLOS

link pre-processing stage. The performance of the improved localization

algorithms is then analyzed.

An experimental IoT-oriented performance analysis of the proposed local-

ization strategies is carried out in both indoor (IEEE 802.11) and outdoor

(LTE) scenarios.2 Our results show that, in the best cases, the positioning

error is around (approximately) 30% and 60% of the maximum target-anchor

distance in indoor and outdoor scenarios, respectively.

The rest of the paper is organized as follows. In Section 2, we introduce

the system model. In Section 3, the proposed localization method with NLOS

identification/mitigation is presented. Experimental results for IoT-oriented

IEEE 802.11 and LTE systems are discussed in Section 4. Finally, concluding

remarks are given in Section 5.

2. System Model

Let us consider a wireless scenario, in which a static3 target node, at

coordinates u = [x, y]T , receives packets from M transmitters, either Access

Points (APs) or Base Transceiver Stations (BTSs), acting as anchors. The

2For LTE-based analysis, we rely on the use of a smartphone. However, the obtained

results are also meaningful for 4G NarrowBand-IoT (NB-IoT) scenarios, as the same RSSI

values can be exploited.
3Locating a mobile node is an interesting research direction, but goes beyond the scope

of this paper.
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known position of the i-th anchor is denoted as si = [xi, yi]
T , i ∈ {1, . . . ,M},

where [·]T is the transpose operator. The set of anchor nodes’ coordinates

can be organized in the following matrix:

S =


x1 x2 . . . xM

y1 y2 . . . yM


 = [s1, . . . , sM ] . (1)

This scenario is meaningful for applications in which targets (people and/or

objects) to be localized are moving on the x − y plane, e.g., IoT tags mov-

ing on a given building floor. The extension to a three-dimensional case is

straightforward, but goes beyond the scope of this paper.

The goal of a localization system is to derive an estimate of the target

node’s position, denoted4 as û = [x̂, ŷ]T , given S and a set of measurements of

the target-anchor links. The Euclidean norm of the i-th anchor coordinates,

i.e., the distances of that anchor from the axes’ origin, is defined as

ki = ‖si‖ =
√
sTi si i = 1, . . . ,M.

The anchors’ norm vector is then k = [k1, . . . , kM ]T .

Let d = [d1, d2, . . . , dM ]T be the vector containing the (true) link distances

between the target node and the M anchors, where the i-th distance can be

written as

di = ‖u− si‖ =
√

(u− si)T (u− si) i = 1, . . . ,M. (2)

4In the remainder of this paper, the symbol ζ̂ will denote an estimate of the quan-

tity ζ, e.g., calculated from experimental measurements or inferred through proper signal

processing.
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Let d̂ denote the corresponding vector of distance estimates, in which the

i-th term can be written as

d̂i = ‖û− si‖ =
√

(û− si)T (û− si) i = 1, . . . ,M. (3)

For instance, d̂i is the i-th link distance estimate computed from the acquired

data (e.g., RSSIs or ToAs).

The localization problem can be generally modeled as the following sys-

tem of equations containing anchors’ positions and range estimates:



(x̂− x1)2 + (ŷ − y1)2 = d̂2
1

...

(x̂− xM)2 + (ŷ − yM)2 = d̂2
M .

(4)

In order to solve this system of equations in the unknowns [x̂, ŷ], different

solutions will be proposed in Subsection 3.4.

While ToA-based localization algorithms work on the basis of estimated

distances {d̂i}, TDoA-based algorithms rely on relative distance estimates

with respect to a reference anchor. Assuming, for notational simplicity, that

s1 is the anchor with the shortest estimated distance, then the vector of

relative distances (with respect to s1) is defined as ∆ = [∆1, . . . ,∆M ]T , in

which the i-th term is

∆i = di − d1 (5)

and its estimate is

∆̂i = d̂i − d̂1. (6)

Note that ∆1 = ∆̂1 = 0 by construction. The quantities {∆̂i}Mi=1 can be

interpreted as TDoA-based relative distance estimates with respect to the

first anchor.
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At each time instant, a received power measurement, e.g., the RSSI, is

acquired. In order to perform target-(anchor i) channel status classification,

N consecutive RSSI measurements are collected into the following “observa-

tion” vector:

zzz
(j)
i =

[
z

((j−1)N+1)
i , z

((j−1)N+2)
i , . . . , z

(jN)
i

]

where j is a block (of N RSSI values) time index.

The target-(anchor i) communication channel is assumed to have the same

binary status over the RSSI observation block j, and we refer to this status

as

`
(j)
i =





1 if the link is LOS

0 if the link is NLOS.

(7)

We denote the collection of K consecutive observation vectors and corre-

sponding true channel statuses as the dataset relative to the i-th anchor,

i.e.:

Di =
{
z

(j)
i , `

(j)
i

}K
j=1

i = 1, . . . ,M. (8)

In other words, z
(1)
i contains the first N acquired RSSI measurements asso-

ciated with the true channel status `
(1)
i , and so on for i > 1. Note that no

a-priori information about the target-(anchor i) distance is contained in the

dataset Di, i = 1, . . . ,M . We assume that each RSSI entry in the observation

vector z
(j)
i is a realization of a random variable Z

(j)
i whose statistical distri-

bution depends on the LOS/NLOS conditions of the target-(anchor i) link

during the j-th RSSI observation block, i.e., `
(j)
i . The dependence of Z

(j)
i on

`
(j)
i would depend on the very specific propagation conditions of the associ-

ated link. We give up finding an accurate statistical characterization of Z
(j)
i

but, rather, extract simple statistical features. More precisely, the dataset
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Figure 1: Block diagram of the proposed localization approach for a generic observation

window.

Di will be at the basis of the extraction of relevant statistical features of the

received signal to be used to classify the status of the communication channel

between the target and the i-th anchor.

3. Localization Approach

The block diagram associated with the proposed localization approach is

shown in Figure 1. The localization method is divided in two steps. First,

for each anchor we process the received signal (in terms of RSSI) to classify

the LOS/NLOS status of the channel (Subsection 3.1) and to estimate the

distance from the anchor (Subsection 3.2 for LOS and Subsection 3.3 for

NLOS). Then, “agnostic” localization algorithms are used, taking as input

the link distance estimates (for all anchors) obtained from the previous step

(Subsection 3.4).

3.1. LOS/NLOS Classification

We now briefly recall the feature-based LOS/NLOS classification method

proposed in [15]. Let us focus on a single target-anchor link over an ob-
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servation window of N RSSI samples.5 Given the observation vector z =

[z(1), z(2), . . . , z(N)] and the corresponding random variable Z (as described

at the end of Section 2), let us define the k-th order moment of the distribu-

tion of the random variable Z as

mk =
1

N

N∑

i=1

(
z(i) − µ

)k
(9)

where

µ =
1

N

N∑

i=1

z(i) (10)

is the sample mean for the observation vector. The five considered statistical

features are the following:

• standard deviation, defined as σ =
√
m2;

• skewness, defined as S = m3/σ
3;

• kurtosis, defined as K = m4/σ
4;

• hyper-skewness, defined as S = m5/σ
5;

• Peak Probability (PP), defined as

P = Pr
{
z(i) ∈

[
max
i
f
(
z(i)
)
− ε,max

i
f
(
z(i)
)

+ ε
]}

where ε is a “sufficiently” small non-negative value. In particular, if ε = 0,

P is equivalent to the relative frequency of the mode value within the

observation vector z. Moreover, skewness, kurtosis, and hyper-skewness

5The anchor subscript i and the observation window superscript j used in Section 2

are eliminated for notational simplicity.
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can be referred to as third, fourth and fifth order standardized moments,

respectively—the k-th order standardized moment is defined as mk/σ
k (k ≥

1).

In correspondence to the observation vector z, we define the feature

dataset D̃ as the set of statistical features extracted from z together with

the true channel status `, i.e.,

D̃ = {σ, S,K,S ,P, `} . (11)

Obviously, D̃ depends on the (extended) dataset, defined in (8), associ-

ated with the link status and the RSSI observation block.

As outlined in [15], in LOS scenarios the direct path is characterized

by a much higher received power than the reflected ones. Therefore, the

RSSI distribution is expected to be peaky and left-skewed, and can then

be well approximated by a Weibull distribution. On the other hand, in

NLOS scenarios there may be several scattered and reflected paths with

smaller received power. Consequently, the RSSI distribution is expected to be

symmetric and less peaky, and can then be well approximated by a Gaussian

distribution. Illustrative examples of RSSI distributions, for a given target

location, in both LOS and NLOS link conditions are shown in Figure 2.

In [15], various classification algorithms are proposed: a Probability Mass

Function (PMF)-based one; a Neural Network (NN)-based one; and a weighed

threshold classifier. The first is shown to have very poor performance; on the

other hand, the second is one of the possible Artificial Intelligence (AI)-based

schemes suitable for such an application. In particular, a three-layer NN is

considered with the following characteristics: (i) the input layer is composed

by the five statistical features; (ii) the hidden layer is a 8-neuron fully con-
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Figure 2: Illustrative examples of RSSI distributions, for a given target location, in both

LOS and NLOS link conditions.

nected layer; and (iii) the output layer corresponds to the estimated channel

condition. The activation functions for the hidden and output layers are sig-

moid and softmax functions, respectively. Even if other AI algorithms can be

applied (this goes beyond the scope of this paper), the NN can be considered

as a reasonable state-of-the-art benchmark. In the following, we focus on the

weighed threshold classifier, whose architecture is shown in Figure 3.

The key idea is to compare each statistical feature with properly cho-

sen threshold values {σ∗, S∗, K∗,S ∗,P∗}, in order to derive single-feature
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Figure 3: Block diagram of the majority logic threshold detector for NLOS classification.

channel estimates as follows:

ˆ̀
σ = U(σ∗ − σ)

ˆ̀
S = U(S∗ − S)

ˆ̀
K = U(K −K∗) (12)

ˆ̀
S = U(S ∗ −S )

ˆ̀
P = U(P −P∗)

where U(·) is the unit-step function, i.e., it equals 1 for positive argument

and 0 otherwise. The rationale behind (12) is that for LOS links, one ex-

pects smaller values of σ, S, and S , and larger values of K and P for

NLOS links. This is due to the fact that the direct component is dominant

in LOS conditions, whereas the reflected paths provide a minor contribution.

In particular, in LOS links, the odd-order statistical features S and S are

expected to be negative (due to the left-skewed distribution). The chosen

values of the feature thresholds depend on the considered wireless technol-

ogy (namely, IEEE 802.11 and LTE) and corresponding network parameters

(transmit power, RSSI resolution, etc.). However, such thresholds can be set

14



offline to achieve the desired classification accuracy, provided that the rele-

vant parameters are known and/or fixed in advance. As shown in Section 4,

in our numerical results we rely on measurements taken under different con-

ditions and we identify a unique threshold that can achieve, on average, good

performance.

The single-feature decisions can be collected into the vector ˆ̀ = [ˆ̀σ, ˆ̀
S, ˆ̀

K , ˆ̀
S , ˆ̀

P ]T .

At this point, each single decision is weighed by a proper coefficient αi ∈ [0, 1],

i = 1, 2, . . . , 5, to take into account possibly different reliabilities of the sin-

gle decisions. Let us denote as α = [α1, α2, . . . , α5]T the vector of weighing

coefficients, with ‖α‖1 = 1. The final decision variable ˜̀∈ [0, 1] is

˜̀= αT ˆ̀ (13)

and the channel status is finally estimated as

ˆ̀= U(˜̀− `th) (14)

where `th ∈ [0, 1] is a proper threshold. Note that if α = 0.2 ·15, being 1n the

all-one vector of size n, this approach is equivalent to an unweighed majority

logic threshold detector, i.e., all features have the same relevance. On the

other hand, if one of the weights is equal to 1 (and, consequently, the others

are 0), this rule is equivalent to a single-feature threshold detector for the

feature corresponding to the unitary weight.

3.2. LOS Distance Estimation

Assuming the applicability of Friis formula, the estimated distance on a

generic link, on the basis of the received power PR (dimension: [dBm]), can

be expressed as [25]

d̂ = d0 10
P0−PR
10 β (15)
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where P0 is the received power (dimension: [dBm]) at the reference distance

d0 (dimension: [m]), and β is the path loss exponent (adimensional). Eq. (15)

can be applied to transmissions over channels with LOS conditions, consid-

ering β = 2. Assume that the receiver can collect RSSI samples, where RSSI

is the actual power level (dimension: [dBm]) seen by the receiver.6 Consid-

ering the average RSSI (denoted as RSSI) over the observation window of N

samples, the estimated distance can be approximated as follows:

d̂ ' d0 10
P0−RSSI

20 . (16)

Note that the use of the average RSSI is expedient to eliminate statistical

fluctuations (especially in experimental scenarios).

3.3. NLOS Mitigation and Distance Estimation

As shown in Figure 2, for NLOS links a direct path between the transmit-

ter and the receiver with dominant received power does not exist. Therefore,

the electromagnetic signal travels along a longer path through reflections

and/or refractions, thus reducing (with respect to the direct path) the re-

ceived power. The application of (15) is critical, as the value of β would

depend on the specific path. Therefore, the use of (15) with a fixed value

of β (for instance, the use of (16)) may likely lead to a wrong distance es-

timate in NLOS conditions. To this end, we propose to mitigate the NLOS

effect by deriving a more reliable link distance estimation strategy starting

from (16), rather than adapting β in (15) link by link. In particular, we

6This assumption is typical for IoT devices. Moreover, in most cases the available RSSI

values are quantized.
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propose to transform a NLOS link into an “equivalent” LOS one, using a

heuristic “universal” correction (independent of the specific link conditions),

as will be described in the following.

Let us focus on the k-th observation window (k = 1, . . . , K) of a generic

target-anchor link. When the link is classified as NLOS (according to the

strategy outlined in Subsection 3.1), the corresponding estimated distance

d̂nlos obtained with (16) may be heuristically corrected by means of a scalar

coefficient as

d̂
(k)
nlos−c =

d̂
(k)
nlos

ĉ(k)
(17)

where d̂
(k)
nlos−c is the estimated distance after the correction and ĉ(k) > 1 is

a proper correction parameter, which quantifies the NLOS effect. In par-

ticular, the correction coefficient at the k-th time epoch can be empirically

computed as a linear regression, with proper coefficients, of the statistical

features extracted online from the current block of N RSSI samples. In

other words,

ĉ(k) = γT f (k) (18)

where f (k) = [1, σ(k), S(k), K(k),S (k),P(k)]T is the vector of statistical fea-

tures (besides the initial 1) and γ = [γ0, γ1, . . . , γ5]T is a fixed vector of

regression weights for the features, which is kept constant, regardless of the

specific link and observation window, in NLOS conditions. A pictorial de-

scription of the NLOS mitigation scheme is provided in Figure 4.

The regression weight vector γ can be computed offline during a system

calibration phase as follows. Assume that the target is placed at known

pre-defined positions, so that L estimated distances associated with NLOS
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links are available7 and collected in the vector d̂nlos = [d̂
(1)
nlos, . . . , d̂

(L)
nlos]

T . As-

sume also that the corresponding true distances are known and collected in

the vector dtrue = [d(1), . . . , d(L)]T . The statistical features over the entire

observation window can be collected in the following L× 6 matrix:

F =
[
f (1)T ,f (2)T , . . . ,f (L)T

]T
. (19)

The optimal weight vector solves the following minimization problem:

γ = arg min
a=[a0,...,a5]T

∣∣∣∣
∣∣∣∣dtrue − d̂nlos �

1

F a

∣∣∣∣
∣∣∣∣ (20)

where � denotes element-wise vector multiplication. In other words, the

weight vector minimizes the error between the true distance and the corrected

one. In order to make the calibration method accurate, the total number L

of collected RSSI blocks must be sufficiently large. From a practical point

of view, this corresponds to considering a sufficiently large number of NLOS

links (sufficiently heterogeneous) with known distances and carry out data

collection. The weight vector γ will then be used, during online operations,

if a link is identified as NLOS. The identification of an efficient calibration

dataset (in terms of set of L NLOS links) is an interesting research problem.

3.4. “Agnostic” Localization

Once the estimated distances are available from all the M anchors, an

“agnostic” localization algorithm can be run to derive a final target position

estimate. The algorithm is agnostic in the sense that it acts as if all links

7L consecutive N RSSI samples’ blocks are collected sequentially.
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Figure 4: Block diagram of the proposed NLOS mitigation scheme.

were LOS. In fact, a NLOS link is transformed into an equivalent LOS one

according to the steps discussed in Subsection 3.1 and Subsection 3.3.

In general, a localization algorithm solves a system of equations of the

type shown in (4). As illustrative (but not exhaustive) examples of agnos-

tic localization algorithms, we now briefly recall two geometric algorithms,

namely Two-Stage Maximum-Likelihood (TSML) [26] and Plane Intersection

(PI) [27], which will be used for localization purposes. In particular, TDoA-

based implementation of TSML and PI are considered. Besides geometric

solutions, Particle Swarm Optimization (PSO)-based solutions will also be

considered. An exhaustive analysis of RSSI-based least squares lateration

algorithms is presented in [28].

We remark that the localization accuracy of ToA-based algorithms, not

shown here for lack of space, is lower than that of TDoA-based ones. Even if

ToA-based processing may be more attractive from an implementation point

of view, we focus on TDoA-based processing, which guarantees best perfor-

mance. If TDoA-based processing is considered, inter-anchor synchronization

is crucial. In IoT scenarios, this can be demanded to the infrastructure, i.e.,
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to the cooperating anchors. The investigation of this aspect goes beyond the

scope of this paper.

3.4.1. Two-Stage Maximum-Likelihood (TSML) [26]

The TSML algorithm resorts to a two-step approach and solves, in each

step, a smaller system of equations (with respect to the starting one). Defin-

ing the unknown vector as φ1 =
[
uT , d1

]T
, one obtains the following system

of equations for the first step:

G1φ1 = h1 (21)

where G1 is a (M − 1)× 3 matrix and h1 is a length-(M − 1) vector defined

as follows:

G1 = −2




x2 − x1 y2 − y1 ∆̂2

...
...

...

xM − x1 yM − y1 ∆̂M


 (22)

h1 =




k2
1 − k2

2 + ∆̂2
2

...

k2
1 − k2

M + ∆̂2
M


 . (23)

As G1 is not a square matrix, the solution φ̂1 can be obtained, by resorting

to a Least Squares (LS) method [29], as follows:

φ̂1 =
(
GT

1G1

)−1
GT

1h1. (24)

At this point, since the third unknown in φ1 (namely, d1) depends on the

other two (namely, u), one has to solve a system of equations to eliminate

this dependence. Denoting φ2 = (u − s1)2, the following final system of
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equations has to be solved:

G2φ2 = h2 (25)

where G2 is a 3× 2 matrix, whereas h2 is a length-3 vector defined, respec-

tively, as follows:

G2 =




1 0

0 1

1 1


 (26)

h2 =
(
φ̂1 −

[
sT1 , 0

]T)2

. (27)

The LS solution is then

φ̂2 =
(
GT

2G2

)−1
GT

2h2 (28)

and the final position estimate is obtained combining φ̂1 and φ̂2 according

to

û = sign
(
φ̆1 − a1

)
� φ̂2 + a1 (29)

where sign(·) represents the sign operator and φ̆1 is a bi-dimensional vector

formed by the first two vector components of φ̂1.

Note that evaluating (24) has complexity on the order of O(M2) [30].

On the other hand, the solution of (28) leverages operations on small-size

matrices and vectors, with negligible computation complexity, especially in

the presence of a large number of anchors.

3.4.2. Plane Intersection (PI) [27]

The rationale behind this approach is that any pair of TDoA measure-

ments, coming from a group of three anchors, leads to an equation which
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identifies the major axes of a conic, whose focus should lie in the target.

Therefore, having at least three of these equations allows to determine the

target position by solving the corresponding system of equations.8

The system of equations to be solved is

Au = b (30)

where A is a (M − 2)× 2 matrix and b is a length-(M − 2) vector defined as
follows:

A =


(x1 − x2)∆̂3 − (x1 − x3)∆̂2 (y1 − y2)∆̂3 − (y1 − y3)∆̂2

..

.
..
.

(x1 − x2)∆̂M − (x1 − xM )∆̂2 (y1 − y2)∆̂M − (y1 − yM )∆̂2

 (31)

b =


−∆̂2 ∆̂3(∆̂3 − ∆̂2) + (k21 − k22)∆̂3 − (k21 − k23)∆̂2

...

−∆̂2 ∆̂M (∆̂M − ∆̂2) + (k21 − k22)∆̂M − (k21 − k2M )∆̂2

 . (32)

Hence, the LS solution can be computed as

û =
(
ATA

)−1 (
ATb

)
(33)

with complexity on the order of O(M2) [30] (similar arguments to those for

TSML can be applied).

3.4.3. Particle Swarm Optimization (PSO)

The considered geometric-based algorithms (TSML and PI) analytically

solve the systems of equations described above. However, it may happen that

the matrices involved in these systems of equations become ill-conditioned,

8Note that, in this case, a second reference anchor is needed to determine the system

of equations. To this end, for notation simplicity, we will assume that s2 is the second

anchor closest to the target.
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thus leading to a very inaccurate target position estimate [31, 32]. The ratio-

nale behind the use of the PSO algorithm is to re-interpret the above systems

of equations as minimization problems, avoiding numerical problems in find-

ing their solutions. More precisely, the solution of the general localization

problem (4) can be written as

û = arg min
p

g(ρ) ρ ∈ R2 (34)

where g(·) is the so-called fitness function and depends on the starting system

of equations.

The fitness function should take into account the error, in the system of

equations, when a wrong position is estimated: in particular, the larger the

error, the higher the g(·). Starting from (21) for the TSML algorithm, the

following fitness function can be considered:

g(ρ) =
∥∥∥∆̂2 − (k2 − k2

1) + 2 ∆̂ ‖ρ− s1‖+ 2 (S − s1)T p
∥∥∥ (35)

where ∆̂
2

stands for the element-wise square of the vector ∆̂. We refer to

the PSO solution of (35) as PSO-TSML. Note that (35) provides a solution

which is “biased” towards the first anchor s1, especially for large values ∆̂,

due to the presence of the term 2 ∆̂ ‖ρ− s1‖.
If, instead of the system given by (21), the system given by (30) is con-

sidered for the PI algorithm, the following fitness function can be used:

g(ρ) = ‖b−Aρ‖ . (36)

We refer to the PSO solution of (36) as PSO-PI.

At this point, we resort to the standard implementation of the PSO (see,

e.g., [33]) to solve the minimization problem (34) with fitness function either
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equal to (35) or (36). According to the PSO algorithm, the set of potential

solutions of each optimization problem, i.e., of the system of equations as-

sociated with the chosen localization algorithm, can be modeled as a swarm

of particles. We denote the set of particles as P and its size as |P|. The

positions of the particles are randomly initialized in the region of interest

and the key idea is to iteratively “guide” them towards the optimal solution

by exploring the interactions between them.

At iteration9 n (n = 0, 1, . . . , nit, where nit is the number of iterations),

the position and velocity of the i-th particle are represented by the two-

dimensional vectors πi[n] and vi[n], respectively. The PSO algorithm as-

sumes that each particle knows, at each iteration, its own best position (as

will be discussed in the following) as well as the global best position among

all the particles and the corresponding values of the fitness function.

The update rule for particles’ velocities is given by

vi[n+ 1] = ω[n]vi[n] + c1 χ1[n] {pi[n]− πi[n]}

+c2 χ2[n] {p[n]− πi[n]} (37)

where ω is the PSO inertial factor, c1 and c2 (c1, c2 ∈ R, c1, c2 ≥ 0) are the

so-called cognition and social parameters, and χ1[n] and χ2[n] are indepen-

dent random variables uniformly distributed in [0, 1]. Finally, pi[n] and p[n]

represent, respectively, the position of the i-th particle with the best fitness

9The use of an inherently iterative algorithm leads to a delay in the estimation pro-

cedure, which may be critical (depending on the available computation hardware) for

real-time applications or dynamic scenarios with mobile targets. The investigation of re-

fined techniques to reduce the number of iterations in conjunction with target tracking

will be subject of future investigation.
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function (over the n iterations) and the position of the particle with the best

(among all particles) fitness function up to iteration n, i.e.,

pi[n] = arg min
ρ∈{πi[j]}nj=0

g(ρ)

p[n] = arg min
ρ∈{pi[n]}|P|i=1

g(ρ).

Using (37), the update rule for the particles’ positions is

πi[n+ 1] = πi[n] + vi[n+ 1].

In other words, the idea of the PSO algorithm is to check the system of

equations in correspondence to some test positions, find the position with

best fitness, and try to iteratively converge to the best position, by also

exploring other positions in the surrounding space. The final solution is

given by

û = arg min
ρ∈{pi[nit]}

|P|
i=1

g(ρ).

As a final remark, one can note that the inertial factor ω[n] is represen-

tative of the ability of the particles to explore new areas in the surrounding

space. However, taking into account the results in [31], in the following we

will consider ω[n] ' 0 ∀n in (37).

Since at each iteration the fitness function has to be evaluated for all

particles, the complexity can be proved to be O(|P| · nit · M) [30]. Since

|P|, nit � M , the complexity of this algorithm may be unfeasible in most

realistic applications that pose real-time requirements (e.g., those involved

in IoT scenarios).
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Figure 5: Indoor WiFi localization scenario.

Figure 6: IoT target node used for the experimental performance analysis in indoor and

outdoor localization scenarios.

4. Experimental Performance Analysis

We now present an experimental performance analysis in IEEE 802.11

(indoor) and LTE (outdoor) wireless scenarios. The indoor scenario is shown

in Figure 5 and corresponds to the WiFi network deployed at the ground

floor of the Building n. 2 of the Department of Engineering and Architec-

ture of the University of Parma, Italy. The six anchors (denoted by blue

circles) are IEEE 802.11 Cisco AIR-CAP3702I-E-K9 APs transmitting over

3 disjoint IEEE 802.11 20 MHz bandwidth channels (channels 1, 6, and 11).

On the other hand, the target (denoted by a red cross and placed in an
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Figure 7: Outdoor LTE Localization Scenario. AP 1 and 2 are in LOS, AP 3 and 4 are in

NLOS.

illustrative position) is shown in Figure 6 and corresponds to a Raspberry

Pi 3 Model B+ (RPi) Single Board Computer (SBC), equipped with (i) an

external IEEE 802.11 Linksys TL-WN722N USB dongle, with a 1 dB gran-

ularity RSSI measurement capability, and (ii) an on-board -plugged Wave-

share SIM7600E-H 4G HAT expansion board, with a 1 dB granularity RSSI

measurement capability. In the RPi, Wireshark is running to extract RSSI

measurements from the beacon packets received by the APs. In particular,

we consider a scenario with six APs, four of which are in LOS (those denoted

as 3-4-5-6) and two are in NLOS (those denoted as 1-2) with respect to the

target—LOS is associated with direct visibility, whereas NLOS is associated

with the presence of at least one large object between target and anchor (e.g.,

wall, thick door, closet). Measurements are taken under different conditions

(e.g., at various hours with different WiFi traffic loads, people passing by,

etc.).

The outdoor LTE scenario is shown in Figure 7. The anchors are evolved

Node Bs (eNBs) transmitting with an uplink frequency equal to 847 MHz
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and a downlink frequency equal to 806 MHz, over a bandwidth of 10 MHz.

The target corresponds to the aforementioned IoT node in Figure 6 running

a proper script which collects RSSI data through the LTE hat’s internal

Application Programming Interfaces (APIs). Since the available APIs do not

allow for simultaneous data collection from several eNBs, we collect single link

measurements (in either LOS or NLOS conditions) and then build a “virtual”

simulation scenario, as shown in Figure 7. The virtual simulation scenario is

obtained by placing “virtual” eNBs at distances, from the target, equal to the

distances from the real eNBs at which real experimental data were collected.

Moreover, for each virtual eNB, LOS or NLOS channel status is selected on

the basis of the corresponding experimental data: LOS is associated with

direct visibility of anchors and target, whereas a NLOS status is associated

with the presence of either the target inside a building or with the presence of

at least one building between target and anchor. As for the indoor scenario,

in this case as well measurements are taken under different environmental

conditions for fixed target-eNBs’ distances and LOS/NLOS conditions.

In both cases, data are collected at the target with a RSSI sampling inter-

val of 100 ms. The number T of collected RSSI blocks from all the anchors

is 842 for WiFi and 757 for LTE, each block containing N = 30 consecu-

tive RSSI samples, corresponding to an observation time of 3 seconds. As

preliminarily shown in [15], the accuracy of NLOS identification improves if

N increases. Consequently, the performance of the mitigation can improve

as well, since the NLOS links can be identified more accurately. However,

increasing N leads to a longer delay in the acquisition process: this can be

critical in dynamic scenarios with a mobile target. In this case, in fact, if
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the acquisition delay is too long, the LOS/NLOS classification may refer to

an outdated target position and may make the entire localization process

inaccurate. Our results (with various values of N), not presented here for

lack of space, show that N = 30 is a good trade-off between position esti-

mation accuracy and delay. The number L of blocks of RSSI measurements

associated with NLOS links is 278 for the WiFi scenario and 405 for the LTE

scenario. Therefore, the number T − L of blocks associated with LOS links

is 564 for the WiFi case and 352 with LTE.

Channel classification is performed for each of the T blocks of RSSI

measurements—channel status is considered constant over a block. When

the reference NN classifier is considered, the input layer is the set of features

D̃, while the output corresponds to the estimated channel condition ˆ̀. In-

ternally, the hidden layer is a 5-neuron fully connected layer using the scaled

conjugate gradient training function. The size of the training, validation,

and testing dataset are 80%, 10%, and 10% of T , respectively [15]. These

values are chosen as a reasonable trade-off between training duration and NN

performance. Moreover, cross-validation has been performed by considering

different subsets’ training, validation, and testing and, then, computing the

average performance.t

Regarding channel mitigation, the regression weight vector γ in (20) is

computed using all the L blocks of the NLOS measurements to generate

the matrix F in (19). Then, this vector is used to compute the distance

correction coefficient for the specific link and block according to (18).

Finally, a localization act is performed in correspondence to all time in-

stants at which the target has been able to acquire a block of N RSSI mea-
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surements from all the M anchors. The total number of performed localiza-

tion acts, denoted as K
′
, is around 100÷ 150. The number K

′
is variable as

it depends on the application (or not) of an outlier removal strategy. In par-

ticular, in this work we a-priori assume that the position estimate should lie

inside the polytope identified by the anchors, i.e., the anchors should be at the

boundary of the monitored area. Therefore, the considered outlier removal

strategy eliminates position estimates that are significantly outside such a

polytope.10 In particular, we discard decisions for which |x̂j| > 2 maxi |si| or

|ŷj| > 2 maxi |si|, where x̂j and ŷj are the coordinates of the position esti-

mate ûj at the j-th localization act. For example, this could be appropriate

for in-region user presence verification.

4.1. Indoor WiFi Scenario

We first analyze the performance of the NLOS classifier in terms of its

Receiver Operating Characteristic (ROC) curve, defined as the probability

of correct LOS classification, i.e., PD = P (ˆ̀ = 1|` = 1), as a function of the

probability of incorrect NLOS classification, i.e., PF = P (ˆ̀ = 1|` = 0). The

ROC curve for the indoor WiFi scenario is shown in Figure 8, considering

various classifiers. For each considered classifier, the ROC curve is composed

of points associated with different decision strategies, namely the values of

single thresholds for the single-feature classifiers and ˜̀
th for the weighed clas-

sifier. The markers on the curves (one per curve) show the operational points

in correspondence to which the final classification accuracy is approximately

10Improved outlier removal strategies can be considered, but this goes beyond the scope

of this paper.
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Figure 8: ROC curves of the considered classifiers in the indoor WiFi scenario. For each

curve, the marker shows the working point for final classification accuracy of approximately

84%.
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Table 1: Parameters for NLOS classification and mitigation in the indoor WiFi scenario.

feature threshold classification weights mitigation weights (γ0 = −1.39)

σ σ∗ = 2 α1 = 0.2 γ1 = 0.56

S S∗ = 0.6 α2 = 0.1 γ2 = −1.59

K S ∗ = 5 α3 = 0.1 γ3 = 0.31

S S ∗ = 5 α4 = 0.1 γ4 = 0.04

P P∗ = 0.7 α5 = 0.5 γ5 = 3.40

84%.11 The values of the thresholds and weights of the various classifiers

needed to achieve a final classification accuracy of approximately 84% are

shown in Table 1. In this case, `th = 0.5.

As can be seen from the results in Figure 8, the NN-based classifier pro-

vides the best solution, yet paying a higher price in terms of computational

complexity and training needs. Moreover, for a final classification accuracy

of 84%, weighing all the five considered features allows to achieve the best

performance among the considered classifiers. However, the single-feature

classifiers based on PP or σ achieve very good results (for instance, the per-

formance with PP at the 84% accuracy overlaps with the performance with

weighing) with a very simple implementation. This behavior makes single-

feature classifiers attractive for energy conservation purposes (especially for

11This value is chosen as a reasonable performance trade-off.
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Figure 9: ROC curves of some of the proposed classifiers in the indoor WiFi scenario and

various values of N . A comparison with the classifiers in [16] is provided.

mobile and constrained devices, such as for IoT-oriented scenarios). On the

other hand, other single-feature classifiers (based on S, K and S ) do not

provide acceptable performance.

In Figure 9, we compare our classification results in the indoor WiFi sce-

nario (considering two values of N , namely 30 and 100) with those in [16],

where the following approaches have been considered: (i) a reference case

with Recurrent Neural Network (RNN) and N = 10 and (ii) a single statisti-

cal feature (namely the skewness) classifier with N = 100. One can observe

that the NN (ours) and RNN ([16]) benchmarks have similar performance.

Moreover, our single-feature classifier (based on the PP) with N = 30 out-

performs single-feature classifier (based on skewness) of [16] with N = 10.

Note that our accuracy, precision, and sensitivity results are in agreement
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Figure 10: Estimated positions in indoor WiFi scenario with outlier removal.

with those in [22, Table 1].

After classification, NLOS mitigation is carried out. In Table 1, the

weights for the mitigation procedure, corresponding to each feature, are

shown.

After mitigation of the 2 NLOS links associated to anchors 1 and 2 (see

Figure 5), localization is carried out. The estimated positions are shown in

Figure 10. As a concise performance indicator of the localization accuracy,

we evaluate the Root Mean Square Error (RMSE, dimension: [m]), defined

as

RMSE =

√√√√ 1

K ′

N∑

j=1

|u− ûj|2.

The RMSE results are shown in Figure 11 for the indoor WiFi scenario. The

case without and with NLOS mitigation are compared. In the latter case,

we show the results for both the cases without and with outlier removal.

One can observe that our (pre-localization) NLOS mitigation strategy sig-

nificantly reduces the RMSE, especially if carried out with outlier removal.

The only exception is the PSO-TMSL algorithm, which performs well also in
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Figure 11: RMSE for the indoor WiFi scenario.

the absence of correction. However, as already previously observed, the com-

plexity of a PSO-based solution is typically high and, therefore, the adoption

of such a solution is unfeasible in IoT scenarios. Moreover, PSO requires an

iterative process, which may also hinder its applicability from a delay point

of view. However, PSO-TSML represents a relevant performance benchmark.

4.2. Outdoor LTE Scenario

We now analyze the performance in the outdoor LTE scenario. The ROC

curves for the considered classifiers are shown in Figure 12. Considerations

similar to those carried out for Figure 8 are still valid, except for the fact

that, in general, link classification and, therefore, NLOS mitigation is less ac-

curate. In Figure 12, the operational points indicated with a symbol over the

ROC curves correspond to a final localization accuracy of 75% (the highest

with LTE). As can be seen, the weighed classifiers (both using all features)

allow to achieve the best performance (for a final accuracy of 75%), whereas

the performance with the single-feature classifiers degrades. Therefore, the

weighed classifier can be considered as “universal” in the sense that it al-
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Figure 12: ROC curves of the considered classifiers in the outdoor LTE scenario. For each

curve, the marker shows the working point for final classification accuracy of approximately

75%.
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Table 2: Parameters for NLOS classification and mitigation in the outdoor LTE scenario.

feature threshold
classification mitigation weights

weights (γ0 = −0.62)

σ σ∗ = 1.7 α1 = 0.2 γ1 = 5.58

S S∗ = 0 α2 = 0.2 γ2 = −1.83

K S ∗ = 3 α3 = 0.3 γ3 = 6.51

S S ∗ = −0.1 α4 = 0.2 γ4 = −7.88

P P∗ = 0.7 α5 = 0.1 γ5 = 0.71

lows to achieve almost the best performance in both (indoor and outdoor)

considered scenarios. The thresholds and weights of the NLOS classifier, to

achieve a final classification accuracy of approximately 75%, are shown in

Table 2, together with the corresponding mitigation weights. In this case as

well, `th = 0.5.

The estimated positions and the RMSE for the outdoor LTE scenario

are shown in Figure 13 and Figure 14, respectively. From the results in

Figure 14, it can be observed that, even if our mitigation strategy drastically

reduces the RMSE, the localization error seems still significant (on the order

of 400 m in the best case). This is probably due to the fact that using only

four anchors (eNBs) is not sufficient in LTE scenarios. In this case as well,

the only exception is the PSO-TMSL algorithm, which works very well also in

the absence of NLOS link mitigation. While in IoT scenarios the complexity
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Figure 13: Estimated positions in the outdoor LTE scenario with outlier removal.
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Figure 14: RMSE for the outdoor LTE scenario.

of PSO-TSML prevents its use, this may be attractive in cellular (4G/5G)

scenarios.

4.3. Indoor/Outdoor Scenario Comparison

We finally compare directly the performance of the proposed localization

method, with NLOS pre-mitigation, in the considered outdoor (LTE) and

indoor (WiFi) scenarios. In Figure 15, the ROC curves for the outdoor

LTE and indoor WiFi scenarios are directly compared, considering both the

reference NN and the best (weighed) classifier. One can observe that the
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Figure 15: Comparison of the ROC curves for the outdoor LTE and indoor WiFi scenarios,

considering both the reference NN and the best (weighed) classifier.

reference NN classifier has approximately the same performance classification

in indoor and outdoor scenarios. On the other hand, the weighed classifier

has better performance in the indoor case. The shapes of the ROC curves

with the weighed classifier are the same in indoor and outdoor scenarios.

We now set to compare the localization accuracy in outdoor and indoor

scenarios. In order to make a fair comparison, we “normalize” the RMSE

with respect to the average distance between target and anchors, which is

650 m in the outdoor scenario and approximately 8.62 m in the indoor sce-

nario. Therefore, the normalized RMSE is a relative measure of the localiza-

tion estimation error with respect to the considered topology. In Figure 16,

we compare the normalized RMSEs in outdoor LTE (from Figure 14) and

indoor WiFi (from Figure 11) scenarios: in all cases, NLOS pre-mitigation,
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Figure 16: Comparison of the normalized RMSE for the outdoor LTE and indoor WiFi

scenarios.

together with outlier removal, is considered. It is worth noting that, ex-

cept for the PSO-TSML, the relative RMSE is approximately the same for

all considered algorithms in both scenarios. This is a desirable feature of

the proposed strategy, since it means that its performance is not affected

by the specific scenario. Intuitively, this can be justified by the fact that

communication bandwidths are similar in outdoor and indoor scenarios and

it is well-known that the localization error is approximately inversely propor-

tional to such a quantity [34]. A thorough analytical demonstration of this

behavior is the subject of on-going research.

5. Concluding Remarks

In this paper, we have proposed a general approach to RSSI-based local-

ization. The availability of RSSI from COTS devices makes this approach

attractive for IoT scenarios. The key idea is to leverage channel status iden-

tification (LOS/NLOS) to perform NLOS mitigation before localization. In
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particular, classification and mitigation are based on the computation of sig-

nificant statistical features over an observation window ofN consecutive RSSI

samples. Our results show that good channel status classification accuracy

can be achieved by simply using a threshold detector based on a single sta-

tistical feature, namely the PP. Mitigation is then performed by determining

heuristic correction coefficients (depending on the links’ statistical features)

for the distance estimates associated with NLOS links: simply put, a NLOS

link is transformed into an equivalent LOS one. A few TDoA-based local-

ization algorithms have then been considered and experimental performance

assessment has been carried out in indoor (WiFi) and outdoor (LTE) scenar-

ios. Our results show that (low-complexity) localization algorithms (namely,

TSML and PI) significantly benefit in terms of position error reduction with

respect to an approach which does not exploit any NLOS mitigation. In

general, TSML-PSO guarantees the best performance in all considered sce-

narios, regardless of NLOS link mitigation: however, its applicability is not

feasible in IoT scenarios, but may be attractive in 4G/5G systems. Finally,

the approach seems to be universal in the sense that the relative localization

error, with respect to the average target-anchors’ distance, is approximately

the same in outdoor or indoor scenarios.
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[29] Å. Björck, Linear Algebra and its Applications, Elsevier Science Pub-

lishers, 1987.

[30] H. Cui, Y. Liang, C. Zhou, N. Cao, Localization of large-scale wireless

sensor networks using Niching particle swarm optimization and reliable

anchor selection, Hindawi Wireless Commun. Mobile Comput.Article ID

2473875, DOI: 10.1155/2018/2473875.

[31] S. Monica, G. Ferrari, Swarm intelligent approaches to auto-localization

of nodes in static UWB networks, Applied Soft Computing 25 (2014)

426–434, DOI: 10.1016/j.asoc.2014.07.025.

[32] S. Monica, G. Ferrari, Maximum likelihood localization: When does it

fail?, ICT Express 2 (1) (2016) 10 – 13, DOI: 10.1016/j.icte.2016.02.004.

[33] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. Int.

Conf. Neural Networks (ICNN), Vol. 4, Perth, WA, Australia, 1995, pp.

1942–1948, DOI: 10.1109/ICNN.1995.488968.

[34] S. Gezici, Zhi Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V.

Poor, Z. Sahinoglu, Localization via ultra-wideband radios: a look at

positioning aspects for future sensor networks, IEEE Signal Processing

Mag. 22 (4) (2005) 70–84, DOI:10.1109/MSP.2005.1458289.

46



Fabrizio Carpi received his M.Sc. degree in Communication Engineering from University of Parma, 

Italy, in 2018. He is currently a Ph.D. candidate in Electrical Engineering at New York University 

Tandon School of Engineering.  He is also a member of NYU WIRELESS Center conducting 

research on next-generation wireless networks. His research interests include wireless 

communications, source and channel coding, information theory, and machine learning. 



Marco Martalò is an Associate Professor of Telecommunications at the University of Cagliari, Italy, 

which he joined in 2020 and where he is part of the Networks for Humans (Net4U) laboratory. 

From 2012 to 2017, he was an Assistant Professor with E-Campus University, Italy, and also a 

Research Associate with the University of Parma, Italy, until 2020. He has co-authored the book 

“Sensor Networks with IEEE 802.15.4 Systems: Distributed Processing, MAC, and Connectivity.” 

His research interests are in the design of communication and signal processing algorithms for 

wireless systems and networks. 



Luca Davoli is currently a Fixed-term Assistant Professor at the Department of Engineering and 

Architecture of the University of Parma. He received his Ph.D. in Information Technologies in 2017 

and, since January 2014, he has been a member of the Internet of Things (IoT) Laboratory at the 

same university. He has (published or in press) over 35 papers, and has been TPC member of 

international conferences and served on the editorial boards and as Guest Editor of international 

journals. His main research interests are in the fields of Internet of Things, Software Defined 

Networking, Big Stream and Peer-to-Peer Networks. 



Antonio Cilfone received his Master of Science in Communication Engineering  and his Ph.D. in 

Information Technologies from the University of Parma, Parma, Italy, in 2016 and 2019, 

respectively. He has been member of the Internet of Things (IoT) Lab at the Department of 

Engineering and Architecture of the University of Parma from 2016 until 2020, working in 

heterogenous networking, signal processing and smart systems fields. He is currently working as 

R&D software engineer for Tesmec Automation S.r.l., Italy.  

 



Yingjie YU received the B.S., M.S., and Ph.D. degrees in communication and information system 

from Northwestern Polytechnical University, Xi’an, China, in 2011, 2014, and 2018, respectively. 

She is currently a senior engineer in Huawei Technologies Co.,Ltd working on 5G positioning 

research. 



Dr. Yi Wang is currently a principal engineer at Huawei Technologies Co., Ltd. in Shanghai. 

Since 2005 he joined Huawei Technologies Co., Ltd. he led a series of research projects on 

LTE/LTE-Advanced and 5G. Currently he is leading 5G positioning research in Huawei. Dr. 

Yi Wang owns granted 150+ patents and 90+ papers. Many patents have been realized in 

LTE/LTE-Advanced and 5G products and adopted in 3GPP and IEEE802.11 standards. Dr. Yi 

Wang is the board member of NYU Wireless Industrial Affiliates since 2014. He is the chair of 

China IMT-2020 (5G) mmWave Technology since 2013. 

 



Gianluigi Ferrari (http://www.tlc.unipr.it/ferrari) is an Associate Professor of Telecommunications 
at the University of Parma, Italy, where he coordinates the Internet of Things (IoT) Lab 
(http://iotlab.unipr.it/) in the Department of Engineering and Architecture. His research interests 
revolve around three main areas: advanced communication and networking; signal processing; IoT 
and smart systems. He is an IEEE Senior Member. Since 2016, he is Co-founder and President of 
things2i ltd. (http://www.things2i.com/), a spin-off company of the University of Parma dedicated 
to IoT and smart systems. In 2021, he has been included in the world's top 2% of Scientists List by 
Stanford University. 



Click here to access/download;Author Photo;photo_carpi.jpg

https://www.editorialmanager.com/comnet/download.aspx?id=152829&guid=5feefa3f-eb64-4513-9fe2-e662b8ff4de8&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152829&guid=5feefa3f-eb64-4513-9fe2-e662b8ff4de8&scheme=1


Click here to access/download;Author Photo;photo_martalo.jpeg

https://www.editorialmanager.com/comnet/download.aspx?id=152833&guid=b92dd5a5-08c2-407d-97c3-e364c578d83c&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152833&guid=b92dd5a5-08c2-407d-97c3-e364c578d83c&scheme=1


Click here to access/download;Author Photo;photo_davoli.png

https://www.editorialmanager.com/comnet/download.aspx?id=152831&guid=d677c3f9-b52c-4b5d-84b1-774a84c20060&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152831&guid=d677c3f9-b52c-4b5d-84b1-774a84c20060&scheme=1


Click here to access/download;Author Photo;photo_cilfone.jpg

https://www.editorialmanager.com/comnet/download.aspx?id=152830&guid=7a2891c6-f6fa-48aa-b9a2-a8416844da6e&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152830&guid=7a2891c6-f6fa-48aa-b9a2-a8416844da6e&scheme=1


Click here to access/download;Author Photo;photo_yu.png

https://www.editorialmanager.com/comnet/download.aspx?id=152835&guid=d6713f6f-39cf-4329-b5da-8965e6615329&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152835&guid=d6713f6f-39cf-4329-b5da-8965e6615329&scheme=1


Click here to access/download;Author Photo;photo_yi.jpg

https://www.editorialmanager.com/comnet/download.aspx?id=152834&guid=8841d204-5ba0-40f5-8f6f-dc41138c9558&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152834&guid=8841d204-5ba0-40f5-8f6f-dc41138c9558&scheme=1


Click here to access/download;Author Photo;photo_ferrari.jpg

https://www.editorialmanager.com/comnet/download.aspx?id=152832&guid=f35d6582-a393-414e-89e2-052cdb221baa&scheme=1
https://www.editorialmanager.com/comnet/download.aspx?id=152832&guid=f35d6582-a393-414e-89e2-052cdb221baa&scheme=1


Declaration of interests 
 
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 
☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 
 
 
 

 

Conflict of Interest


