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A B S T R A C T

Person re-identification is a challenging cross-camera matching problem, which is inherently subject to domain
shift. To mitigate it, many solutions have been proposed so far, based on four kinds of approaches: supervised
and unsupervised domain adaptation, direct transfer, and domain generalisation; in particular, the first two
approaches require target data during system design, respectively labelled and unlabelled. In this work, we
consider a very different approach, known as human-in-the-loopHITL), which consists of exploiting user’s
feedback on target data processed during system operation to improve re-identification accuracy. Although it
seems particularly suited to this application, given the inherent interaction with a human operator, HITL
methods have been proposed for person re-identification by only a few works so far, and with a different
purpose than addressing domain shift. However, we argue that HITL deserves further consideration in person
re-identification, also as a potential alternative solution against domain shift. To substantiate our view, we
consider simple HITL implementations which do not require model re-training or fine-tuning: they are based
on well-known relevance feedback algorithms for content-based image retrieval, and of novel versions of them
we devise specifically for person re-identification. We then conduct an extensive, cross-data set experimental
evaluation of our HITL implementations on benchmark data sets, and compare them with a large set of existing
methods against domain shift, belonging to the four categories mentioned above. Our results provide evidence
that HITL can be as effective as, or even outperform, existing ad hoc solutions against domain shift for person
re-identification, even under the simple implementations we consider. We believe that these results can foster
further research on HITL in the person re-identification field, where, in our opinion, its potential has not been
thoroughly explored so far.
1. Introduction

Person re-identification (Re-Id) consists of matching images of a
person of interest across different non-overlapping cameras. This is a
challenging computer vision task due to different poses, low camera res-
olution, illumination changes, occlusions and differences in image back-
ground, and also because it is usually an open-world problem (Leng
et al., 2020). Early approaches were based on manually defined pedes-
trian descriptors and similarity measures (e.g., Farenzena et al., 2010),
and on metric learning. Current approaches use Convolutional Neural
Networks (CNNs) as feature extractors, and in some cases also for
metric learning, and always require a training phase (Ye et al., 2022).

Re-Id is inherently a cross-scene task, since the pedestrian in the
query image has to be searched among images acquired by different
cameras. Accordingly, benchmark data sets contain images from at least
two different cameras (Ye et al., 2022). However, in the standard ex-
perimental setting for supervised methods (including CNN-based ones),
training and testing data are taken from the same set of cameras: this
can lead to overestimating performance with respect to real application
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scenarios where a Re-Id system has to be deployed on target scenes
which are unknown during design. Additionally, benchmark data sets
turned out to be affected by a considerable bias (Genç et al., 2019), sim-
ilarly to other computer vision tasks (Khosla et al., 2012). In fact, under
a cross-data set evaluation procedure which is more representative of
real cross-scene scenarios, i.e., training on a given data set and testing
on a different one (direct transfer approach, DT), the performance of
supervised methods significantly decreases (Genç et al., 2019; Song
et al., 2020).

The above issue is a specific case of the well-known domain shift
(DS) problem in machine learning, that occurs when a model trained
on a source domain is deployed on a different, although related, target
domain. To address DS and to improve the performance, with respect
to DT, several approaches proposed in the machine learning field have
also been applied to Re-Id. Among them, domain adaptation (DA) and
unsupervised DA (UDA) require target data (labelled according to the
person’s identity, for DA) for model fine-tuning or re-training, either
during design (if the target domain is known and target data can be
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collected at that stage) or even after deployment. In contrast, domain
generalisation (DG) approaches (Ye et al., 2022) do not use target data:
they aim at improving the generalisation capability of the model on
any target domain using several source domains for training, without
modifying the model after deployment. Since DG does not use target
data, it usually achieves lower accuracies than those attained by DA and
UDA. In particular, its effectiveness depends on how much the source
domains represent the target one. Indeed, building a model capable of
generalising to any unseen target domain is considered one of the more
difficult problems in machine learning (Zhou, Liu, Qiao, Xiang, & Loy,
2023).

In this work, we address DS in Re-Id under the different perspective
of the human-in-the-loop (HITL) approach, extending our preliminary

ork (Delussu et al., 2020). HITL is being studied in the machine
earning field since a long time, as an approach to leverage the synergy
etween human and machine capabilities (Mosqueira-Rey, Hernández-
ereira, Alonso-Ríos, Bobes-Bascarán, & Fernández-Leal, 2022), in sev-
ral applications including computer vision (Deng et al., 2016). It
enerally consists in exploiting human feedback on the behaviour of
given learning-based system, typically during operation, to improve

ts performance in the first place, and could also allow promoting
rustworthiness (Holzinger, 2021). In particular, HITL appears well
uited to Re-Id systems since they inherently include interaction with
user during operation, i.e., during the person image search process.
espite this, HITL methods for Re-Id have been proposed so far by only
few works (e.g., Liu et al., 2013; Wang et al., 2016), and none of them

ooked at it as a possible solution against DS.
We believe that the potential of HITL has not been thoroughly ex-

lored so far in the specific Re-Id task. In particular, we argue that HITL
an be a valid alternative to existing DA, UDA and DG approaches to
ddress DS in Re-Id, since the inherent interaction with the user during
e-Id systems’ operation allows obtaining human feedback on target
ata, which can be exploited to improve re-identification accuracy on
he target domain. Moreover, this can be achieved without demanding
dditional effort in a preliminary, offline phase, e.g., for collecting
nd possibly manually annotating target data as required by many DA
nd UDA solutions. This can be very useful in challenging scenarios
here no target data (not even unlabelled) can be collected for model

raining or refinement; this is the same scenario addressed by DG,
ith the difference that HITL can exploit target data (acquired during
peration). Moreover, similarly to DG, HITL can also be implemented
ithout any model refinement step.

Based on the above premises, this work’s main goal and contribution
s to investigate the effectiveness of HITL in Re-Id against DS, as an al-
ernative solution to the aforementioned DA, UDA and DG approaches.
o this aim, we start by considering simple implementations of HITL
ased on representative relevance feedback (RF) algorithms that are a
ell-known, effective solution for content-based image retrieval (CBIR)
roblems which Re-Id is a particular instance of Vezzani, Baltieri, and
ucchiara (2013) and Ye et al. (2022), and that have not been con-
idered by previous work on HITL Re-Id. Additionally, we devise novel
ersions of the considered RF algorithms tailored explicitly to Re-Id. We
lso adopt a feedback protocol more suited to RF than the ones used
y existing HITL Re-Id methods. In summary, after the underlying Re-
d system returns to the user the gallery images ranked by decreasing
imilarity to the query image, our HITL methods ask the user to indicate
ll true matches (if any) in the top-𝐾 ranks (for a given 𝐾 value), and
xploit this feedback to re-rank the whole gallery using RF algorithms,
iming at pushing other images of the query individual toward the top
anks; the user can repeat this process for several iterations.

We point out that our RF-based HITL methods are very general
nd can be implemented on top of any Re-Id model. We then carry
ut an extensive empirical analysis of our HITL implementations, and
comparison with state-of-the-art DA, UDA, DT and DG methods, on

hree benchmark Re-Id data sets, under a cross-data set setting which
2

s representative of the cross-scene application scenario of interest. Our l
esults confirm that, even under a simple RF-based implementation,
ITL can outperform DT and DG methods, which do not use target data

or model training or fine-tuning, at the cost of a very limited user effort
feedback) during operation; it can also achieve comparable or even
etter performance than the one attained by DA and UDA.

In summary, this work provides the following contributions: (i)
e reconsider the HITL approach to Re-Id as a potential, additional

olution to DS beside DA, UDA and DG; (ii) We implement HITL
ethods based on existing RF algorithms for CBIR, as well as on novel

ersions of such algorithms we specifically devise for Re-Id; (iii) We
rovide extensive empirical evidence of the effectiveness (in terms
f re-identification accuracy) and efficiency (in terms of the required
mount of human feedback and of the lack of model refinement re-
uirements) of the HITL approach to Re-Id, in comparison with DA,
DA and DG.

We believe that these results can reawaken interest on, and foster
urther research on the HITL approach in the Re-Id field, where, in our
pinion, its potential has not been thoroughly explored so far.

The rest of this work is organised as follows. In Section 2 we
eview related work. In Section 3 we motivate our RF-based HITL
mplementation for Re-Id, and present the considered RF algorithms
nd their novel versions. Section 4 describes the experimental set-up,
hereas results are reported in Section 5. A discussion in Section 6

oncludes this paper.

. Related work

In this section, we survey the literature on Re-Id, focusing on
T, DA, UDA and DG methods proposed to address DS, and to HITL
ethods.

.1. Direct transfer methods

Although DT is usually not effective for supervised methods, some
orks proposed to improve its performance by extracting generalisable

eatures from a source domain, i.e., robust to domain shift, using
pecific CNN models, e.g., OSNet (Zhou et al., 2019) and ADIN (Yuan
t al., 2020). For instance, OSNet extracts omni-scale features through
cale-specific streams which are then combined using different weights.

.2. Domain adaptative and unsupervised domain adaptive methods

DA consists in pre-training a model on labelled source data and
ine-tuning it on labelled target data. For instance, DA-ReID (Xu et al.,
021) considers the reliability of lower-body, upper-body and global
eatures in case of occlusions. The fine-tuning step aims to improve
he identification of pedestrians’ lower and upper body in the target
omain.

UDA assumes that target data can be collected either during design,
r even after deployment, to refine a model previously trained on a
ource domain, and exploits them without requiring manual annota-
ion (Feng et al., 2021; Ge et al., 2020; Qi et al., 2019; Song et al.,
020; Wu et al., 2019; Zhang et al., 2019).
Method based on pseudo-labels. Several UDA methods are based

n pseudo-labels automatically assigned by the source model either to
ll target images, e.g., MTNet (Chen et al., 2023b), Theory&Practice
Song et al., 2020), JL (Feng et al., 2021), MMT (Ge et al., 2020),
r to a subset of target images for which they are considered reli-
ble, e.g., PAST (Zhang et al., 2019), CACHE (Liu, Ge, Sun, & Hou,
022). For instance, the Mutual Tri-training Network (MTNet) frame-
ork (Chen et al., 2023b) combines self-paced learning and mutual

earning in order to gradually increase the discrimination capability of
he model and reduce noisy pseudo-labels. The Mutual Mean Teaching
MMT) model (Ge et al., 2020) collaboratively learns two CNNs on
he source and target domains to improve the prediction of pseudo-

abels, and selects the best performing one (on validation data) as
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a feature extractor for the inference step. The Joint Learning (JL)
odel (Feng et al., 2021) uses an embedding CNN followed by two
ifferent branches for source and target images which share a mod-
le aimed at improving the prediction of the 𝑘-nearest neighbours
f each target image. PAST (Zhang et al., 2019) uses a self-training
ith progressive augmentation framework consisting of two stages,

‘conservative’’ and ‘‘promoting’’, which are used iteratively for model
ptimisation. In the first stage, a subset of reliable target images is
elected and is used in the second stage together with the corresponding
seudo-labels for model updating. Complementary Attention-driven
ontrastive learning with Hard-sample Exploring (CACHE) model (Liu
t al., 2022) aims at improving the discrimination capability of the
odel by integrating multiple feature sub-spaces and the compactness

f clusters, investigating the hard samples for each centroid.
Methods based on synthetic image generation. Another UDA

pproach is to augment the training set by generating synthetic images,
sing either generative adversarial networks (GANs) (Ainam et al.,
021; Verma et al., 2023; Wei et al., 2018; Zhang et al., 2020b; Zhong
t al., 2019; Zhou et al., 2021) or other methods (Chen et al., 2023a;
hong et al., 2021; Song, Liu, & Jin, 2022; Tang, Xue, & Chen, 2022;
ou et al., 2020). The simplest approach consists in augmenting the
ource images, e.g., MDJL (Chen et al., 2023a) shuffles the colour
hannels to enrich data diversity and to improve the feature repre-
entation. However, source images are mostly modified according to
he style of the target domain, e.g., DPCFG (Song et al., 2022), IPES-
AN (Tang et al., 2022), MLMS (Tang et al., 2022), SILC (Ainam
t al., 2021), PT-GAN (Wei et al., 2018), ECN (Zhong et al., 2019),
AAN (Zhang et al., 2020b), CVSE (Zhou et al., 2021), STReID (Chong
t al., 2021); other methods modify target images according to the
tyle of different target cameras, e.g., DAL (Zhang et al., 2020a); some
ethods modify both source and target images, e.g., DGNet++ (Zou

t al., 2020). For instance, Individual-Preserving and Environmental
witching cyclic generation network (IPES-GAN) (Tang et al., 2022)
ims at reducing the domain gap between source and target data by
enerating images (with a target pose) through GAN and swapping
ackgrounds in a cycling manner. Adaptive Attention-Aware Network
AAAN) (Zhang et al., 2020b) belongs to the first group: it generates
arget images by first learning camera-style and camera-invariant fea-
ures. Dual-Alignment Learning (DAL) (Zhang et al., 2020a) belongs
o the second group; it optimises the model using mutual information
etween the target and generated samples. DG-Net++ (Discriminative
nd Generative Network) (Zou et al., 2020) is a method belonging to
he third group: it generates target images by swapping the appearance
f source and target ones and consequently by augmenting the number
f samples in both domains; to improve the feature representation, an
dversarial training strategy is used.
Other methods. Different UDA approaches have also been pro-

osed, e.g., CASCL (Wu et al., 2019), TALM-IRM (Li et al., 2021)
nd D-MMD (Mekhazni et al., 2020). For instance, Camera-Aware
imilarity Consistency Learning (CASCL) (Wu et al., 2019) aims at
earning consistent distributions of similarity scores for intra- and cross-
amera image matching, through several loss functions. A coarse-to-fine
onsistency learning strategy is used to improve consistency, which
onsiders similarity in feature space and the top-ranked neighbours of
given image.

.3. Domain generalisation methods

DG is a recently proposed approach against DS, which has also been
pplied to Re-Id, e.g., MMFA-AAE (Lin et al., 2021), DomainMix (Wang,
iao, Zhao, Kang, & Shao, 2021) and OSNet (see Section 2.1). DG
oes not use target data or any knowledge of the target domain(s).
or instance, MMFA-AAE (Multi-task Mid-level Feature Alignment with
n Adversarial Auto Encoder) uses an adversarial learning strategy to
xtract domain-invariant features by using a decoder that mitigates
3

he influence of domain-specific information. DomainMix pre-trains a
eature extractor using labelled synthetic images and unlabelled images
rom the source domains; a discriminator between synthetic and real
mages is then learnt and the feature extractor is simultaneously refined
o obtain domain-invariant features.

.4. Person re-identification with a human in the loop

Existing HITL methods for Re-Id have been proposed mainly to
mprove the accuracy of a model during operation, or to collect labelled
arget data for model training or refinement after deployment, before
peration. We point out that none of them has been proposed to address
S, nor has been evaluated in a cross-domain setting exploiting user’s

eedback on gallery images returned in response to queries by the same
ser during system operation.

Most of the existing methods exploit the inherent interaction with
he user during system operation, and require feedback on the top-𝐾

images retrieved in response to a user’s query, for a given 𝐾 (Ali et al.,
010; Hirzer et al., 2011; Liu et al., 2013; Navaneet et al., 2020; Wang
t al., 2016). Retrieved images are then re-ranked based on the user’s
eedback, to push true matches toward the top ranks. The feedback
equired from the user can be of different types, and can be exploited
n several ways.

In Ali et al. (2010), the operator is shown the top-𝐾 ranked images
together with other gallery images selected by an active learning algo-
rithm, and is asked to select any subset of true and false matches; the
image similarity measure is then updated by a distance metric learning
algorithm based on such feedback, and the gallery is re-ranked. Several
feedback rounds can be carried out. The method of Hirzer et al. (2011)
asks the user whether the query identity is present in the top 𝐾 ranks;
if not, a discriminative model of the query identity is learnt and is
used to re-rank the gallery images. Similarly, if the query identity is
not present among the top 𝐾 ranks, the Post-rank OPtimisation (POP)
method (Liu et al., 2013) asks the operator to select a single ‘‘strong
negative’’, i.e., a false match showing an individual very different from
the query, and optionally a few weak negatives; this feedback is used
to learn a post-rank function to re-rank the gallery, based on an affinity
graph that describes pairwise image similarity between gallery images.
The method of Navaneet et al. (2020) uses a slightly different approach,
by sequentially processing the gallery images coming from different
cameras: the operator is asked to select a single true match from the
first gallery, then this feedback is exploited to rank the images of the
second gallery, and so on.

The operator’s feedback collected by the previous methods during
operation, for a given query, is used to refine the ranking of gallery
images only with respect to the current query. Other works proposed
incremental strategies to improve the underlying Re-Id systems based on
the operator’s feedback collected over a sequence of queries. The Human
Verification Incremental Learning method (Wang et al., 2016) uses a
Mahalanobis distance metric between feature vectors of image pairs,
initially set as the Euclidean distance; for a given query the operator
is asked to select a true match, if any, or a strong negative among
the top-𝐾 gallery images; the distance metric is then incrementally
updated using an online metric learning algorithm. Several feedback
rounds can be carried out for each query; the updated distance metric
is then used for the next round or the next query. In Wang et al. (2018)
the HITL approach is used to collect during system operation pairs of
target images that the operator is asked to label, and are then used
for model updating by incremental learning; however, the collected
images are not related to the queries selected by the operator, but are
automatically selected, randomly or by an active learning algorithm,
from the image stream acquired during system operation. The Deep
Reinforcement Active Learning (DRAL) method (Liu et al., 2019) aims
instead at collecting offline a training set of target images, to fine-tune
a model previously trained on a different source domain, before starting
to use a Re-Id system. To minimise manual annotation effort, active and

reinforcement learning algorithms are used to select a small amount of
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pairs of target images, which the user is asked to label as the same or
different identity. Therefore, differently from the above methods, DRAL
does not ask for user’s feedback during system operation, i.e., on gallery
images retrieved in response to queries selected by the user (e.g., during
a real investigation), but involves the user in an offline manual labelling
session on the target cameras.

All HITL methods described above, whether requiring online or
offline feedback, are relatively complex and mostly devised for ad
hoc Re-Id systems. In the next section, we present our HITL methods,
focusing on cross-scene application scenarios. Our methods are based
on well-known RF algorithms, and are simpler than existing HITL Re-Id
methods, also because they do not require model refinement. They are
also model-agnostic, i.e., they can be implemented on top of any Re-Id
system.

3. Relevance feedback for human-in-the-loop person re-
identification

In this work, we focus on challenging, cross-scene application sce-
narios where a Re-Id system has to be deployed on target camera views
that were unknown during design. In this context, we argue that the
HITL approach is a further alternative to address the resulting DS, be-
side the approaches specifically proposed to this aim, i.e., DA, UDA, DT
and DG, for the following reasons: (i) Re-Id systems inherently include
an interaction with a human operator, e.g., a forensic investigator.1
(ii) Exploiting the user’s feedback on the gallery images returned in
response to a query by the same user to re-rank them can be seen
as a form of adaptation of a Re-Id system (e.g., its distance metric)
to the target domain, which is carried out online, i.e., during system
operation; if this is carried out without re-training or fine-tuning the
source model, HITL can be considered as a specific kind of online
DA (Royer et al., 2015); its effectiveness can be further improved by
an incremental adaptation process, i.e., by continuously updating the
Re-Id system over the sequence of queries selected by the operator,
still without refining the source model. (iii) The operator’s feedback
allows to collect labelled target data, contrary to DT and DG; however,
contrary to DA, this can be achieved with a limited annotation effort, if
the required feedback consists of selecting true or false matches among
the top-ranked gallery images returned by a Re-Id system in response
to a user query: indeed, matching the selected query with top-ranked
gallery images, to check whether they show the same individual or not,
is already part of the user’s task during system operation.2

As mentioned in Section 2.4, existing HITL methods for Re-Id have
not been devised nor evaluated as a possible solution against DS. They
are also relatively complex since they are based on, e.g., training a
query-specific discriminative classifier (Hirzer et al., 2011), building
and processing a graph representing pairwise image similarity between
gallery images (Liu et al., 2013), or solving a complex optimisation
(online metric learning) problem after each single feedback on a gallery
image (Wang et al., 2016). Additionally, previous work disregarded
the fact that Re-Id is a particular case of CBIR task, and therefore the
HITL approach can also be implemented using simpler, well-known RF
algorithms.3

Based on the above motivations, the main objective of this work is to
investigate the effectiveness of the HITL approach to Re-Id, specifically
against DS, as a further solution beside DA, UDA and DG. To this aim,
we chose to focus on a simple implementation of HITL, which is based

1 Note that in Re-Id the feedback is provided by a human expert and can
herefore be considered reliable, which is not guaranteed by methods involving
rowd-sourcing, e.g., Deng et al. (2016).

2 Providing feedback can be made convenient using ad hoc, user-friendly
raphical interfaces.

3 A few RF algorithms have been considered only for very limited experi-
ental comparisons with existing HITL Re-Id methods (Liu et al., 2013; Wang
4

t al., 2016). a
on representative RF algorithms, does not require model refinement on
target data annotated through user’s feedback, and is model-agnostic,
i.e., can be used on top of any Re-Id system. In particular, based on
an analysis of the peculiarities of Re-Id with respect to generic CBIR
tasks, we also develop novel versions of the considered RF algorithms
specifically tailored to the Re-Id task, including incremental versions
aimed at improving online DA capability. Finally, we adopt a feedback
protocol more suited to RF than the ones used by existing HITL Re-Id
methods.

Fig. 1 shows a general scheme of the proposed HITL Re-Id im-
plementation based on RF algorithms, in a cross-domain scenario. A
source model is first trained on images from a source domain. After
system deployment, during operation (i.e., a Re-Id session on a target
domain), the source model is used to extract features from the query
images selected by the operator, and from gallery images. The latter
are then automatically ranked based on their similarity to the query,
and are shown to the operator starting from the most similar one. The
operator can then provide feedback (same or different identity with
respect to the query) on the top-ranked images, which is exploited by
an RF algorithm to re-rank the gallery. The user can choose to repeat
the feedback and re-ranking steps for several iterations. More detailed
schemes, depending on the specific RF algorithm, are reported in the
next section.

This work extends a previous conference paper by the authors
(Delussu et al., 2020), with the following additional contributions: (i)
we analyse the peculiarities of the Re-Id task with respect to generic
CBIR tasks; (ii) we consider an additional RF algorithm (Passive-
Aggressive) for better coverage of existing RF approaches; (iii) we
develop novel versions of the considered RF algorithms specifically
tailored to Re-Id, based on the analysis mentioned above; (iv) we
carry out experiments on an additional, larger benchmark data set
(MSMT17); (v) we extend our experimental comparison, previously
limited to two UDA methods, to a much larger set of methods, including
DA, DT and DG.

3.1. Relevance feedback algorithms

CBIR systems aim at retrieving from large databases digital images
that are similar to a given query image in terms of visual and semantic
content, where similarity is mainly evaluated as the Euclidean distance
in a given feature space. Retrieved images are shown to the user as
a ranked list. One of the main issues of CBIR is the semantic gap
between the similarity perceived by the user (semantic level) and the
similarity computed by the machine (feature level). RF is one of the
mechanisms introduced to improve the effectiveness of CBIR systems
by reducing the semantic gap. RF algorithms typically ask the user
to provide feedback on a subset of top-ranked retrieved images, as
relevant (positive) or not (negative) to the query; retrieved images are
then re-ranked accordingly, aiming at increasing the number of relevant
ones in the top ranks. This process can be repeated either for a fixed
number of iterations/rounds, or until the user decides not to engage in
further rounds.

The existing RF approaches can be divided into four main cat-
egories. One of the first approaches consists in computing a new
query vector exploiting the feature vectors of relevant and non-relevant
images (Lin et al., 2015). A similar approach is based on distance
or similarity learning : instead of updating the query, it optimises the
istance metric used to compute image similarity (Wu et al., 2019).
third approach consists in estimating the posterior probability dis-

ribution of the relevant and non-relevant images using nearest neigh-
our (NN) methods, and in using it as a similarity measure (Giacinto,
007). A fourth approach views RF as a two-class pattern classification
ask, and uses the sets of relevant and non-relevant images obtained
hrough user’s feedback to train existing or ad hoc machine learning

lgorithms (Piras et al., 2013).
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Fig. 1. Generic schema of the proposed HITL approach based on RF for a cross-domain Re-Id system (see text).
In the following, we focus on three RF algorithms characterised
by low complexity, and representative of the different categories: the
classical Rocchio or Query Shift (QS) algorithm (Lin et al., 2015), Rel-
evance Score (RS) (Giacinto, 2007) and Passive-Aggressive (PA) (Piras
et al., 2013).

QS is one of the earliest RF methods based on moving the query in
feature space. It assumes that positive images form a single cluster in
feature space, and that the feature vector 𝑥q of the original query could
lie (relatively) far from it. Accordingly, after the user’s feedback on a
set 𝑃 of positive images and a set 𝑁 of negative ones, QS computes a
new query vector 𝑥q by moving 𝑥q toward the Euclidean centre of 𝑃
and farther from 𝑁 , such that in the next round a larger number of
positive images can be found in the top ranks:

𝑥q = 𝑥q +
1
|𝑃 |

∑

p∈𝑃
𝑥p −

1
|𝑁|

∑

n∈𝑁
𝑥n . (1)

RS is a state-of-the-art algorithm that computes a relevance score for
each retrieved image. Contrary to QS, it assumes that relevant im-
ages can be spread over several clusters, and considers each positive
image in 𝑃 , as well as the query, as the centre of a positive cluster.
Accordingly, the relevance score 𝑠NN(𝑥i) of each retrieved image 𝑥i
is computed based on its distance to the nearest positive and nearest
negative neighbouring images in 𝑃 and 𝑁 , 𝑥NNp and 𝑥NNn :

𝑠NN(𝑥𝑖) =
‖𝑥𝑖−𝑥NNn ‖

‖𝑥𝑖−𝑥NN𝑝 ‖+‖𝑥𝑖−𝑥NNn ‖

, (2)

where ‖ ⋅ ‖ is a given metric in feature space, typically the Euclidean
distance. The relevance score increases as the distance from the nearest
positive image decreases compared to the distance from the nearest
negative one. Similarly to RS, PA computes a score for each retrieved
image, using however a discriminant approach based on the assumption
that positive and negative images are linearly separable in feature
space:

𝑠(𝑥𝑖) = 𝑤 ⋅ 𝑥𝑖 , (3)

where 𝑤 is a query-specific weight vector that should provide higher
scores for positive images than for negative ones. Accordingly, it is
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obtained as the solution to the following optimisation problem:

𝑤 = argmax
𝑣

∑

∀𝑝∈𝑃

∑

∀𝑛∈𝑁
𝑣(𝑥𝑝 − 𝑥𝑛) . (4)

To this aim, an online, iterative learning process is used Piras et al.
(2013): at each iteration, a pair of images 𝑥p ∈ 𝑃 and 𝑥n ∈ 𝑁 is
randomly extracted, and 𝑤 is updated accordingly. Since 𝑃 and 𝑁 are
typically imbalanced, with |𝑃 | < |𝑁|, positive images are drawn more
than once.

3.2. Adapting relevance feedback algorithms to person re-identification

RF algorithms, including the ones considered in Section 3.1, have
been originally devised to address the semantic gap, i.e., the mismatch
between the result provided by a machine and the one sought by the
user (Lin et al., 2015). We point out that this gap could be present
at different levels: between high-level image content and its feature
representation, introduced by the machine, and between the high-level
image content and the image label, which is introduced by the user. The
latter kind of semantic gap is typical of CBIR systems, i.e., the query
chosen by the user could be misplaced or marginally representative of
the concept sought. As an example, in a category-level CBIR system,
each image can contain objects or scenes relevant to different possible
concepts of interest for different users, e.g., an image of a dog can
also contain a car. Moreover, if a category-level CBIR system includes
images of dogs of different breeds, and the user’s query is an image of a
dog, the real user’s intention (i.e., is the user interested in generic dog
images or in dogs of the same specific breed?) cannot be ‘‘understood’’
by the CBIR system, unless an RF process is used.

Under this viewpoint, Re-Id is a specific kind of CBIR task, i.e., a
fine-grained instance-level retrieval task. Indeed the gallery is (ideally)
made up of tight bounding boxes, each one containing a single pedes-
trian, and queries should be formulated as well as tight bounding boxes
containing the specific individual of interest. This implies that the query
is not marginal as it could be in generic CBIR systems. Therefore, the
only kind of semantic gap that has to be addressed by RF, if it used
in a Re-Id system, is the one between the high-level image content
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Fig. 2. Schema of the proposed QS+IL approach.
and its feature representation. In particular, this gap can be due to
differences in camera perspective, scene illumination and background,
and pedestrian pose, and is even more likely to occur in the cross-scene
scenario considered in this work. Based on the above considerations, we
propose the following novel versions of the QS, RS and PA algorithms
specifically devised for Re-Id.

First, note that the effect of QS and PA can be seen as adapting
the representation of the original query to the user’s intent, either by
moving it in feature space (QS) or by assigning different weights to
each feature (PA). However, they operate on each query independently
from the other ones. Instead, we devised incremental learning versions
of them that exploit the whole sequence of user queries to compute the
query shift (QS+IL), or the weights of the hyperplane that separates
the query identity from the other ones (PA+IL). This can be seen as
continuously updating the feature space; accordingly, QS+IL and PA+IL
can be considered online DA methods, where target images are used
only during system operation.

In QS+IL we replace the new query vector of the original QS
formulation with a vector 𝑥

(𝑖)
q , which is computed as follows. We start

from the query shift vector computed by the original QS (see Eq. (1)),
which measures the amount of shift of a given query toward its positive
cluster:

𝛥(𝑖)
q = 𝑥(𝑖)q − 𝑥(𝑖)q . (5)

We exploit it to compute a domain shift vector 𝛥
(𝑖)
q that incrementally

estimates over the sequence of user queries the amount of shift needed
to move them closer to their positive clusters. At the first feedback
round of the first query, 𝑥(1)q , the new query vector 𝑥

(1)
q is computed

as in the original QS by Eq. (1). For each subsequent feedback round
over any query 𝑥(𝑖)q , the domain shift vector is first computed as:

𝛥
(𝑖)
q ←

⎧

⎪

⎨

⎪

⎩

𝑥
(𝑖−1)
q − 𝑥(𝑖−1)q , f irst feedback round

of 𝑖−th query (𝑖 > 1),

𝑥
(𝑖)
q − 𝑥(𝑖)q , otherwise,

(6)

where 𝑥
(𝑖−1)
q or 𝑥

(𝑖)
q denote the new query computed in the previous step.

Then, 𝑥
(𝑖)
q for the current step is computed as:

𝑥
(𝑖)
q ← (1 − 𝛾)𝑥(𝑖)q + 𝛾𝛥

(𝑖)
q , (7)

where 𝑥(𝑖)q is obtained by the original QS, Eq. (1), and 𝛾 ∈ [0, 1] is
a coefficient that weighs the contribution of the two components. In
other words, differently from the original QS version, in our QS+IL
version, the query-specific shift computed by QS is combined with a
shift vector summarising the ‘‘history’’ of the previous queries and the
previous feedback rounds (if any) of the current one (see Fig. 2).

In PA+IL we compute a weight vector 𝑤
(𝑖)

for the 𝑖th query as
follows. For the first feedback round of the first query 𝑥(𝑖)q , 𝑤

(𝑖)
is
6

computed as in the original PA. For each subsequent feedback round
over any query, first, the weight vector computed in the previous round,
denoted as 𝑤(𝑖), is considered:

𝑤(𝑖) ←

⎧

⎪

⎨

⎪

⎩

𝑤
(𝑖−1)

, for the f irst feedback round
of the 𝑖th query (𝑖 > 1),

𝑤
(𝑖)
, otherwise.

(8)

Then, the one of the current step is computed as:

𝑤
(𝑖)

← (1 − 𝛾)𝑤(𝑖) + 𝛾𝑤(𝑖) , (9)

where 𝑤(𝑖) is the weight vector computed by the original PA, and
𝛾 ∈ [0, 1] is again a coefficient that weighs the contribution of the
two weight vectors. Similarly to QS+IL, the query-specific weights
computed by PA are combined with a weight vector, from now on a
domain weight, summarising the ‘‘history’’ of the previous queries and
the feedback rounds of the current one (see Fig. 3).

RS is based on the assumption that in CBIR systems positive images
can be spread over different clusters, some of which may be relatively
farther from the query than some negative clusters (see Section 3.1).
Accordingly, the query and each positive image selected by the user are
considered the centres of distinct clusters. A high score is given even to
images far from the cluster defined by the query but close to at least one
other positive cluster. However, for the reasons discussed above, we can
assume that in Re-Id the query is not marginal, and therefore images of
the same identity and of different identities form two distinct (positive
and negative) clusters (see Fig. 4). Accordingly, in our modified version
of RS, named M-RS, the score is computed with respect to the centroids
𝜇𝑃 and 𝜇𝑁 of the positive and negative clusters:

𝑠𝜇(𝑥𝑖) =
‖𝑥 − 𝜇𝑁‖

‖𝑥𝑖 − 𝜇𝑃 ‖ + ‖𝑥𝑖 − 𝜇𝑃 ‖
. (10)

Note that M-RS has a lower processing cost than RS.

3.3. Feedback protocol

As pointed out at the beginning of this section, existing HITL meth-
ods for Re-Id that fit the online application scenario considered in this
work (i.e., exploiting user’s feedback on ranked gallery images obtained
in response to user’s queries during operation) ask the operator to
select a single true/false match at each feedback round, to re-rank
gallery images (Hirzer et al., 2011; Liu et al., 2013; Wang et al.,
2016). However, it is known that RF algorithms benefit from more
feedback per round, which was also confirmed in Re-Id tasks by our
preliminary results (Delussu et al., 2020). In particular, the higher the
number of feedback is, the lower the number of rounds required to
push positive gallery images toward the top ranks can be. Accordingly,
in this work, we adopt the multi-feedback protocol of Delussu et al.
(2020), consisting in asking the operator to select all the true matches
in the top-𝐾 ranks, for a given 𝐾 value; the remaining images in such
ranks are automatically labelled as negative. This means that 𝐾 images
(positive and negative) are used at each RF round. In practice, the value
of 𝐾 can also be chosen dynamically (per query, and even per single
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Fig. 3. Schema of the proposed PA+IL approach.
Fig. 4. Schema of the original RS algorithm and of our M-RS version, highlighting their differences.
feedback round) by the user, as the highest rank up to which he or she
is willing to inspect the retrieved images.

Note that our multi-feedback protocol is specifically suited to inves-
tigation scenarios in which the user needs to retrieve all the images of
an individual of interest, e.g., to reconstruct his or her movements. It
may seem that our protocol requires the user a higher effort than the
single-feedback one. However, as discussed in Delussu et al. (2020),
real-world applications involve large camera networks that produce
very large template galleries, and therefore it becomes less likely to
find several positive matches, or even a single one in the first round, in
the few top ranks (Wang et al., 2016). Moreover, when no true match is
present in the top ranks, to determine this fact the user needs to inspect
all the corresponding gallery images under both the single- and multi-
feedback protocols; however, in this case the single-feedback protocol
also requires the user to select a strong negative, which demands an
additional effort; we also point out that several different strong nega-
tive images may exist, and that the choice among them is inevitably
subjective, which may affect the resulting performance.

4. Experimental set-up

Our experiments are aimed at evaluating our HITL Re-Id implemen-
tation, based on the RF algorithms described in Sections 3.1 and 3.2, in
the specific cross-domain setting, and at comparing it with state-of-the-
art methods against DS based on the DA, UDA, DT and DG approaches.
We point out that our goal is not to outperform these approaches, but
to assess whether and to what extent the considered HITL solution
is a further, valid solution to DS with respect to them, in terms of
both effectiveness (re-identification accuracy) and efficiency (required
amount of human feedback and lack of model refinement).

Data sets. We considered three widely used benchmark data sets:
Market-1501 (Zheng et al., 2015), DukeMTMC-reID (Gou et al., 2017),
7

Table 1
Number of identities (#ID), images (#IM) and cameras (#CAM) in the data sets.

Data set #IDs/#IM #CAM

Training set Query set Gallery –

Market 751/12 936 750/3368 751/15 913 6
Duke 702/16 522 702/2228 1110/17 661 8
MSMT 1041/30 248 3060/11 659 3060/82 161 15

and MSMT17 (Wei et al., 2018) (for short, Market, Duke and MSMT),
whose characteristics are summarised in Table 1. Market consists of
32,668 images showing 1501 identities, acquired from six cameras
placed in front of a supermarket. It is split into 751 identities for
training (12,936 images) and 750 for testing (the remaining images).
The gallery comprises 19,732 images, of which 15,913 belong to query
identities. Duke contains 36,411 images (bounding boxes) of 1404 iden-
tities, captured from eight cameras in a campus. They are subdivided
into 16,522 images of 702 identities for training, and the remaining
images of the other 702 identities for testing. The number of gallery
images is 17,661. MSMT consists of 126,441 images and 4101 identities
captured from 15 cameras. They are split into 32,621 images of 1401
identities for training (2373 images are used for validation), and the
remaining images and identities for testing. The gallery contains 82,161
images. We simulated cross-scene application scenarios characterised
by DS through cross-data set experiments: each data set was used in
turn as the source domain, and each of the remaining ones as the target
domain.

Methods used for comparison. We carried out an extensive com-
parison with all state-of-the-art DT, DA, UDA and DG methods de-
scribed in Section 2. Whenever available, we used the source code
provided by the authors with the recommended parameter settings (Ge
et al., 2020; Zhang et al., 2019; Zhong et al., 2019); otherwise, we
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reported the results from the respective papers. With regard to DG
methods, the following data sets were used in the respective papers as
source and target domains: DomainMix used RandPerson and Market or
MSMT as sources, and MSMT or Market as target; MMFA-AAE (Ye et al.,
2022) used CUHK02, CUHK03, Market-1501, DukeMTMC-reID and
CUHK-SYSU as source domains, and MSMT as the target; OSNet used
Market-1501, DukeMTMC-reID and CUHK03 as the source domains,
and MSMT as the target.

We point out that a comparison with existing HITL methods for Re-
Id dealing with the considered application scenario (Liu et al., 2013;
Wang et al., 2016) (see Section 2.4) turned out to be not possible since
their source code is not publicly available, and the lack of details in
their relative manuscripts hindered re-implementation. Moreover, the
different experimental setting used in that works (i.e., no cross-data set
experiments were carried out) does not allow a direct comparison with
the results reported in the respective papers.

Implementation of RF algorithms. As in Wang et al. (2016),
we carried out three feedback rounds for each RF algorithm and set
𝐾 = 50. For a fair comparison with DS methods, we used the whole
query sets of the target data sets. Given the considerable size of query
sets (see Table 1), we simulated the user feedback using the ground
truth identity labels (Navaneet et al., 2020). Although this disregards
potential errors in the user’s feedback, we point out that they are
unlikely in the considered scenario, where the user is a specialist
(e.g., an investigator) and is also asked to give feedback on a limited
amount of retrieved images. For the three original RF algorithms, we
adopted the authors’ recommended parameter settings (Giacinto, 2007;
Lin et al., 2015; Piras et al., 2013). For the proposed QS+IL (Eq. (7))
and PA+IL (Eq. (9)) we used a fixed 𝛾 value of 0.5, according to the fact
hat in the considered application scenario target data are not available
o refine the source model, including parameter setting. However, in
ection 5.3 we evaluate how the value of 𝛾 affects the performance of
S+IL and PA+IL.
Baseline model for RF algorithms. For RF algorithms, we used as

a feature extractor a ResNet-50 network pre-trained on ImageNet, and
then fine-tuned on the training partition of the source data set. During
training, we used horizontal flip and random crop with a probability
of 0.5 to reduce over-fitting. Stochastic Gradient Descent was used
for optimisation with momentum 0.9 and weight decay 5 × 10−4; the
learning rate was set to 0.00035. It is worth noting that our HITL
approach is model-agnostic, and does not require any change of the
source model after deployment.

Performance measures. We considered the Cumulative Matching
Curve (CMC) at ranks 𝑘 = 1, 5, 10, 20, and the mean Average Precision
(mAP):

𝐶𝑀𝐶(𝑘) =
𝑘
∑

𝑟=1
𝑃 (𝑟), 𝑚𝐴𝑃 = 1

𝑄

𝑄
∑

𝑞=1
AveP(𝑞),

where 𝑃 (𝑟) is the fraction of queries for which the gallery image of the
correct identity (or the top-ranked image, if more than one) is found
at rank 𝑟, 𝑄 is the total number of queries and AveP(𝑞) is the average
precision for a given query 𝑞. Note that in real applications, more than
one image of the query identity may be present in the gallery (this
is the case of the considered data sets). In this case, operators may
be interested in retrieving all of them, e.g., forensic investigators may
want to reconstruct the movements of a suspect individual across all the
available video cameras. Under this scenario, the mAP measure gives a
more complete account of the performance of a Re-Id system, since the
CMC curve only considers the top-ranked image of the query identity.

5. Experimental results

We first evaluate the performance of our HITL approach attained
using the original RF algorithms and using our modified versions; then,
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we compare it against state-of-the-art DA, UDA, DT and DG methods. n
5.1. Evaluation of RF algorithms

Table 2 reports the overall results obtained by the baseline (i.e., the
source model) and by the HITL method based on the RF algorithms
(QS, QS+IL, RS, M-RS, PA and PA+IL), implemented on top of the same
baseline. For completeness, we also report results attained under a fully
supervised learning setting (denoted by ‘‘supervised’’), i.e., training and
testing on the same target data set, without using the HITL approach.

All RF algorithms outperformed the source model in terms of both
CMC curve and mAP, in all target data sets. In particular, they attained
a remarkable improvement since the first round. In most cases, the
highest improvement was achieved by PA, except for the case where
MSMT was the target data set: in this case, the highest improvement
was achieved by PA+IL. A similar trend can be observed after the third
round.

Notably, our modified RF algorithm versions often outperformed
the original ones, especially when MSMT was the target data set. An
exception is represented by PA+IL, which did not outperform PA when
Market or Duke were the target data sets. This is mainly related to the
used 𝛾 value (0.5), which has not been tuned on the target data sets
and turned out to be not optimal for small galleries. Nevertheless, the
analysis performed in Section 5.3 demonstrates that with a suitable 𝛾
value, the incremental RF versions can outperform the original ones.
On the other hand, the highest improvements were attained by QS+IL
over QS, except when Market was the source data set and MSMT the
target one.

It is also worth noting that, for all target domains, using our RF-
based HITL approach on the model trained on the source domain
outperformed the supervised version of the same model trained on
the target domain (see the rows labelled as ‘‘supervised’’ in Table 2),
in terms of mAP, rk-1 and rk-5. This means that, even when a large
amount of labelled target data is available for model training, the
considered HITL solution can be more effective, despite the fact it
does not involve model training or fine-tuning on target data, but only
exploits the operator’s feedback on a much smaller amount of target
data.

As expected, for a given target data set the performance of a
given RF algorithm depends on the source data set. This is evident
by a comparison with the baseline (Table 2). To better highlight this
behaviour, Fig. 5 shows the performance of RF algorithms after the
third feedback round on each target data set. Results suggest that using
a source data set with better quality and a larger variability, including
a larger number of cameras (orange lines in Fig. 5), can be beneficial
to the generalisation capability of the underlying model.

Returning to the comparison between the proposed versions of RF
algorithms and the original ones, we observe that the former performed
very well in the most unfavourable situations, i.e., when there are very
few or even no positive images among the top-𝐾 ones. To highlight
this trend, Fig. 6 shows different plots with the positions of the first
ten true matches within the ranked list, after each feedback round, for
the original and the modified RF algorithms, on two different queries
(for the sake of brevity, we consider a single cross-data set experiment,
with Market as the source and Duke as the target). The two queries are
shown on the left of Fig. 6, and correspond to two very different cases:
many positive images (query 1) and no positive image (query 6) present
in the top-𝐾 ranks (𝐾 = 50). The latter case represents a query identity
that the source model considers dissimilar to the other positive images,
for various reasons related to the underlying feature representation.

All RF algorithms, except for QS, were capable of bringing all
ten positive images to the first ten ranks for query 1. M-RS, PA and
PA+IL achieved this result since the first round. For query 6, instead,
he improvements were less marked (in the case of RS the results
ven worsened) and required more feedback rounds. Still, we point
ut that all the modified RF algorithms performed better than their
riginal versions, and in particular, M-RS was capable of bringing all
en positive images to the first ten ranks. This is a relevant result, es-
ecially considering that in this case no true match was present among
he top-50 images, which were therefore considered automatically as
on-relevant (negatives).
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Table 2
Results attained by RF algorithms at each round (R) of cross-data set experiments. Best results in each column are highlighted in bold.

RF R Source: Market - Target: Duke Source: Duke - Target: Market Source: Market - Target: MSMT

mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20

Baseline 30.88 53.41 67.06 72.49 77.24 30.44 62.2 78.24 83.31 87.65 6.44 19.08 29.14 34.39 40.22

QS
1 47.81 73.92 80.16 82.23 84.61 47.23 83.64 89.07 90.32 92.1 12.5 38.01 43.83 46.5 49.76
2 51.83 77.87 83.35 84.92 86.27 50.89 85.72 91.21 92.16 92.99 14.39 41.96 47.99 49.96 51.81
3 53.08 78.77 84.07 85.41 86.62 52.04 86.07 91.45 92.61 93.23 15.05 43.0 49.22 50.88 52.38

QS+IL
1 46.65 72.53 79.85 81.69 84.25 46.17 83.17 88.84 90.59 91.89 15.83 44.0 52.11 55.42 59.0
2 54.0 79.67 83.98 85.73 87.43 53.57 87.74 91.57 92.37 93.08 18.71 51.17 57.31 59.12 60.89
3 57.73 82.23 86.27 87.25 88.11 57.29 89.64 92.4 92.87 93.56 20.3 53.89 58.86 60.24 61.59

RS
1 55.08 79.98 82.36 83.75 85.1 57.48 89.22 90.32 91.06 91.63 16.39 45.36 48.7 50.4 52.38
2 66.08 87.21 88.15 88.91 89.68 69.09 92.43 93.05 93.35 93.65 23.59 55.28 57.09 58.35 59.76
3 72.5 90.48 91.16 91.47 92.19 75.81 94.06 94.51 94.63 94.74 28.84 61.68 62.61 63.28 64.34

M-RS
1 55.7 80.61 84.92 86.54 87.97 57.9 89.1 91.39 92.28 93.05 16.08 44.79 49.66 52.27 55.01
2 68.53 89.18 90.62 91.38 92.5 71.29 93.02 94.18 94.6 95.67 24.49 57.37 60.21 61.82 63.68
3 75.06 92.32 93.22 93.4 93.85 78.8 95.28 95.61 95.87 96.23 30.18 63.64 65.36 66.4 67.88

PA
1 58.24 81.06 85.5 87.34 88.78 61.08 88.9 92.19 93.47 94.6 17.19 46.15 51.71 54.58 57.93
2 73.86 90.75 91.52 92.06 92.68 79.27 94.89 95.16 95.37 95.67 28.99 61.53 63.03 64.23 65.77
3 79.88 93.0 93.31 93.49 93.81 84.91 95.69 95.78 95.81 96.17 35.58 66.69 67.15 67.69 68.49

PA+IL
1 11.28 10.77 24.82 37.34 53.64 10.45 10.45 26.07 40.56 57.36 31.98 60.56 62.81 64.24 66.53
2 56.31 80.61 82.18 83.39 84.78 59.84 89.96 90.77 91.27 92.04 39.24 74.41 75.43 76.2 77.23
3 64.77 85.64 85.91 86.4 86.76 69.7 92.43 92.49 92.52 92.73 42.6 77.49 77.72 77.91 78.33

RF R Source: MSMT - Target: Duke Source: MSMT - Target: Market Source: Duke - Target: MSMT

mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20

Baseline 28.49 47.17 67.01 74.33 79.94 38.33 69.77 83.94 88.18 91.66 8.09 24.7 36.44 42.23 48.15

QS
1 67.9 88.15 91.02 91.79 93.0 57.63 89.9 93.05 94.03 95.4 15.37 46.62 52.83 55.51 58.77
2 75.46 92.32 93.94 94.21 94.7 62.16 92.13 94.69 95.13 95.9 17.64 51.14 57.67 59.48 61.41
3 77.82 93.27 94.61 94.79 95.24 63.52 92.19 94.92 95.4 95.96 18.45 52.23 58.74 60.42 62.12

QS+IL
1 64.05 86.71 89.45 90.57 91.61 56.53 89.55 93.11 94.09 95.13 19.45 52.83 61.26 64.91 68.59
2 75.06 92.32 92.95 93.27 93.76 64.74 93.32 95.16 95.58 96.14 22.94 61.03 66.8 68.48 70.43
3 79.0 93.85 94.48 94.61 94.84 68.68 94.48 95.61 95.9 96.32 24.83 63.84 68.47 69.65 71.11

RS
1 68.16 89.5 90.66 91.07 91.52 66.47 92.9 93.94 94.21 94.69 20.05 53.93 57.16 58.95 61.11
2 78.21 92.15 92.73 92.91 93.13 78.02 95.25 95.55 95.78 96.2 28.55 63.93 65.59 66.75 68.09
3 82.93 94.12 94.3 94.52 94.61 83.84 96.44 96.7 96.94 97.15 34.47 69.58 70.47 71.14 72.03

M-RS
1 68.24 88.91 90.48 90.93 91.52 68.02 92.9 94.06 94.92 95.55 19.85 53.08 58.14 60.79 63.56
2 78.82 92.15 93.22 93.49 93.9 80.61 95.64 96.11 96.59 97.21 29.39 65.66 68.18 69.59 71.46
3 83.87 94.34 94.75 95.06 95.2 86.88 97.12 97.33 97.6 97.89 35.78 71.7 73.36 74.11 75.39

PA
1 69.85 89.27 90.8 91.61 92.5 71.55 93.29 95.43 96.2 96.88 21.06 54.87 60.2 62.83 65.91
2 82.36 93.67 94.25 94.48 94.66 86.44 97.15 97.3 97.48 97.71 34.0 68.94 70.42 71.41 72.86
3 86.94 95.06 95.29 95.42 95.42 91.01 97.71 97.77 97.8 97.95 41.14 73.44 73.97 74.33 74.97

PA+IL
1 11.46 6.06 18.99 33.17 57.32 11.3 8.64 25.95 40.32 59.03 35.37 63.64 65.82 67.42 70.05
2 65.24 87.21 88.11 89.09 89.68 67.08 92.67 93.2 93.5 93.94 43.48 79.28 80.0 80.58 81.58
3 74.54 90.04 90.48 90.62 90.84 76.37 94.27 94.39 94.42 94.6 47.07 81.9 82.06 82.23 82.62

Supervised 76.1 89.5 95.0 96.5 97.5 85.7 95.4 98.7 99.1 99.4 43.4 71.3 83.4 87.1 90.1
Fig. 5. Cross-data set CMC curves of RF algorithms after the third feedback round. Each plot corresponds to a different target data set. Blue and orange lines correspond to two
ifferent source data sets.
9
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Fig. 6. Ranks of the top ten true matches for queries 1 and 6 of Duke (target), using a model trained on Market (source), for the original and the modified RF algorithms, at
each feedback round (round 0 denotes the results before RF).
5.2. Comparison between RF algorithms and DS methods

In the following, we focus only on the proposed variants of RF
algorithms, since they outperformed the original ones as shown above.
We compare them with state-of-the-art methods based on the DA, UDA,
DT and DG approaches (Section 2). We start with DT and DG methods,
which, similarly to our RF-based HITL implementations, do not use
target data for model training or fine-tuning; we then consider DA and
UDA methods that do use target data to this aim.

Comparison with DT and DG. The comparison with DT methods
is reported in Table 3, for six source/target combinations (the results
of RF-based HITL methods are taken from Table 3). As expected, for a
given target data set, the performance of DT methods strongly depends
on the source one; generally, a better performance is attained when
a larger source data set is used. As expected, RF-based HITL methods
always outperformed DT ones, and always by a considerable amount.

The comparison with DG methods is reported in Fig. 7. Only the
mAP and rank-1 CMC accuracy are considered in this case, since these
are the only measures reported in the respective papers.

Although the considered DG methods used a different number of
source data sets (see Section 4), only OsNet and MMFA-AAE exhibited
comparable performances. This might be due to the fact that a sub-
set of source data sets used by MMFA-AAE was employed to train
OsNet. In contrast, the lower performances obtained by DomainMix can
be due to the use of a synthetic and a real data set during training.
Although the use of synthetic data may in principle be helpful, the
resulting performance can be affected by the domain gap between real
and synthetic images.
10
Fig. 7 shows that RF-based HITL methods also outperformed DG
methods both in rank-1 CMC and in mAP, despite using a single source
data set. The highest improvement was attained when Duke was the
source domain; for instance, PA+IL outperformed MMFA-AAE by about
36% in rankk-1 and by about 26% in mAP, whereas a slightly lower
improvement was achieved when Market was the source domain. A
similar trend can be observed for the other RF-based HITL methods.
The above results show that a limited amount of operator’s feedback
during operation (i.e., 𝐾 = 50) can be very beneficial to improve the
Re-Id performance of models trained on one source domain.

Comparison with DA and UDA. Table 3 reports the performance
of DA and UDA methods. We further subdivided the latter into methods
based on synthetic image generation (UDA-IG, see Section 2.2) and
methods based on different approaches (UDA-other).

All the RF-based HITL methods significantly outperformed DA meth-
ods in all target domains in terms of both mAP and CMC curve, even if
the former did not use target data to refine the source model. In most
cases, at least one of the RF-based HITL methods also outperformed
UDA methods in terms of mAP (except when Duke is the source and
Market is the target domain) and of rank-1 accuracy. This shows that
the considered RF-based HITL methods, even the simplest ones (QS and
QS+IL), can attain a similar or even better re-identification accuracy
than DA and UDA methods.

To sum up, the above results provide evidence that, despite its sim-
plicity, the considered HITL approach to Re-Id based on RF algorithms
can attain a competitive performance with respect to DA, UDA, DT
and DG approaches, in the considered cross-domain scenario, which
confirms that it is a further, valid alternative against DS. Our results
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Table 3
Cross-data set performance of methods against DS used for comparison. The best result in each column is highlighted in bold while the second best is underlined.

Type Method Source: Market - Target: Duke Source: Duke - Target: Market Source: Market - Target: MSMT

mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20

DT ADIN (Yuan et al., 2020) – – – – – 27.4 57.2 73.0 80.0 – – – – – –
OSNet (Zhou et al., 2019) 30.5 52.4 66.1 71.2 – 30.6 61.0 77.0 82.5 – 8.2 23.5 34.5 40.2 –

DA DAReID (Xu et al., 2021) 30.3 51.1 – – – 33.0 61.7 – – – – – – – –

UDA-other

MTNet (Chen et al., 2023b) – – – – – – – – – – 32.1 59.6 72.2 77.0 –
CACHE (Liu et al., 2022) 71.7 83.5 91.4 93.9 – 83.1 93.4 97.5 98.2 – 31.3 58.0 69.8 74.5 –
JL (Feng et al., 2021) 67.9 81.3 89.2 91.5 – 78.6 90.6 96.3 97.8 – 21.2 47.3 60.3 65.5 –
TALM-IRM (Li et al., 2021) 41.34 63.53 76.62 – – 39.95 73.08 86.34 – – 11.24 30.87 43.53 – –
Theory&Practice (Song et al., 2020) 49.0 68.4 80.1 83.5 – 53.7 75.8 89.5 93.2 – – – – – –
MMTa (Ge et al., 2020) 64.8 82.7 90.2 92.3 94.0 74.8 91.9 97.0 97.9 98.9 14.5 36.4 49.2 54.8 60.7
D-MMD (Mekhazni et al., 2020) 46.0 63.5 78.8 83.9 – 48.8 70.6 87.0 91.5 – 13.5 29.1 46.3 54.1 –
PASTa (Zhang et al., 2019) 54.26 78.41 86.49 89.09 91.43 54.62 84.29 92.99 95.43 96.97 – – – – –
CASCL (Wu et al., 2019) 30.5 51.5 66.7 71.7 – 35.6 64.7 80.2 85.6 – – – – – –

UDA IG

MDJL (Chen et al., 2023a) 62.8 78.6 86.6 88.7 – 59.8 80.3 87.4 89.9 – 13.4 34.3 44.5 50.6 –
IPES-GAN (Verma et al., 2023) 32.9 53.5 69.1 73.1 – 33.6 64.1 79.3 83.1 – 5.9 18.4 28.9 34.4 –
DPCFG (Song et al., 2022) 73.7 85.7 92.8 94.4 – 85.4 94.2 97.8 98.7 – 36.9 65.3 76.0 79.8 –
MLMS (Tang et al., 2022) 65.1 79.1 – – – 74.5 89.7 – – – 25.9 52.5 – – –
STReID (Chong et al., 2021) 29.2 52.3 65.9 71.1 – 31.6 62.3 79.1 84.4 – – – – – –
SILC (Ainam et al., 2021) 50.3 68.5 80.2 85.4 88.6 61.8 80.7 90.1 93.0 95.6 10.9 27.8 38.1 45.8 –
AAAN (Zhang et al., 2020b) 58.4 70.7 82.4 85.0 – 67.6 84.8 92.6 94.8 – 15.1 30.8 39.3 43.8 –
CVSE (Zhou et al., 2021) 56.1 75.3 82.9 85.4 – 63.2 84.1 92.8 95.0 – – – – – –
DAL (Zhang et al., 2020a) 57.3 75.2 84.3 87.1 – 68.6 86.4 94.6 96.4 – 16.9 42.9 56.1 61.7 –
DG-Net++ (Zou et al., 2020) 63.8 78.9 87.8 90.4 – 61.7 82.1 90.2 92.7 – 22.1 48.4 60.9 66.1 –
ECNa (Zhong et al., 2019) 43.0 67.9 80.1 83.8 86.8 41.7 73.5 86.9 90.9 94.2 7.5 21.7 32.3 37.8 44.0
PT-GAN (Wei et al., 2018) – – – – – – – – – – 2.9 10.2 – 24.4 –

RF
QS+IL 57.73 82.23 86.27 87.25 88.11 57.29 89.64 92.4 92.87 93.56 20.3 53.89 58.86 60.24 61.59
M-RS 75.06 92.32 93.22 93.4 93.85 78.8 95.28 95.61 95.87 96.23 30.18 63.64 65.36 66.4 67.88
PA+IL 64.77 85.64 85.91 86.4 86.76 69.7 92.43 92.49 92.52 92.73 42.6 77.49 77.72 77.91 78.33

Type Method Source: MSMT - Target: Duke Source: MSMT - Target: Market Source: Duke - Target: MSMT

mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20

DT ADIN (Yuan et al., 2020) 39.1 60.7 74.7 – – 30.3 59.1 75.4 – – – – – – –
OSNet (Zhou et al., 2019) 52.7 71.1 83.3 86.4 – 43.3 70.1 84.1 88.6 – 10.2 30.3 42.2 47.9 –

UDA-other

MTNet (Chen et al., 2023b) – – – – – 82.7 93.0 97.1 98.6 – – – – – –
CACHE (Liu et al., 2022) 72.6 84.2 92.0 94.4 – 83.6 92.8 96.8 97.9 – 31.0 57.8 70.4 75.3 –
JL (Feng et al., 2021) – – – – – – – – – – 24.6 53.5 65.2 70.2 –
TALM-IRM (Li et al., 2021) 48.67 68.35 80.89 – – 42.94 74.55 87.55 – – 14.22 39.04 51.51 – –
MMTa (Ge et al., 2020) 68.1 85.3 91.6 93.2 94.4 72.3 90.9 96.0 97.6 98.6 17.9 44.0 56.9 62.2 67.4
D-MMD (Mekhazni et al., 2020) 51.6 68.8 82.6 87.1 – 50.8 72.8 88.1 92.3 – 15.3 34.4 51.1 58.5 –
CASCL (Wu et al., 2019) 37.8 59.3 73.2 77.8 – 35.5 65.4 80.6 86.2 – – – – – –

UDA IG

MDJL (Chen et al., 2023a) – – – – – – – – – – 17.1 40.3 51.2 56.3 –
IPES-GAN (Verma et al., 2023) – – – – – – – – – – 6.5 20.6 31.0 36.4 –
DPCFG (Song et al., 2022) – – – – – – – – – – 37.6 66.8 77.3 81.1 –
MLMS (Tang et al., 2022) – – – – – – – – – – 31.4 60.9 – – –
SILC (Ainam et al., 2021) – – – – – – – – – – 12.6 33.1 45.2 48.0 –
AAAN (Zhang et al., 2020b) – – – – – – – – – – 17.5 35.4 44.5 48.5 –
DAL (Zhang et al., 2020a) – – – – – – – – – – 15.4 40.4 53.7 59.5 –
DG-Net++ (Zou et al., 2020) 58.2 75.2 73.6 86.9 – 64.6 83.1 91.5 94.3 – 22.1 48.8 60.9 65.9 –
ECNa (Zhong et al., 2019) 43.0 68.6 79.9 83.2 86.5 44.6 77.5 89.6 93.1 95.1 8.9 25.3 36.3 42.1 47.9
PT-GAN (Wei et al., 2018) – – – – – – – – – – 3.3 11.8 – 27.4 –

RF
QS+IL 79.0 93.85 94.48 94.61 94.84 68.68 94.48 95.61 95.9 96.32 24.83 63.84 68.47 69.65 71.11
M-RS 83.87 94.34 94.75 95.06 95.2 86.88 97.12 97.33 97.6 97.89 35.78 71.7 73.36 74.11 75.39
PA+IL 74.54 90.04 90.48 90.62 90.84 76.37 94.27 94.39 94.42 94.6 47.07 81.9 82.06 82.23 82.62

aDenotes results reproduced by the authors.
Fig. 7. Comparison of mAP (left) and rank-1 CMC (right) attained by DG methods (DomainMix, OSNet, MMFA-AAE) and by our RF algorithms. † results taken from the appendix
of https://arxiv.org/pdf/1910.06827.pdf.
also point out that the effectiveness of UDA and DG methods, as well
as RF-based HITL methods, depend on how much the source domain is
representative of the target one (see Table 2). Indeed, when MSMT is
the target data set, which is very different from Market and Duke, the
performance of UDA methods decreases. Nevertheless, RF-based HITL
methods still provide a significant improvement with respect to the
baseline also on MSMT.
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Finally, as mentioned in Section 4, a direct comparison with existing
HITL methods for Re-Id dealing with the considered cross-domain
scenario (see Section 2.4) was not possible. Nevertheless, for the sake of
completeness, we report that the method of Wang et al. (2016) attained
a 0.78 rank-1 accuracy on Market, which is the only data set in common
with this work, although a smaller number of queries (300) and only a
subset of the gallery (1000 images) was used therein.

https://arxiv.org/pdf/1910.06827.pdf
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Fig. 8. Average mAP attained on each target data set over the two corresponding source data sets by QS+IL and PA+IL, using different values of 𝛾, at each feedback round (round
0 denotes the performance before RF).
5.3. Parameter analysis of incremental RF algorithms

Our incremental RF algorithms QS+IL and PA+IL use a hyper-
parameter 𝛾 ∈ [0, 1] to weigh the contribution of their components
related to the current query and to previous ones. As explained in
Section 4, in the above experiments we did not tune 𝛾 but set it to
a default value of 0.5; it is nevertheless interesting to evaluate how
𝛾 affects the performance of QS+IL and PA+IL, to derive guidelines on
how to set it in real applications. To this aim, we evaluated the average
mAP attained on each target data set over the two corresponding source
data sets, for 𝛾 = 0.1, 0.3, 0.5, 0.7, 0.9 (note that 𝛾 = 0 corresponds to the
original QS and PA). Fig. 8 reports the results.

Both QS+IL and PA+IL exhibited a very similar behaviour. In par-
ticular, on the MSMT target data set, they outperformed the respective,
original RF algorithms (QS and PA, 𝛾 = 0) for all the considered 𝛾
values, often by a large amount; moreover, for QS+IL, the higher the
𝛾 value, the higher the mAP, whereas no clear trend emerged under
this viewpoint for PA+IL. Instead, on the Market and Duke target data
sets, QS+IL and PA+IL generally attained a similar mAP as QS and
PA for low 𝛾 values, and a lower mAP for higher values; often, a
notable performance gap can also be observed at the first feedback
round for some 𝛾 values; however, QS+IL outperformed QS at the third
round on Market, for several 𝛾 values. It can also be seen that the
performance tends to increase over different rounds for all 𝛾 values,
with the exceptions mentioned above for the first round.

Overall, based on these results, our choice of 𝛾 = 0.5 seems
reasonable as a default one for unknown target domains, i.e., where
no target data is available for validation. The results on Duke and
Market, especially the ones obtained by PA+IL, also suggest that a
lower 𝛾 value may be better for small galleries. At the same time,
the results on MSMT suggest that a higher 𝛾 value may be better for
very large galleries, typical of real applications. We also point out
that for both QS+IL and PA+IL, the online DA component (i.e., the
second term of Eqs. (7) and (9)) may require several queries and
feedback rounds before providing a significant contribution; therefore,
we envisage that changing the value of 𝛾 over time, starting from lower
values and gradually increasing it, could be an effective solution in
practical applications.

5.4. Accuracy-user effort trade-off and amount of target data involved

We remind the reader that, in the considered application scenario,
the HITL approach aims at adapting a Re-Id system to the target domain
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unseen during design, based on a limited amount of feedback provided
by the operator on target data processed during operation. Similarly to
previous work (Wang et al., 2016), the above experiments are based on
𝐾 = 50, which can be considered a rather small value for investigation
scenarios involving a large number of surveillance videos, and thus very
large template galleries (Wang et al., 2016). However, in principle,
the higher the value of 𝐾, the higher the effectiveness of RF-based
HITL methods, due to the higher number of feedback, but at the same
time the higher the operator’s effort. To better evaluate this trade-off,
we repeated the same experiments of Section 5.1 for 𝐾 = 20,100.
The results are reported in Table 4, together with a comparison with
the ones attained by 𝐾 = 50 taken from Table 2; for the sake of
brevity, we only consider the results after the third feedback round.
As expected, the performance of all RF-based HITL methods increased
for increasing values of 𝐾, in all target domains. It can be seen that
the performance gap between 𝐾 = 20 and 𝐾 = 50 is about 5% in
mAP for QS and QS+IL, whereas for the other RF algorithms it exceeds
10%. Notably, by increasing 𝐾 from 20 to 100 the highest improvement
was attained when MSMT was the target domain, corresponding to the
largest template gallery among the considered data sets: in this case
the average improvement was about 5% in both mAP and CMC curve.
In the other cases (i.e., Market or Duke as the target), the average
improvement was about 4% in mAP and 3% in the CMC curve.

Let us now evaluate the user effort as a function of 𝐾. We argued in
Section 3.3 that, in real-world applications, the user effort required by
our multi-feedback protocol is not significantly higher compared to the
single-feedback protocol used by previous work (Wang et al., 2016),
for the same value of 𝐾. To evaluate it on the considered data sets,
whose gallery sets are likely to be much smaller than the ones of real
applications, for each RF-based HITL method Table 5 shows the average
number of true matches present in the top-𝐾 ranks at each feedback
round for a given query, which corresponds to the amount of feedback
required to the user. Here we consider 𝐾 = 20, 50, 100.

Note that, for a given target data set, the number of true matches
in the first feedback round depends only on the source model and is,
therefore, identical for all RF-based HITL methods. The highest number
of true matches (user’s feedback) almost always occurred in the first
round; the only exception is PA+IL when MSMT was the target data
set. In subsequent rounds, the number of feedback tended to decrease.
In most cases, less than five and four true matches were present in the
second and third rounds, respectively (note that a true match selected
in a round does not have to be selected in subsequent rounds if it
remains among the top-𝐾 ranks). Over all three rounds, the average
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Table 4
Comparison between the cross-data set performance attained by RF algorithms after the 3rd round, for 𝐾 = 20, 𝐾 = 50 and 𝐾 = 100.

RF K Source: Market - Target: Duke Source: Duke - Target: Market Source: Market - Target: MSMT

mAP rk-1 rk-5 rk-10 rk20 mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20

QS
20 49.92 76.08 80.79 82.23 84.43 48.54 84.03 87.71 88.9 91.21 13.19 38.81 42.77 44.47 48.04
50 53.08 78.77 84.07 85.41 86.62 52.04 86.07 91.45 92.61 93.23 15.05 43.0 49.22 50.88 52.38
100 54.31 79.26 86.31 88.06 89.09 53.5 86.28 93.2 94.48 95.34 16.12 45.3 53.56 55.85 57.4

QS+IL
20 53.41 78.73 82.09 84.02 86.49 52.5 86.55 88.84 89.85 92.19 17.39 48.69 52.17 54.07 56.97
50 57.73 82.23 86.27 87.25 88.11 57.29 89.64 92.4 92.87 93.56 20.3 53.89 58.86 60.24 61.59
100 60.06 84.34 88.6 89.59 90.48 60.41 90.62 94.54 95.13 95.69 22.17 57.02 63.03 64.76 66.25

RS
20 61.83 85.28 86.62 87.43 88.29 63.76 90.35 91.03 91.48 92.31 20.39 51.39 53.16 54.57 56.55
50 72.5 90.48 91.16 91.47 92.19 75.81 94.06 94.51 94.63 94.74 28.84 61.68 62.61 63.28 64.34
100 78.47 93.09 93.58 93.76 93.94 82.66 96.17 96.29 96.44 96.64 35.55 68.9 69.48 69.89 70.76

M-RS
20 67.24 87.75 89.0 89.68 90.8 69.05 92.13 93.38 94.0 95.22 22.65 54.06 57.18 59.16 61.75
50 75.06 92.32 93.22 93.4 93.85 78.8 95.28 95.61 95.87 96.23 30.18 63.64 65.36 66.4 67.88
100 79.08 94.7 95.42 95.56 95.83 82.9 96.76 97.33 97.42 97.51 35.61 69.83 71.52 72.14 72.79

PA
20 70.79 89.05 90.53 90.98 91.97 75.44 92.99 93.44 93.88 94.98 25.61 55.83 57.98 59.45 62.02
50 79.88 93.0 93.31 93.49 93.81 84.91 95.69 95.78 95.81 96.17 35.58 66.69 67.15 67.69 68.49
100 84.38 95.29 95.33 95.38 95.42 89.45 97.33 97.39 97.39 97.45 42.54 72.85 73.12 73.32 73.6

PA+IL
20 55.17 78.5 80.39 81.51 83.44 57.7 87.2 87.65 88.24 89.85 32.76 70.23 71.11 71.87 73.4
50 64.77 85.64 85.91 86.4 86.76 69.7 92.43 92.49 92.52 92.73 42.6 77.49 77.72 77.91 78.33
100 71.72 90.22 90.31 90.44 90.71 78.23 94.89 94.89 94.95 94.98 50.37 83.6 83.73 83.77 83.85

RF K Source: MSMT - Target: Duke Source: MSMT - Target: Market Source: Duke - Target: MSMT

mAP rk-1 rk-5 rk-10 rk20 mAP rk-1 rk-5 rk-10 rk-20 mAP rk-1 rk-5 rk-10 rk-20

QS
20 73.76 90.8 91.38 91.61 92.55 59.6 90.41 92.37 93.14 94.71 16.45 48.5 52.69 54.4 57.63
50 77.82 93.27 94.61 94.79 95.24 63.52 92.19 94.92 95.4 95.96 18.45 52.23 58.74 60.42 62.12
100 81.68 95.96 97.08 97.26 97.31 65.05 92.58 96.26 96.82 97.09 19.74 54.28 63.14 65.25 66.88

QS+IL
20 72.75 89.0 89.81 90.53 91.34 63.52 91.75 93.11 94.0 95.25 21.74 58.81 62.5 64.29 66.76
50 79.0 93.85 94.48 94.61 94.84 68.68 94.48 95.61 95.9 96.32 24.83 63.84 68.47 69.65 71.11
100 82.35 96.18 96.86 96.99 97.08 71.45 95.58 96.97 97.24 97.39 26.95 67.33 72.59 74.11 75.33

RS
20 71.5 86.85 87.52 87.75 88.33 72.48 93.53 94.3 94.74 95.34 25.16 60.13 61.88 63.17 64.96
50 82.93 94.12 94.3 94.52 94.61 83.84 96.44 96.7 96.94 97.15 34.47 69.58 70.47 71.14 72.03
100 87.48 96.05 96.27 96.36 96.5 89.69 97.89 97.98 98.1 98.16 42.06 75.95 76.51 76.88 77.5

M-RS
20 73.84 88.11 89.18 89.59 89.99 78.12 94.63 95.43 95.99 96.44 27.51 62.83 65.53 67.33 69.45
50 83.87 94.34 94.75 95.06 95.2 86.88 97.12 97.33 97.6 97.89 35.78 71.7 73.36 74.11 75.39
100 86.91 96.14 96.63 96.72 96.77 90.36 98.31 98.55 98.63 98.72 41.69 77.51 78.84 79.37 79.95

PA
20 76.98 89.72 90.08 90.62 90.98 83.06 95.55 95.87 96.2 96.82 30.75 65.13 66.64 67.84 69.82
50 86.94 95.06 95.29 95.42 95.42 91.01 97.71 97.77 97.8 97.95 41.14 73.44 73.97 74.33 74.97
100 90.71 97.13 97.26 97.26 97.31 94.26 98.57 98.57 98.63 98.66 48.15 78.72 78.94 79.06 79.23

PA+IL
20 64.21 83.12 84.02 84.78 85.5 65.2 90.17 90.74 91.18 92.34 36.91 75.51 76.24 77.17 78.61
50 74.54 90.04 90.48 90.62 90.84 76.37 94.27 94.39 94.42 94.6 47.07 81.9 82.06 82.23 82.62
100 81.19 94.03 94.08 94.12 94.17 83.9 96.67 96.67 96.73 96.76 54.54 86.29 86.46 86.51 86.61
Table 5
Average feedback count at each RF round (R) on each target (T) data set.

RF/round Source: Market - Target: Duke Source: Duke - Target: Market Source: Market - Target: MSMT

k = 20 k = 50 k = 100 k = 20 k = 50 k = 100 k = 20 k = 50 k = 100

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

QS 6.9 2.5 0.7 8.9 2.9 0.8 10.2 3.1 0.8 6.1 2.2 0.7 7.8 2.7 0.7 9.2 2.9 0.8 4.3 1.7 0.5 5.7 2.3 0.7 6.8 2.7 0.8
QS+IL 6.94 2.39 1.11 8.86 2.82 1.26 10.21 3.00 1.22 6.10 2.13 1.07 7.83 2.62 1.19 9.16 2.83 1.27 4.32 2.63 0.76 5.74 3.61 1.00 6.85 4.22 1.13
RS 6.94 3.10 1.51 8.86 3.85 1.82 10.21 4.18 1.85 6.10 3.24 1.71 7.83 4.01 2.04 9.16 4.15 1.99 4.32 2.39 1.42 5.74 3.66 2.46 6.85 4.52 3.21
M-RS 6.94 3.55 1.94 8.86 4.32 2.19 10.21 4.69 2.02 6.10 3.37 2.22 7.83 4.39 2.41 9.16 4.71 2.12 4.32 2.55 1.86 5.74 3.92 2.89 6.85 4.93 3.52
PA 6.94 3.46 2.31 8.86 4.61 2.34 10.21 4.92 2.18 6.10 3.38 2.65 7.83 4.79 2.71 9.16 5.20 2.14 4.32 2.49 2.15 5.74 4.16 3.50 6.85 5.55 4.31
PA+IL 6.94 0.37 2.82 8.86 1.27 3.11 10.21 2.31 2.71 6.10 0.32 2.89 7.83 1.27 3.43 9.16 2.42 2.94 4.32 5.51 1.53 5.74 9.28 2.13 6.85 12.03 2.37

RF/round Source: MSMT - Target: Duke Source: MSMT - Target: Market Source: Duke - Target: MSMT

k = 20 k = 50 k = 100 k = 20 k = 50 k = 100 k = 20 k = 50 k = 100

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

QS 5.82 5.78 1.57 8.60 5.90 1.46 9.88 6.19 1.40 6.93 2.62 0.76 8.83 3.087 0.84 10.15 3.22 0.81 4.69 1.99 0.62 6.22 2.70 0.81 7.49 3.14 0.92
QS+IL 5.82 5.17 1.79 8.209 5.8 1.79 9.88 5.809 1.66 6.93 2.53 1.18 8.83 3.01 1.31 10.15 3.10 1.27 4.69 3.02 0.87 6.22 4.14 1.15 7.49 4.85 1.29
RS 5.82 5.05 1.70 8.60 5.51 1.91 9.88 5.89 1.83 6.93 3.51 1.81 8.83 4.31 2.09 10.15 4.37 1.87 4.69 2.69 1.58 6.22 4.25 2.77 7.49 5.22 3.68
M-RS 5.82 5.27 1.99 8.60 5.87 2.08 9.88 6.21 1.80 6.93 3.73 2.29 8.83 4.73 2.33 10.15 4.88 1.94 4.69 2.89 2.06 6.22 4.53 3.19 7.49 5.66 3.81
PA 5.82 5.21 2.38 8.60 5.97 2.29 9.88 6.41 1.97 6.93 3.83 2.57 8.83 5.14 2.42 10.15 5.27 1.86 4.69 2.85 2.37 6.22 4.786 3.78 7.49 6.21 4.55
PA+IL 5.82 0.51 4.18 8.20 1.69 4.26 9.88 2.90 3.52 6.93 0.29 3.07 8.83 1.18 3.60 10.15 2.34 2.93 4.69 5.87 1.62 6.22 9.84 2.23 7.49 12.54 2.42
number of feedback was less than 11, 16 and 18, respectively for
𝐾 = 20, 𝐾 = 50 and 𝐾 = 100.

If we compare these values with the number of target images that
re required by DA or UDA methods to attain similar performances, we
ee that the former are orders of magnitude lower. Indeed, reported
13
results for DA and UDA have been attained using up to about 12,000
images (Market) and 30,000 (MSMT, see Table 1) albeit unlabelled
for UDA. This means that the considered RF-based HITL approach
allows the underlying Re-Id system to adapt to the target domain with
comparable or better performance than the one that would be attained
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by DA and UDA (if target data had been available during design), at
a very limited annotation (feedback) effort by the user, and without
retraining or fine-tuning the source model. Furthermore, we point out
again that, despite being relatively large, the template galleries of the
considered benchmark data sets are likely to be much smaller than
the ones of real application scenarios involving dozens of surveillance
cameras and hours of video recordings: in this case, the number of
true matches in the top-𝐾 ranks is likely to be even smaller than the
ne observed in our experiments. In particular, our results show that
= 100 is a suitable value for a Re-Id system in investigation scenarios:

t requires a reasonably small user’s effort, and the slight additional
ffort with respect to the other considered values of 𝐾 is well rewarded
y the increase in performance, as can be seen from Table 4.

. Discussion and conclusions

In many challenging real-world application scenarios, Re-Id systems
ave to be used on target scenes different from the ones used for
raining, and the resulting domain shift can severely affect their perfor-
ance. In this work, we revisited the HITL approach to Re-Id, originally
roposed with different purposes, arguing that it can be a further
ffective solution against domain shift, besides existing solutions based
n domain adaptation (either supervised or unsupervised) and domain
eneralisation, without requiring model refinement on target data. Un-
er this viewpoint, HITL can be viewed as an online domain adaptation

approach which leverages the synergy between human and machine
capabilities during system operation. An extensive empirical evaluation
of and comparison with state-of-the-art DA, UDA and DG methods
confirmed the effectiveness of the HITL approach, which turned out
to be competitive with, or even superior to such approaches, even
in the proposed implementation based on simple relevance feedback
algorithms originally devised for content-based image retrieval, as well
as with novel versions of such algorithms we devised specifically for
Re-Id. The considered RF-based HITL solution is very general, as it is
model-agnostic, and can therefore be implemented on top of any Re-Id

odel. Moreover, its potential scope is broader than the one considered
n this work: (i) Besides being an alternative to DA and UDA, as well
s to DT and DG, in cross-domain scenarios, it is also complementary
o them, i.e., it can be used together with these techniques with the
im of further improving their performance; (ii) Similarly, it can also
e used in application scenarios not involving domain shift (i.e., where
he target and source domains coincide), to improve the model’s effec-
iveness further. In this context, an interesting research direction for
uture work is to investigate the combination of RF-based HITL with
DA, by exploiting either pseudo-label-based UDA methods to increase

he number of true matches used to perform re-ranking, or the user’s
eedback to adapt the source model.

We conclude our work by pointing out the issue of the trustwor-
thiness of learning-based methods, which is becoming more and more
relevant due to their increasing adoption in critical applications, such
as health and security, and may in principle, be addressed also lever-
aging the HITL approach. Trustworthiness is crucial in determining
the acceptance of learning-based systems by end-users in these kinds
of applications, and is undermined by two main factors (Holzinger,
2021): the lack of robustness to perturbations of input data (Kamath,
Deshpande, Kambhampati Venkata, & N Balasubramanian, 2021), in-
cluding domain shift issues considered in this work, and the difficulty,
even of the most powerful learning methods, in explaining their predic-
tions (Dwivedi et al., 2023; Rawal et al., 2022). The latter issue affects
Re-Id systems too, as one can expect (Chen et al., 2021; Goyal, Patel,
Truong, & Yanushkevich, 2021; Liao et al., 2020; Zhao, Luo, Yang,
& Song, 2018). Under this viewpoint, it has recently been suggested
that the HITL approach may be exploited, in the context of a human-
centred design process, to promote the explainability and robustness
of learning systems, and consequently to improve their reliability and
trustworthiness, ensuring that humans remain in control (Holzinger,
2021). Investigating the design of HITL methods with this purpose also
in the specific case of Re-Id systems is another very interesting direction
for future work.
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