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Abstract

Thedesign of a Convolutional Neural Network suitable for efficient execution on embedded

edge-processing platforms requires reconciling accuracy and efficiency requirements. Several

research efforts have translated this task into the iterative search of Pareto-optimal points

satisfying multiple objectives, but a step forward is still needed to assist the developer in this

complex task. In this thesis, we summarize the key challenges of edge-oriented design into

three main topics.

As a first point, the size of the design space is so big it makes any full exploration unfeasible,

thus, effective practices to limit the exploration time without compromising its outcome are

needed.

Additionally, edge-processing platforms are highly heterogeneous and often endowedwith

specialized accelerators, therefore the prediction of the hardware performance of the candidate

design points requires a certain degree of platform awareness.

Finally, the recent advancements in the neural network domain have uncovered emerging

models and intelligence mechanisms, whose success has encouraged their optimization for

deployment at the edge. The transformer represents a remarkable example.

In this thesis, we present our contribution to these relevant design challenges. First, we

describe an efficient design flow to jointly evaluate several design parameters, referring to a

Keyword Spotting task targeting a commercial micro-controller for its evaluation. We provide

a fast exploration strategy, requiring around 30 hours and resulting in state-of-the-art accu-

racy within the defined storage constraints. We further consider a more accurate exploration

strategy, allowing us to refine the performance evaluation during the search process with an

additional characterization time.



As a second contribution, we present an accurate, flexible, and easy-to-use estimation

method for the most relevant hardware performance metrics, such as latency, energy con-

sumption, and throughput, to be integrated into an automated design flow and enable model-

ing the network execution on the most typical families of edge-processing devices. The pro-

posed method improves the prediction accuracy of state-of-the-art approaches of comparable

complexity, not requiring access to direct on-hardware measurements during the exploration

process, and improves by up to 4× the predictability of hardware-aware Neural Architecture

Search.

As the last contribution, we present a tiny transformer model for long-term epilepsy mon-

itoring, suitable for real-time seizure detection on low-power health-monitoring devices. The

assessment of its performance shows accuracy metrics well-aligned with the state of the art,

obtainable with as low as 13.7ms inference time and 0.19mJ energy consumption per inference.
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) have represented for years the state of the art in the

image classification [1, 2, 3, 4] and object detection [5] tasks, thus becoming one of the stan-

dard approaches to computer vision in various fields, from autonomous driving [6] to medical

imaging [7, 8]. Their success is not strictly limited to image processing, as they have been

also successfully applied, among other fields, to speech recognition [9, 10] and medical signals

processing [11, 12].

The ability to learn complex data representation is obtained through complex architec-

tures stacking multiple computational intensive operators, dominated by convolutions, which

require the storage of a significant amount of trainable parameters. To give an example, the

ResNet-50 architecture employs 26 MB of parameters and requires 4.1 billion of Floating-Point

operations (FLOPs) [13].

Despite such high computational and storage requirements, the growing success of CNNs

has encouraged their deployment on a variety of different processing systems, including the

edge-processing domain. This deployment scenario introduces tight resource constraints, re-

quiring careful optimization of the classifier design and representing a very challenging task.

As the range of CNN-based applications grows, there is a need for efficient design solutions

to assist the system developer in defining the optimal CNN architecture to meet the accuracy

and performance constraints.

Despite the ongoing research efforts, edge-oriented design still presents two key chal-

lenges. The first one is represented by the huge design space of architectural and processing

3



possibilities: the CNN structure is obtained as the composition of multiple stages, each ap-

plying different transformations to the input data; the different combinations of parameters

(shape and operand) for each stage, as well as their number and sequence, result in a wide

range of different models, reaching different levels of accuracy and representing a different

computational workload. Moreover, the system design should also consider any data prepa-

ration stage, as well as any possible optimization step which could be applied to a candidate

CNN model, to reduce its computational or storage requirement.

At the same time, the constrained deployment scenario demands a tight trade-off between

the complexity and the accuracy of the classifier. However, the edge-processing domain is a

composed set of hardware targets, exploiting computing units based on different architectural

solutions, thus the comparison of the efficiency of two alternative CNNmodels is a non-trivial

task, where the specific characteristics of the target hardware have to be taken into account.

These main points can be summarized as the need to provide an efficient design exploration

strategy, and the need to enable a certain degree of platform-awareness.

Furthermore, the continuous advancements in the neural network subject have introduced

new operands and architectural solutions, which enrich the CNN baseline of new features and

capabilities. The transformer represents a relevant example, as it has recently challenged the

supremacy of CNNs in some of the most relevant application fields. The interest in this emerg-

ing model has grown to include edge deployment, thus the optimization of its architecture for

the target domain has become a relevant subject.

In this thesis, wemean to contribute on these challenges. Our contributions can be outlined

in three points:

• the definition of an effective design exploration strategy, comprehensively considering

the effects of tuning the available design parameters on the performance and efficiency

of edge implementation, within a limited exploration time [14];

• the development of an accurate estimation method to predict the on-hardware efficiency

of a candidate design point on a given target platform[15];

• the application of hardware-aware design to a transformer architecture [16]; the op-

timization process resulting in the proposed architecture does not exploit the design
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flow presented in [14], but it shows that very similar concepts apply to this family of

networks.

Here we briefly describe the organization of the following pages. In Chapter 2 we revise the

state of the art of edge-processing platforms and neural networks optimization strategies,

focusing on automated design based on Neural Architecture Search (NAS) and considering

platform awareness. In Chapter 3 we present our design procedure, describing two different

implementations representing different trade-offs between exploration effort and the quality

of the resulting design. We refer to the ALOHA framework (Software framework for runtime-

Adaptive and secure deep Learning On Heterogeneous Architectures
1
), which provided the

context and reference for the contribution presented in this chapter. In Chapter 4 we describe

our ALOHA estimation method for the prediction of platform-aware metrics, aiming to en-

able hardware awareness in NAS-based design targeting the embedded domain. In Chapter 5

we present an optimized transformer model designed for epilepsy monitoring on low-power

devices. Finally, the conclusions are summarized in Chapter 6.

1
https://www.aloha-h2020.eu/
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Chapter 2

State of the Art

In recent years there has been a growing interest in enabling artificial intelligence on tiny

smart devices, providing near-sensor processing and thus reducing the power consumption

of battery-powered devices, easing the bandwidth requirements of a cloud-based processing

system, and ensuring the privacy and security of the user’s sensitive data [17]. All these aspects

are of particular relevance in some application fields, including industrial applications [18] and

health-monitoring [19].

In the following, we start with a brief review of the state of the art of efficient edge-

processing platforms specialized for the neural networks’ workload, in Section 2.1. Then, we

focus in Section 2.2 on the network model optimization, considering network compression

(Section 2.2.1) and automated design based on Neural Architecture Search (Section 2.2.2). In

Section 2.2.3 we revise the literature of the existing approaches enabling platform awareness

in the NAS process, whereas we summarize in Section 2.2.4 the most relevant works exploiting

NAS for the design of an efficient Keyword Spotting (KWS) classifier, as we will reference a

KWS use case for the definition and evaluation of our design strategy. Finally, we discuss in

Section 2.3 some relevant works dealing with the transformer model and its current applica-

tion scenarios.
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2.1 Edge-processing Platforms

The recent trend to enable artificial intelligence capabilities on low-power tiny devices, fitting

the size and energy requirements of the edge-computing paradigm, has encouraged the design

of an abundance of specialized computing platforms for the efficient execution of neural net-

works (NNs). The work of [20] provides a very recent survey on the most popular hardware

platforms for edge NN-inference. This rich landscape includes several solutions, representing

an effort toward adjusting the computational power of the target devices to the typical work-

load of neural networks, dominated by convolutions and matrix multiplications [21]. In the

following, we list some of the solutions available, such as:

• application-specific accelerators, like Google Edge TPU [22] and NVIDIADeep Learning

Accelerator (NVIDLA) [23], optimized to reach high performance in the execution of

tensor processing operations;

• systems-on-chip, such as Intel Movidius [24], a highly optimized video processing unit

based on 16 cores and a dedicated hardware engine for neural networks acceleration,

andQualcomm’s Snapdragon [25], targeting gaming applications and embedding a spe-

cialized accelerator;

• tiny GPUs, such as NVIDIA Jetson [26];

• several development boards based on micro-controller units (MCUs), such as ST Sensor-

tile [27] and Ambiq Apollo4 [28], as well as on parallel computing clusters, like Green-

waves GAP processors [29], supporting Single Instruction Multiple Data;

Along with commercial devices, several academic research prototypes have been proposed,

such as the Eyeriss flexible application-specific accelerator [30], or FPGA-based computing

engines, like the one presented in [31] and NEURAghe [32]. The computing platforms can

support different data precision: for example, NVIDLA natively supports various data types,

including 2-, 4-, 8-, 16-bit integer representations, and 16-, 32- and 64-bit floating point repre-

sentation [23].

In most cases, high performance is obtained thanks to parallel computing on dedicated

accelerators. In order to exploit at best the performance enabled by these specialized comput-
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ing units, efficient dataflows optimizing the use of the hierarchical memory systems and the

communication resources need to be implemented [30]. Due to this reason, the wide range

of hardware solutions is accompanied by a family of specialized software libraries enabling

efficient access to the computing resources: representative examples are cuDNN [33], target-

ing GPUs, CMSIS-NN [34], specifically optimized for the ARM Cortex-M family of cores (like

the one embedded in the SensorTile), and the PULP-NN library [35], targeting PULP-based

clusters (like the GAP processors).

2.2 CNN model optimization

Alongside the design of more efficient computing architectures, a parallel line of research deals

with the optimization of deep network structures into more portable models, which remains

a primary concern to fit the low-power requirements of several application scenarios, as well

as the size of local storage resources close to the computing engines. The constraints on the

memory footprint are especially hard when tiny MCUs are targeted, motivating the studies re-

lated to more lightweight, yet accurate and efficient, network architectures. Popular examples

of handcrafted tiny network models targeting classification and object-detection on the edge-

domain are SqueezeNet [36], reaching the 80.3% top-1 accuracy on the ImageNet dataset [37]

for image classification with 50× fewer parameters than the comparable AlexNet [1], the Mo-

bileNet family [38], reaching up to 75% accuracy with 5.4M parameters, and TinyYolo [39],

requiring 8.9 MB and reaching 34% mAP on the COCO dataset [40].

2.2.1 Network compression

Along with the time-consuming design-from-scratch approach, compression techniques re-

ducing the size of common network models have captured great interest. The rationale of

network compression is that neural networks are highly redundant: quantization exploits the

robustness deriving from such redundancy to reduce the precision of the parameters represen-

tation, and consequently the memory requirements of the network model. The groundbreak-

ing work of [41] showed how the combination of connections pruning and data quantization

could be exploited to reduce by 35× the storage requirements of AlexNet [1] without affecting
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its accuracy on the ImageNet dataset [37].

A very recent survey on the current approaches to quantization is provided in [42]. The

main concept is to map the real values to a reduced precision interval, based on a scaling

factor and a zero point. A relevant work for the selection of the representation interval is

represented by PACT [43], addressing the challenge of quantizing the activations through

an optimal scaling factor learned during training. The authors show that full-precision ac-

curacy can be obtained with as low as 4-bit representation, considering the performance of

AlexNet, ResNet-18, and ResNet-50 on the ImageNet dataset [37]. This line of research is called

Quantization-Aware Training, allowing the recovery of the accuracy loss resulting from the

reduced precision with an additional computational cost. Despite the relevant results obtained

in [43], with commonly available methods lossless quantization can be easily achieved up to

8-bit representation, whereas recovering the accuracy drop resulting from more aggressive

strategies is still not straightforward.

2.2.2 Hardware-Aware Neural Architecture Search

Even with the support of these common compression methods, the design of a network ar-

chitecture targeting a given application on a specific hardware platform is a complex task, re-

quiring much application- and NN-related expertise. The work of [44] introduced NAS as an

automated design procedure, defined as an iterative search process and based on the definition

of a search space, a search strategy, and a performance evaluationmodel. Exploiting a Recurrent

Neural Network (RNN) as a controller, to first generate CNN models as design points in the

search space and then evaluate them based on their expected accuracy, the authors improved

the state-of-the-art CNN on the CIFAR-10 dataset [45], selecting the best network architecture

among 12800 model configurations. Moving from this first single-objective approach [46, 47],

hardware-aware NAS (HW-NAS) [48] includes the on-hardware performance metrics in the

search loop, considering the Pareto-optimal points in terms of validation accuracy and an ad-

ditional hardware-related cost function. In the following, we discuss some of the most relevant

works on HW-NAS.

The authors of [49] studied a compound scaling method, to obtain new versions of known

CNN architectures based on the hardware requirements by jointly scaling the depth, width,
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and resolution of the baseline network. When applied to state-of-the-art networks, like Mo-

bileNet and ResNet, compound upper scaling allows obtaining up to 5% accuracy improve-

ment. After applying NAS optimizing accuracy and OPS, they select a family of networks,

the EfficientNets, which reduce by around an order of magnitude the number of OPS of state-

of-the-art models with comparable accuracy. As OPS count does not allow for an accurate

performance estimation on the target hardware [50], other approaches consider direct on-

hardware measurements during the exploration process: the authors of [51] consider direct

hardware measurements of latency on target mobile devices, resulting in the design of MNas-

Net, reaching 75.2% ImageNet accuracy with 1.8× speedup over MobileNetV2 [52]; in [53]

peak power and average energy consumption measurements are included in the reward func-

tion to evaluate the candidate networks during the exploration.

The literature reports many other examples of works relying on HW-NAS for optimal net-

work design, considering different performance metrics estimations [54, 55, 56, 57, 58, 59]. The

subject of hardware performance modeling will be further discussed in Section 2.2.3.

As an application-specific NAS could require a huge amount of iterations, several solutions

have been proposed for the search optimization, exploiting one-shot training and weight shar-

ing [59, 60]. The OFA framework [59] allows defining the design space as a super-network,

which is trained once to optimize all its possible sub-networks, representing the candidate

design points. Considering several deployment scenarios, the authors exploit a single training

procedure to select the optimal network targeting CPUs, GPUs, and FPGA accelerators, based

on an accuracy predictor and on latency look-up-tables (LUTs). They obtained up to 4% Ima-

geNet accuracy improvement over MobileNetV3. Finally, to keep up with the wide adoption

of reduced-precision CNNs, some automatic design flows also consider compression through

quantization, as an optimization objective along with network topology selection [61, 62].

In this thesis, considering the lesson of [59], we present an efficient design space explo-

ration to address the selection of multiple design knobs in a target-oriented CNN optimization

problem. As we selected a KWS task as a target use case, we will further discuss the compari-

son with NAS oriented to the KWS problem in Section 2.2.4.
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Category Methods Metric Accuracy Re-usability Modularity

OPS

[49] latency

low very high ✗
[63]

latency, energy,
memory

Roofline [64] latency medium/ low high ✗

Specialized

analytical

methods

[65]

latency, energy,

medium/

high

low
✗

memory
[56, 66] latency,energy

[54, 55, 67]

latency, energy
medium

throughput

Measurements
[57] latency

high very low ✗
[53] latency, energy

Look-up tables [59] latency high low
✗

(LUT) [68] latency high medium/ low

ML
[69] latency, energy

high very low ✗
[70] latency

ALOHA
this thesis latency, energy medium/

high ✓
Ch. 4 throughput high

Table 2.1: Comparison of methods for evaluation of platform-aware CNN metrics

2.2.3 Hardware cost modeling

Platform awareness represents a key point in most of the recent works dealing with an optimal

design based on NAS. Table 2.1 provides an overview and comparison of the methods com-

monly exploited in the literature for the evaluation of platform-dependent CNN metrics. The

state-of-the-art estimation methods, listed in Column 2, are grouped into general hardware-

performance modeling categories, indicated in Column 1. The examined works are associated

with the list of platform-aware metrics they are able to capture, given in Column 3, and com-

pared in terms of their accuracy (Column 4), degree of re-usability (Column 5), and level of

modularity (Column 6).

A high re-usability is an important quality metric, limiting design-time overheads despite

the ever-increasing number and diversity of CNNs and target hardware platforms, and refers

to how many different ones can be successfully modeled with the considered method. To give

an example, the operations count (OPS) category (Row 2) has very high degree of re-usability
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because it is easily adaptable to a variety of CNNs and hardware platforms without requiring

any changes. On the other hand, the methods based on machine learning (ML) predictors

(Rows 12 to 13) exhibit very low re-usability because, once designed, the predictors are only

applicable to a specific set of explored CNNs and a specific target platform, and if that set is

changed they must be completely redesigned.

Themodularity item, in Column 6, refers to themodeling power of themethod, considering

whether it can account for the modular structure of the platform, including the distribution of

the layers over the different processing units in a heterogeneous platform, and their execution

schedule. Based on the typical scheme adopted in common Deep Learning (DL) frameworks,

such as Pytorch [71] or TensorFlow [72], CNN inference is usually sequential. Thus the plat-

form accelerators receive the workload layer-by-layer [73]. However, as suggested in [17],

efficient edge-processing can be achieved with different scheduling choices [74, 75, 76], im-

proving the throughput and energy consumption, and thus requiring consideration when the

hardware-aware metrics are estimated.

In the following, we will briefly comment on and compare the considered modeling cat-

egories, referring, for brevity, to latency estimation. As already mentioned, estimating infer-

ence latency based on the network OPS is a simple and highly reusable method. However,

the obtained predictions are often inaccurate [50, 51], introducing a significant error margin

between the predicted latency and the one measured on the target platform. When the design

targets applications with severe timing and resource constraints, as is common in autonomous

driving [77] or object recognition on drones [78], this would result in the need to replace the

selected CNN model.

We indicate as Rooflinemethods (Row 4) those evaluating latency based on thewell-known

Roofline model [79]. These methods consider the impact of memory access in addition to the

number of OPS required by the network, providing a more precise latency evaluation. How-

ever, the estimation accuracy is still not sufficient to correctly model the hardware perfor-

mance of some CNN models on particular hardware platforms.

Rows 5 to 7 refer to specialized analytical methods producing latency estimations based on

exact hardware platform representations. The increased estimation accuracy is obtained at the

expense of a low re-usability. To give some examples, in [54, 55, 56] a precise roofline-based
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model is exploited for FPGA co-design, whereas [67] relies on the MAESTRO model [80] for

ASIC co-design. If different hardware platforms are targeted, such as CPUs or GPUs, these

models can’t be exploited or would require adequate adaptation.

In Rows 8 and 9 we list studies including direct on-hardware latency measurements in the

design process. Based on a similar approach, works in Rows 10-11 access LUTs collecting mea-

sured latency values for single layers, or blocks, to evaluate the overall network latency. This

solution ensures the best accuracy, however, it requires a large number of measurements [57,

53], or a narrow exploration based on a small LUT.

Finally, ML predictors (Rows 12 to 13), such as neural networks or regression models, can

be very accurate, but they need to be trained on a large number of measurements and provide

very low re-usability. Some examples of required profiling time are reported in Table 2.2. We

assume an average inference time of 15ms and evaluate the data collection time of the consid-

ered works, which would be over 1 hour for [81], and over 18 hours in [57]. This is a very soft

hypothesis, as [70] reports almost 2 weeks of data collection time. In general, training has to

be repeated for each target platform, although some approaches suggest a training procedure

considering a range of targets (e.g. [69] evaluates 447 different GPU configurations, while [81]

suggests training a single network for predicting performance on multiple hardware).

In Chapter 4 of this thesis, we propose a platform-aware evaluation model to be efficiently

included in the HW-NAS loop, able to provide realistic predictions of the critical performance

metrics, like latency, energy consumption, and throughput. Being based on abstract high-

level platform specifications, it can be applied to a wide range of hardware platforms, without

requiring repeated measurements.
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Method Data Collection time Training time
n sample ∗ t ∗Navg

[81] 75000 ∗ t ∗ 5 (300 epochs)
[70] 80000 ∗ t ∗Navg 1h (1000 epochs)
[57] 90000 ∗ t ∗ 50 20min (150 epochs)
[69] 447 ∗ 108 ∗ t ∗Navg not specified

Table 2.2: The required profiling time for the evaluation methods based on ML models is de-

scribed as the sum of two major components: the time required to acquire the training data,

and the time required to perform the training procedure. TheData Collection time is expressed

as the product of 1) the number of samples evaluated, n sample, 2) their execution time on the

target hardware, t, and 3) the number of times each measure is repeated to obtain an accurate

value, Navg.

2.2.4 Neural Architecture Search for KWS

Quantization Pre-processing
Hardware Levels Cross Parameters Cross Exploration
metric exploration exploration description

[61] OPS 8bit ✗ n. frames ✓ ✗

footprint

[62] OPS up to 1bit ✗ not applicable not applicable ✓

latency

[82] OPS ✗ ✗ ✗ ✗ ✓

[83] ✗ ✗ ✗ ✗ ✗ ✓

this latency feature type
thesis footprint up to 4bit ✓ n.features ✓ ✓

Ch. 3 energy n. frames

Table 2.3: Comparison with state-of-the-art works on NAS targeting KWS.

KWS utilities are typical examples of applications to be deployed on power-constrained edge

devices, often having limited storage resources. Thus the design of new workload-efficient

network architectures, either handcrafted [84] or resulting from NAS [61, 82, 83, 62], was

encouraged. We will discuss in the following some relevant examples of the latter, which
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provide a comparison reference for the design strategy presented in Chapter 3 to efficiently

address the hardware-oriented design of a KWS system.

The state of the art is summarized in Table 2.3: the main works, listed in Column 1, are

compared in Column 2 based on the metrics captured by their degree of platform awareness.

Columns 3 and 4 refer to the quantization subject: we indicate the range of representation pre-

cision explored and whether the exploration of the CNN topology and the quantization policy

is combined. Columns 5 and 6 report similar information about the pre-processing scheme,

considering the most common speech features, namely Mel energies and Mel-Frequency Cep-

stral Coefficients (MFCC). Finally, Column 7 highlights the works providing methodological

guidelines for the exploration. We briefly comment on the referenced studies in the following.

The work of [61] compares different network models obtained through NAS, considering

CNNs, depth-wise separable CNNs (DS-CNNs), RNNs, and deep neural networks (DNNs). The

exploration targets MCUs embedding ARM Cortex-M Processors of different sizes, defined as

Small, Medium, and Large, integrating hardware awareness as a set of constraints on the num-

ber of OPS and the memory footprint. The pre-processing scheme assumes feature extraction

based on MFCC, where the number of frames constituting the spectrogram is subject to ex-

ploration, resulting in a 49x10 (49 time-frames and 10 features) resolution for every evaluated

model. Quantization is performed only on the finally selected model, up to 8-bit representa-

tion. The focus of the work is not on providing design guidelines, as it aims to present the

well-known state-of-the-art DS-CNN architectures, reaching higher accuracy than the corre-

sponding CNN candidates.

The authors of [62] exploit differentiable NAS based on OPS evaluation to design a CNN

model reaching 95.6% accuracy, with 75.7KB of parameters and 13.6 MOPS. It is applied to

raw audio files, leveraging learned parameterized SincConv functions executed as a first stage.

Thus, this pre-processing approach can not be described according to the scheme proposed in

Columns 5 and 6 in Table 2.3. Also in this case, quantization is only applied to the selected

CNN model, thus it is not cross-explored with the topology: the best performing quantized

version exploits 2.51-bit weights and 2.91-bit activations, reaching 93.76% accuracy.

OPS is again the reference hardware evaluation metric in [82]. This work describes an ex-

ploration methodology based on two stages: a first fixed-budget training phase, and a second
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refinement step on the Pareto-optimal candidates, based on hyperparameters subject to ex-

ploration. The provided guidelines do not address the cross-exploration of the pre-processing

scheme or the quantization policy, considering pre-processing based on MFCC and resulting

in 40x32 feature resolution. The best-performing CNN reaches 95.1% accuracy.

As a last reference, we consider [83], presenting a model based on depth-wise separable

and dilated convolutions which reaches 97.2%. Until recently, this was the state-of-the-art

for convolution-based KWS models. It requires pre-processing based on MFCC, resulting in

101x40 input features. Such pre-processing scheme is pre-defined when the NAS exploration

is performed.

To the best of our knowledge, as summarized in Table 2.3, ours is the first approach to pro-

vide methodological guidelines on how to efficiently combine the exploration of the optimal

CNN topology, pre-processing scheme, and quantization level, considering hardware-aware

performance evaluations. We believe that the impact of feature extraction and input reso-

lution on the final accuracy and overall performance motivates our perspective, as both the

inference time and storage resources are affected by these design choices. To refine the OPS

indirect complexity metric into a more accurate execution time estimation, easily comparable

with a maximum constraint, we exploit a latency prediction model of the target platform. Fur-

thermore, the current trend [85] shows the importance of including quantization within the

NAS exploration. We mean to extend such benefits to the KWS field.

2.3 Emerging Neural Networks

In the last years, the landscape of neural networks has evolved far beyond the simple CNNs,

to include more complex and irregular models enforcing new intelligence mechanisms.

Nowadays, the transformer has gained momentum since its first appearance in the work

of [86]. The attention mechanism, representing the core of the transformer, was first applied to

machine translation tasks, providing state-of-the-art results thanks to a general understanding

of the context.

Recent works have applied the same mechanism to other fields. The most renowned ex-

ample is represented by the Vision Transformer [87], proposing a transformer architecture
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applied to the image classification problem. Ever since, less conventional application fields

have been studied, such as audio processing [88], and medical signal processing [89, 90, 91,

92]. This spread to include new use cases has contributed in pushing toward edge deployment

also for transformer-based models [93, 89], requiring specific quantization strategies [94].

In Chapter 5 of this thesis, we finally consider the optimization of a transformer model

targeting the epilepsy monitoring problem on the wearable domain, based on the typical stor-

age constraints of tiny MCUs. The presented use-case allows to highlight the design knobs

available for hardware-oriented optimization and the similarities with the CNN domain. Al-

though the presented exploration was not conducted with the tools introduced in Chapter 3,

the advantages of such a design approach could be exploited also for transformers, once the

support for the specific operands is integrated.
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Chapter 3

Optimizing the design space

exploration: the ALOHA design flow

One of the main challenges of edge-oriented design is the huge amount of design parame-

ters deeply affecting the performance of the system, whose exploration would be enormously

time-consuming, thus requiring efficient exploration strategies. A well-suited example for the

discussion of platform-aware design and optimization of efficient CNN-based system imple-

mentation is represented by the KWS task. It consists of a simple speech recognition problem,

requiring the classification of a limited set of instructions[95], or the detection of few wake

words, as in smart home devices, where it is coupled with more complex audio processing

systems running on the cloud. We consider this use case as a reference for two main reasons:

1. the various applications relying on KWS provide multiple deployment scenarios, target-

ing a very wide range of processing platforms and hardware architectures, which should

be precisely characterized to enable efficiency evaluations within the design flow;

2. KWS classification based on CNNs usually exploits feature-extracting techniques, rep-

resenting additional design choices to be considered.

The general composition of a KWS system is highlighted in Figure 3.1: the recorded au-

dio samples are streamed to a pre-processing stage, responsible for extracting representative

features, which are provided to a CNN-based classification stage and thus assigned to a set

of classes corresponding to the keywords to be recognized. Restricting the classifier space to
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Figure 3.1: KWS system overview.

the CNN domain, an effective system design exploration should involve several parameters,

impacting its performance on the target hardware:

• the feature-extracting function - we assume as reference the most common pre-

processing functionality in literature, which converts the audio stream into a bi-

dimensional representation of the power spectrum of the acquired audio over time,

namely Mel energies and Mel-Frequency Cepstral Coefficients (MFCC);

• the resolution of the extracted features;

• the CNN topology;

• the CNN quantization level.

The vast design space resulting from all their possible combinations cannot, in general, be fully

explored. In this thesis, we present a design flow to efficiently address the design of platform-

specific applications, considering the KWS reference use case and targeting deployment on

a tiny Micro-Controller Unit (MCU). Our proposed strategy allows to reach near-optimal so-

lutions based on the evaluation of a restricted number of network candidates. The backbone

of optimization tools is provided by the ALOHA framework, which is the result of a research

project with several contributing partners, aiming to facilitate the design and deployment of

efficient, yet accurate, CNN models on a desired target embedded platform [96]. Based on a

combined effort with the research team of Santer Reply SpA, we defined an efficient design

flow combining the tools in ALOHA, able to:
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• consider target-awareness: predicting the effects of the different design choices on target-

dependent metrics such as latency, footprint, or energy consumption, based on a model-

based evaluation tool whose estimations are included in the optimization process;

• enable the combined cross-exploration of the data pre-processing, the CNN topology, and

the quantization, as the combination of these design choices impacts the classification

accuracy and the hardware efficiency.

Rather than in the introduction of one specific tool, the contribution analyzed in this chap-

ter lies in the definition of an effective strategy, based on an HW-NAS approach, to exploit

the feedback provided by the set of available evaluation tools and define a restricted set of

network architectures to which the most time-consuming refinement steps should be applied.

Nonetheless, some of the tools were specifically extended to provide the results disclosed in

this chapter, as is detailed in the description of Figure 3.2.

Based on the design effort, we define two different versions of the design flow. The first one

implements a fast selection procedure, detecting at-least-sub-optimal solutions with a limited

exploration time. The second one involves a more precise characterization phase considering

the accuracy drop connected to quantization: we refer to it as accurate selection.

In the following, after a brief description of the reference platform, we start with a general

overview of the ALOHA framework, provided in Section 3.1, introducing the tools available for

network optimization and performance evaluation. The proposed design strategy, configured

as the fast and accurate implementations of our hardware-aware CNN selection procedure, is

described in Section 3.2. Finally, experimental results are presented in Section 3.3. As most

of the state-of-the-art works, the classification task refers to the Google Speech Commands

dataset [95], and involves 10 of the 35 classes provided: ”Yes”, ”No”, ”Up”, ”Down”, ”Left”,

”Right”, ”On”, ”Off”, ”Stop” and ”Go”, plus the additional classes ”silence” and ”unknown”.

SensorTile

As an example target of our design-flow application, we consider a tiny microcontroller plat-

form, developed by STMicroelectronics: the SensorTile. It is an IoT module, equipped with

a digital microphone, and embedding an 80 MHz ARM Cortex-M4 32-bit low-power micro-
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Figure 3.2: Selection procedure for target-oriented CNN design exploiting the ALOHA frame-

work. The main stages of the evaluation procedure are depicted as white boxes, whereas the

required inputs to the various stages of the exploration are represented as grey boxes. Yellow

boxes represent the dataset management utilities, whereas green boxes represent the tools

available on the framework for the evaluation of the candidate network models. We high-

lighted in red the tools specifically extended to enable the exploration described in the follow-

ing sections.

controller, accessing a 96kB SRAM, and 1MB FLASH memories, posing strict storage con-

straints. The system architecture exploits a Real-Time lightweight Operating System (RTOS),

providing support for multi-threading, and scheduling of the different application tasks on

defined timings. For efficient CNN execution, we relied on the CMSIS-NN library [34], specif-

ically developed to target this family of processors.
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3.1 ALOHA CNN design flow

The ALOHA framework exploits NAS to address CNN design as an iterative selection process.

Figure 3.2 depicts an overview of the framework organization. The optimization process starts

from the following list of inputs:

• a reference dataset - a collection of data to be manipulated with the desired set of pre-

processing operations;

• a platform description - defining the hardware resources, exploited to obtain reliable

hardware-related performance metrics;

• a set of constraints - defined based on the platform’s description and the application

requirements and translated into a maximum inference latency and memory footprint;

• a design space definition - a set of CNN topologies and operands to be explored.

The design flow is configured as a Selection Procedure which considers the set of design con-

straints and the definition of the reference design space to search for the optimal CNN can-

didate, identified based on several iterations of refinement sub-steps. It is served by a Dataset

management utility, selecting for the different training actions the pre-processing and data-

level transformations to the reference dataset, which defines the CNN-application task. More-

over, the Selection Procedure relies on a set of Evaluation tools to accurately compare the design

points with each other based on the estimation of the most relevant metrics.

In the following, we outline in more detail the features of the tool flow components.

3.1.1 Dataset Management Utility

TheALOHA tool flow enables the customization of the data pre-processing operations accord-

ing to the application’s requirements [97], as showed in the Dataset management column of

Figure 3.2. In detail, it describes as a plug-in each transformation or pre-processing operator

which can be applied to the data, based on the user definition. The plug-ins can be treated

independently and arbitrarily connected to others into a pre-processing pipeline, which can

be applied at sample level, or batch level. For the KWS use case, the pre-processing plug-ins
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include the feature-extraction functions applied to the audio samples, combined with several

augmentation plug-ins, like random time shifts, random noise addition, random pitch, and ran-

dom speed.

3.1.2 Selection Procedure

The selection procedure is described in the central column of Figure 3.2. It requires the definition

of a reference Design Space, and possible design Constraints, resulting from the performance

requirements of the application, or the resources available on the target hardware.

The constraints definition induces a Design space pruning to identify a reduced pool of

eligible near-optimal CNN topologies. This step exploits a Genetic Algorithm (GA) to surf the

search space, ranking and refining the candidate populations of CNNs. As the exploration

includes a big number of design points to be compared, their accuracy is assessed at this stage

using an efficient one-shot training utility, the Once-for-All (OFA) [59], whereas the hardware

metrics are estimated based on a target-aware Latency/ energy/ footprint evaluation tool.

Finally, a refinement phase is performed on the pruned pool of design points, to precisely

assess their accuracy with a detailed training and a quantization step, reducing their memory

footprint: one or more CNN architectures can be selected for Deployment.

The OFA training

The one-shot training enables efficient NAS over large design spaces. As anticipated in Sec-

tion 2.2.3, OFA [59] allows describing the search space as a single SuperNetwork and the design

points as all its possible subnetworks. All the models in the design space are thus trained with

a single training procedure, requiring a reasonable amount of time, as we will further discuss

in Section 3.3.1. The subnetworks are optimized through weight sharing, starting from those

having the highest number of parameters, and finally adjusting the accuracy of the smallest

ones. This is achieved by considering elastic parameters, such as the kernel size, network’s

depth, and width. The accuracy of each design point can be assessed by just performing in-

ference over the validation set, which is significantly less time-consuming than repeating an

independent training for each design point.
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The genetic algorithm

TheGA provides a search strategy, selecting populations of design points satisfying the search

criteria and updating them. Admittance into the eligible population is evaluated based on

accuracy, latency, memory, and energy estimations. The new generations are obtained as the

composition of themost accurate points evaluated up to that point, and of new networkmodels

randomly obtained with mutations on the parameters of those most promising points. In this

work, we consider flexible and independent mutations involving the pre-processing pipeline,

the input resolution, the kernel size, the number of convolutional layers, and their width. Thus,

the search is guided to the selection of the most suitable candidate points, having the highest

validation accuracy within the defined constraints.

3.1.3 Evaluation tools

The right column of Figure 3.2 lists the Evaluation tools available for the pruning and refine-

ment phases.

The Latency estimation tool

The Latency estimation tool enables hardware-aware performance estimation based on the

CNN’s parameters and the target platform description. For the NAS targeting SensorTile pre-

sented in this Chapter, inference time is evaluated exploiting a simple Roofline-based [79]

model, shown in Figure 3.3. The main concepts of the Roofline model are recalled in Sec-

tion 4.1.3. For the SensorTile, we assessed two distinct performance roofs, representing the

maximum achievable performance for convolutional and fully connected operands, set respec-

tively to 0.64 ops/cycle, and 0.3 ops/cycle. This model enables latency estimations having an

average 25% error, evaluated on a set of 450 common convolutional layers, and 60 fully con-

nected layers, in comparison to direct measurements.

The tool considers the impact of the different quantization levels on the memory footprint,

evaluated assuming a double buffer mechanism for the activations. While the metrics consid-

ered in this Chapter do not include energy consumption, a more detailed discussion on the

topic of platform-aware performance modeling will be explored in Chapter 4.
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The Detailed training engine

TheDetailed training engine allows reaching higher accuracy values than the one-shot training,

thanks to the possibility to exploit data augmentation techniques, as supported by the Dataset

management plug-ins, although requiring a longer time. It is thus exploited in the refinement

phase and applied to a limited set of candidate points. It accepts network models in the ONNX

(Open Neural Network Exchange) format [98], and can be exploited to further improve the

accuracy of pre-trained models [99].

The quantization engine

The Quantization engine is based on the NEMO (NEural Minimization for pytOrch) frame-

work [100], relying on PACT (Parameterized Clipping Activations) quantization [43], whose

main concepts were anticipated in Section 2.2.1. To allow quantized representation for the

activations and not only the weights, in the resulting network model some operators, such as

Batch Normalization (BN) and ReLU, are replaced respectively with a sequence of Mul/Add

and Mul/Div/Clip operators.
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3.1.4 Deployment

Finally, ALOHA provides a target-oriented Code generation tool, to automatically obtain effi-

cient and fast deployment. The tool consists of a Python script generating, from a network

model in ONNX format, an intermediate generic representation of NN operators and pre-

processing functions, which is finally translated into a C implementation exploiting the spe-

cific target-compliant functions, providing the source code for the inference execution as well

as the appropriate arrangement of the parameters. In this chapter, we exploited generation tar-

geting SensorTile, based on the CMSIS-NN library [34], slightly modified to efficiently handle

the quantized models produced by the quantization tool.

3.2 CNN selection procedure implementation

In the following, we present our proposed efficient design exploration strategy, configured as

a CNN selection procedure, based on the ALOHA tools described in Section 3.1. It allows us to

treat the network topology, the pre-processing scheme, and the quantization level as random

variables during the evolution search. The motivation for the combined feature extraction and

topology exploration is further explored in Section 3.3.2. We present two different versions

of the selection procedure, detailing the general overview provided in the central column of

Figure 3.2. We start from a fast and simple one, whose overview is provided in Figure 3.4a and

results in an accurate and efficient, but possibly sub-optimal, selection, obtained with a limited

design time. Finally, we describe a more complex and accurate version, shown in Figure 3.4b,

relying on a more detailed performance evaluation to improve the selection quality.

3.2.1 Fast implementation

The Fast implementation of our network selection procedure is defined in Algorithm 1. The

inputs are represented by a set PP of pre-processing pipelines and a set of hardware con-

straints, respectively defining the design space of feature extracting functions and spectrum

resolutions, and the limits to memory footprint and execution time, according to the platform

specifications.
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Figure 3.4: Design steps to be performed in the Design pruning and Training refinement stages

(central column of Figure 3.2), according to the a) fast and b) accurate implementations of the

CNN selection procedure.

28



In Step 1, the one-shot training of the SuperNetwork architecture, SN , through the OFA

utility [59] defines a design space N of candidate points. A restricted set denoted as N∗c
results from the application, in Step 2, of the optional set of constraints: admittance into N∗c
is conditioned by the performance evaluation, where quantization up to 4-bit representation

is considered for weights and activations independently, to verify the compliance with the

maximum allowed memory footprint.

In Step 3, the GA is executed. We consider populationsmade up of 100 networkmodels, sat-

isfying the hardware constraints, and evolving forG1=20 generations. The composition of the

new generation is obtained as the 25 most accurate network architectures of the previous one,

50 new candidate design points obtained through random mutation of those best-performing

design points, and 25 resulting from parameters crossover. The possible mutations involve the

network topology, the input resolution, and the feature extraction. The performance evalua-

tion in this step is based on the one-shot training accuracy.

In Step 4 the optimal model is selected: the simplest design choice results in the selection

of the most accurate design point in the last generation explored. Alternatively, the one-shot

accuracy can be refined with a sequence of evaluation actions, repeated iter times:

• the last generation AG is ordered based on the predicted classification accuracy (during

the first iteration, such value matches the one-shot accuracy);

• themost accurate CNN architecture is selected for 100 epochs of Detailed training, where

data augmentation is applied to reduce the overfitting effect;

• the CNN architecture is quantized according to the selected quantization policy, and

retrained for 100 epochs to reduce the accuracy drop;

• retraining gain and quantization drop are evaluated and exploited to improve the pre-

dicted accuracy of the architectures in AG.

The user can define the number iter of iterations, which is most suitable to the effort and

compute time that he is willing to dedicate to the selection flow. Values of iter different than 1

also require updating the accuracy gain and quantization drop exploited to obtain the predicted

accuracy. To provide some examples, gain and drop can be updated by: 1) considering the

29



Algorithm 1: Fast CNN Architecture selection

Input: PP (H,W,AudioProc), SN, hw(Mem,Texe)
Result: CNN architecture a
Step 1. OFA training;
for i ∈ [1, p] do

OFA train(SN , PPi);

N = {N(PP1), ..., N(PPp)};
Step 2. Population initialization;
N∗c = {ni| (Mem*(ni),Texe(ni)) < hw(Mem,Texe)};
A1 = {n1, ..., n100} with ni ∈ N∗c;
Step 3. GA in HW-aware search space N∗c;
for i ∈ [1, G] do

Evolution Search(Ai, N∗c);
AG;

Step 4. Quantization drop evaluation;
for i ∈ [1, iter] do

Order(AG, Accuracy);

Detailed train(best(AG));

g(PPi) = Evaluate Gain;

Quantization((n, quant));
d(PPi) = Evaluate Drop;

Adjust accuracy(AG, g(PPi), d(PPi));

a = best(AG);
Step 5. Refinement for Accuracy;
return a

values evaluated for the design point with the closest memory footprint; 2) considering an

average with the previously evaluated values; 3) considering the last evaluated value.

After the last iteration, Step 5 performs a final refinement on the selected architecture,

which can be preceded by the exploration of the optimal learning rate and batch size.

3.2.2 Accurate Implementation

The fast procedure introduces the estimation of the effects of quantization on the model’s

accuracy only during the final selection process. To remedy this flaw, we also developed a

more accurate version, described in Algorithm 2.

In this case, the population initialization in Step 2 defines the constrained search spaceNc

considering only quantization up to 8 bit, which is the precision targeted by the CMSIS library

and typically has very little impact on the network’s accuracy. The first run of the GA in Step

3 is exploited as a preliminary step for a more reliable accuracy evaluation, considering refine-
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ment with the detailed training and the quantization effect. Following the general assumption

that a network with a higher number of parameters can benefit more from the training proce-

dure, we select as the most adequate design points to investigate these effects the CNNs (one

for each of the pre-processing pipelines) belonging to AG1 and having an accuracy within one

percentage point from the best one, and the biggest footprint: this analysis is exploited as a

prediction model for the networks requiring more aggressive quantization to fit the memory

constraint and be included in the search.

Therefore, the retraining gain and quantization drop are evaluated in Step 4. In this im-

plementation, the training time on the Detailed engine has a high impact on the overall ex-

ploration time. To limit it, we exploit a static augmentation of the training dataset, reducing

the time dedicated to pre-processing operations and required to obtain different augmentation

effects at each epoch: multiple copies of the dataset, enforcing different random levels of data

augmentation, are created, saved and made available for successive training procedures. We

found that such a solution does not impact the final accuracy.

In Step 5, the GA is executed for a second time, starting from the last generation AG1 ,

produced in Step 3, and including in the new search space, N∗c, the possibility to perform

quantization up to 4 bits. At this point, the ranking of the architectures based on their predicted

accuracy takes into account the effects evaluated in Step 4.

After G2=20 generations, the most accurate model, associated with its pre-processing and

quantization scheme, is chosen as the optimal selection. Step 6 represents the final refinement

phase.

3.2.3 Selection time

The required exploration time for the described selection procedures is quantified in Table 3.1,

listing the operations performed according to the fast and accurate implementations, based

on measurements performed on NVIDIA Tesla T4, exploited for the one-shot training, and on

NVIDIA Tesla P100. The exploration time depends on the search parameters, more specifically

on the number of different pre-processing pipelines (|PP |) and quantization levels (Q) con-

sidered, and on the number of refinement steps performed until selection (iter). We report an

estimation for each table entry.
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Algorithm 2: Accurate CNN Architecture selection

Input: PP (H,W,AudioProc), SN, hw(Mem,Texe)
Result: CNN architecture a
Step 1. OFA train;
for i ∈ [1, p] do

OFA train(SN , PPi);

N = {N(PP1), ..., N(PPp)};
Step 2. Population initialization;
Nc = {ni| (Mem(ni),Texe(ni)) < hw(Mem,Texe)};
A1 = {n1, ..., n100} with ni ∈ Nc;

Step 3. GA in HW-aware search space Nc;

for i ∈ [1, G1] do
Evolution Search(Ai, Nc);

AG1 ;

Step 4. Quantization drop evaluation;
D = {nPP1 , ..., nPPp)} where nPPi has biggest footprint in AG1 ;

for n ∈ D do

Detailed train(n);
g(PPi) = Evaluate Gain;

Quantization(n);
d(PPi) = Evaluate Drop ={dx8w8, dx4w8, dx8w4, dx4w4};

N∗c = {ni| (Mem*(ni),Texe(ni)) < hw(Mem,Texe)};
A′

1 = AG1 ;

Step 5. GA in HW aware Search Space N∗c;
for i ∈ [1, G2] do

Adjust accuracy(A′
i, g(PP ), d(PP ));

Evolution Search(Ai, N∗c);
a = best(A′

G2
);

Step 6. Refinement for Accuracy;
return a

For the use-cases presented in the following, where |PP | = 6 and Q = 4, the Gain/

Drop evaluation requires 51 hours in the accurate implementation, against 3h 30 needed in

the fast one with an iter choice of 1, which does not scale with the number of pipelines and

quantization levels explored. Furthermore, we also mean to emphasize the substantial savings

deriving from the CNN topology/ pre-processing co-exploration. A separate evaluation would

in effect require repeating the topology GA search on multiple design spaces, as many times

as is the number of pipelines considered, or assuming in advance a given scheme, neglecting

such an important design variable. This would require 36 hours of GA exploration, against the

6 hours needed by the fast implementation. Thus, the fast implementation allows a factor PP

reduction of the required exploration time after the one-shot training.
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Step Execution Time
Operation Accurate Fast Accurate Fast

Selection Selection Selection Selection

OFA train 1 1 2h 30× |PP | 2h 30× |PP |
GA 3 3 6h 6h

Gain eval 4 4 1h 30× |PP | 1h 30 × iter

Drop eval 4 4 2h× Q × |PP | 2h × iter

GA 5 - 6h -
Refinement 6 5 5h 5h

Table 3.1: Step by step required exploration time for the accurate and fast selection procedure,

where the OFA training is executed on NVIDIA Tesla T4, while the GA exploration and the

detailed training are executed on NVIDIA Tesla P100.

3.3 Experimental Results

We describe in the following the experimental results deriving from the application of the se-

lection procedure, proposed as thesis contribution, to the design of a KWS system, considering

two different deployment scenarios defined based on the state of the art [61, 62], enabling a

direct comparison with the literature dealing with NAS for the design of KWS applications.

3.3.1 Search Space definition

The composition of the search space is summarized in Table 3.2. Each CNN design point

presents either 1 or 2 convolutional stages, separated by a MaxPooling layer and consisting in

1 to Max Depth convolutional layers. Column 3 lists the possible channel width values, while

Column 4 summarizes the considered kernel sizes, both set independently for each convolu-

tional layer. The possible feature size within each stage is defined in column 5, while column

6 reports the stage’s maximum depth. All the network configurations present a final fully

connected stage.

As six pre-processing pipelines are considered, as described in Section 3.3.2, the training

process at Step 1 of Algorithms 1 and 2 results in a set of over 330000 CNNs available for

exploration, corresponding to all the combination of parameters in Table 3.2 and the pre-
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Stage Operator
Output Kernel Input Max
Features Size Size Depth

0 Conv 16/32/64 3x3/5x5 40x32/32x16/16x8 1
1 Conv 16/32/64 3x3/5x5 20x16/16x8/8x4 5

Table 3.2: Parameters of the CNN architectures which constitute the Design Space for NAS

targeting SensorTile.

processing schemes.

3.3.2 Preliminary Pre-processing exploration

We started our exploration process by estimating the impact of adapting the pre-processing

choice to the hardware target, considering the variability of feature preparation choices re-

ported in the literature. We thus compared different feature-extracting functions and the re-

sulting spectrogram’s resolutions. Figure 3.5 shows the output of an evolution search con-

ducted on the search space defined in Section 3.3.1, based on a hardware-aware search strat-

egy evolving by optimizing the design points to be Pareto optimal in terms of classification

accuracy and inference time on the target platform, estimated with the latency evaluation tool

described in Section 3.1. We repeated the search process on six distinct search spaces, each

corresponding to a pre-processing scheme choice, exploiting either Mel-spectrogram orMFCC

as feature-extracting functions and resulting in 16x8, 32x16, or 40x32 input resolution. Each

curve in the figure represents the Pareto fronts obtained after 20 generations, resulting from

the different choices of the input resolution and selected feature extracting function. As can

be derived from the plot, the overall Pareto front would be made up of design points exploiting

different pre-processing schemes: for example, optimal points in the left region are trained on

16x8 Mel-spectrograms, while in the rightmost region of the plot the higher accuracy values

are reached thanks to 40x32 spectrograms.

Furthermore, this design choice impacts the overall system performance, as summarized

in Table 3.3, reporting the execution time of online pre-processing, measured on the target

platform. The measured values do not include the evaluation time of the constant parameters

(e.g. the coefficients of the Mel filtering banks, and the DCT matrix), which can be computed
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Figure 3.5: Comparison of the Pareto optimal design points resulting from NAS based on dis-

tinct evolution searches considering pre-processing schemes based on Mel and MFCC, with

input resolutions of 16x8, 32x16, and 40x32.

once at first execution, and memorized for the successive iterations of the audio processing.

Pre-estimating themost suitable pre-processing choice for the target task is thus not trivial.

Due to this reason, we consider in the following its co-exploration with the CNN topology and

quantization scheme.

3.3.3 Use-case 1

Design Space Constraints Constraints Reference

MOPS: 20 [61], referred to as
as defined in Table 3.2 Memory 200kB Medium region

Latency: 390ms obtained based on
model in Figure 3.3

Table 3.4: Summary of search parameters for NAS targeting use-case 1.

We first considered as a reference the Medium size region defined in [61], as summarized in

Table 3.4, considering a maximum memory footprint of 200 kB and a maximum complexity
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Pre-processing time

Mel 16x8 46 ms
MFCC 16x8 48 ms
Mel 32x16 94 ms

MFCC 32x16 98 ms
Mel 40x32 120 ms

MFCC 40x32 132 ms

Table 3.3: Measured execution time for the considered preprocessing schemes on ST Sensor-

Tile.
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Figure 3.6: Fast selection output in 200kB - 20 MOPS search space. The selected model is

highlighted, and its final accuracy upon detailed training is reported.
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Network model Accuracy Latency MOPS Memory

CNN M [61] 92.2% 86.9% 86.5% 99.7%
fast selection 94% 95.8% 86.8% 60%

Table 3.5: Performance metrics summary for the selected design point and the reference state-

of-the-art network, in the 200kB-20MOPS region, expressed as a percentage of the constraint’s

value.

of 20 MOPS, translated into a 390ms latency constraint. The output of the fast selection pro-

cess on the design space resulting from the constraints applied to the search space defined in

Section 3.3.1 is reported in Figure 3.6. Every bullet represents a design point selected by the

GA to belong to the last generation, and it is placed based on its estimated latency and its

one-shot accuracy. The highlighted point represents the selection resulting from an iter value

equal to 1. The selection output also includes the pre-processing and quantization scheme:

8-bit representation for both weights and activations, and Mel-based pre-processing, resulting

in 32x16 input spectrograms. The selected network model is finally retrained on the Detailed

engine for 100 epochs, exploiting data augmentation through random shifts and random noise

addition, and then quantized, resulting in the refined accuracy reported in the plot. Based on

our hyper-parameters exploration, the training exploits a learning rate value lr = 0.025, batch

size bs = 16, and SGD optimizer.

The co-exploration approach allows us to improve the efficiency of the design process,

since, as shown in Figure 3.5, the pre-processing scheme’s impact on performance is deeply

connected with the search constraints, and consequently to the CNN architecture to be de-

ployed. Thus, as anticipated in section 3.2.3, performing a dedicated preliminary analysis is

not only time-consuming but also very complex, especially when multiple constraints need

to be considered. As shown in Figure 3.9, the selected architecture reaches 94% accuracy, im-

proving the state-of-the-art CNN model obtained in [61] by up to 1.8% with 40% lower storage

requirements, while the number of OPS is increased by 0.3% and results in a 10% higher la-

tency. The exploration summary is reported in Table 3.5. The search process requires around

30 hours, considering 15 hours of one-shot training executed on NVIDIA Tesla T4 GPU, while

the GA and the Detailed training were executed on NVIDIA Tesla P100 GPU.

37



80 100 120 140 160 180 200 220 240 260

88

89

90

91

92

93

Latency ms

A
c
c
u
r
a
c
y

fast design points

fast selection iter=1

fast selection iter=2

Figure 3.7: CNN architecture fast selection output in 75.7kB - 13.6 MOPS search space. The

network models selected based on different choices for the iter value are highlighted.

3.3.4 Use-case 2.

Design Space Constraints Constraints Reference

MOPS: 13.6 [62], parameters of
as defined in Table 3.2 Memory 75.7kB the selected network

Latency: 265ms obtained based on
model in Figure 3.3

Table 3.6: Summary of search parameters for NAS targeting use-case 2.

As a second use-case, we considered as a reference the work of [62], exploiting the number

of OPS and the storage requirements stated for their presented network as the constraints

to define the search space. The search parameters are summarized in Table 3.6. The refer-

ence CNN model achieves 95.55% accuracy, while its quantized version, exploiting mixed data

representation (2.91 bits to represent activations and 2.51 bits to represent weights) reaches

93.76% accuracy.

Figure 3.7 shows the output of the fast selection procedure, reporting two possible selec-

tions corresponding to iter = 1 and iter = 2 values. As can be derived from the plot, the
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(a) Pareto plot of the pruned design space after Step 3. The model exploited for the accuracy gain/drop

evaluation, on a pipeline based on Mel with 32x16 input resolution, is highlighted.
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(b) Pareto plot of the pruned design space after Step 5. The comparison between the predicted and

training accuracy on the final selection is highlighted.

Figure 3.8: Accurate selection procedure in 75.7kB - 13.6 MOPS search space.
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second one results in a higher accuracy after the refinement process and is referenced as the

fast selection in the following. However, considering the accuracy drop connected to the se-

lected quantization level, we applied to this use-case also the accurate implementation of the

selection procedure. The corresponding results are described in Figure 3.8. In detail, Figure

3.8a represents the Pareto plot of themost accurate design points belonging to the design space

after the preliminary GA run, performed as Step 3 of Algorithm 2, placed according to their

one-shot training accuracy, and their estimated latency. We highlight in the plot the design

point corresponding to the network model exploited for the quantization drop evaluation, in

Step 4, associated with its accuracy projection after the detailed training (performed for 100

epochs exploiting lr = 0.025 and bs = 16). Although only one design point is depicted in the

Figure, corresponding to the pre-processing pipeline based on Mel resulting in 32x16 input

resolution, the same gain/drop evaluation is conducted for each of the pipelines considered.

The output of the last GA run, corresponding to Step 5, is reported in Figure 3.8b. In this

case, the design points are placed according to the accuracy predicted considering the eval-

uated gain/drop corrections. The plot highlights the resulting selection, having the highest

predicted accuracy, and compares it to the one really achieved after the refinement.

Both the fast and accurate procedures select pre-processing based on Mel spectrograms of

32x16 resolution, while they suggest different quantization policies: the fast implementation

selects a topology requiring 4-bit representation for weights, whereas the accurate selection

can accommodate 8-bit quantization for all datatypes. Figure 3.10 and Table 3.7 report the

comparison with the CNN proposed in [62]. The refined accurate selection, after additional

100 refinement training epochs in Step 6, results in an architecture reaching an accuracy 0.14%

higher than the one of the quantized version of the reference state-of-the-art architecture,

although having higher storage requirements, while neither of the selection procedures allows

achieving the accuracy of the full precision model.

Anyway, the fast procedure allows selecting an architecture with an accuracy value of only

0.34% points lower than the accurate one, exploiting only 37% of the required exploration time.
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Network model Accuracy Latency MOPS Memory

Full precision [62] 95.55% 100% 100% 100%
Quantized [62] 93.76% 100% 100% 7.8%

accurate selection 93.9% 94.9% 85.9% 95.5%
fast selection 93.46% 98.2% 89.7% 80.2%

Table 3.7: Performance metrics summary for the selected design point and the reference state-

of-the-art network, in the 75.7kB-13.6MOPS region, expressed as a percentage of the constraint

value.
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3.3.5 Selection’s quality assessment.

Here we consider use-case 1 to assess the quality of our design flow, evaluating the accuracy

of the models selected according to the fast and accurate implementations in comparison with

the full exploration of all the design points with detailed training. Figure 3.11 summarizes the

outcome of such an extended exploration, showing the accuracy after one-shot training, aswell

as the predicted and real accuracy after the detailed training exploiting data augmentation, for

each of the design points. As can be noticed, the drop/gain prediction provides sufficiently

precise results. However, due to some inaccuracy of the one-shot evaluation, both the fast and

accurate versions of the design strategy result in the selection of a design point that does not

improve as much as it is expected with the detailed training. Since this is not captured by the

gain/drop evaluation, the accurate selection requires 38% higher inference time, and has 0.3%

lower accuracy than the overall best architecture, highlighted in the plot. However, as shown

in Figure 3.12, referring to the fast implementation, a value of iter = 3 would be sufficient to

find the optimal solution. In this case, the required processing time would slightly increase to

45% of the accurate implementation one, thus still allowing for significant savings.

3.3.6 Closing remarks.

We considered a set of design scenarios for a KWS application, to be deployed on a con-

strained microcontroller, requiring the evaluation of multiple design parameters resulting in

over 330000 CNNs available for exploration. The proposed design procedures allow us to ob-

tain CNN architectures reaching accuracy values competitive with the CNN state-of-the-art

in the KWS field while being specifically tailored for the target platform, thanks to hardware-

aware inference latency predictions. We obtained up to 1.8% accuracy improvement with 40%

lower storage requirements over the best CNN architecture selected in [61] for the 200kB - 20

MOPS Medium region, which exploited 199.4 kB parameters and 17.3 MOPS to reach 92.2%

accuracy. In this best-performing use-case, the presented strategy allows to efficiently narrow

the design space reaching the final selection in around 30 hours.
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Figure 3.11: CNN architecture accurate selection output in 200kB - 20 MOPS search space.

For each design point, the comparison between the predicted accuracy values and the ones

achieved after detailed training is reported. The model selected by the accurate procedure is

highlighted, as well as the optimal one based on the results of the full exploration.
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Figure 3.12: CNN architecture fast selection output in 200kB - 20 MOPS search space. The

highlighted models represent the final selection resulting from an iter value of 1, and of 3,

corresponding to the optimal one evaluated through the full exploration.
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Chapter 4

Hardware-aware performance

estimation: the ALOHA method

Efficient design optimization based on HW-NAS relies on the assumption that an accurate

evaluation of the on-hardware performance can be accessed during the search process, thus

leading to the selection of a nearly optimal CNN architecture for the task at hand. When more

complex heterogeneous and parallel architectures are targeted, simple predictions based on

the Roofline model, such as the ones we exploited in the previous chapter, are not sufficiently

accurate in modeling the deployment. At the same time, measuring the performance of all the

candidate points on the target hardware is often unfeasible and inefficient, given the size of

the search space, an issue becoming even more pressing when the system design includes a

range of possible hardware targets. The literature reports several works exploiting network

design optimization tools based on platform-aware evaluations, but the estimation methods

implemented in these tools are inaccurate ( [49, 63, 101]), or not sufficiently general ( [79, 58,

102, 54, 55, 56, 67, 65]), or their use involves long modeling time and repeated measurements

( [103, 81, 70]).

In this chapter, we present our research effort to provide a common unified method to ad-

dress these issues, implementing platform awareness within automated tools for CNN design.

The presented study was conducted in collaboration with the Leiden Institute of Advanced

Computer Science (LIACS) and resulted in the definition of a unified method for the evalua-

tion of platform-dependent performance metrics of a CNN deployed on the target hardware.
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The presented method is indicated in the following as the ALOHA method, and its definition

represents the main contribution described in this chapter. As the main instrument for the

estimation, we developed a platform-aware evaluation model, described in Section 4.4 and

indicated as ALOHA model, aiming to:

• provide realistic and accurate results: the model is capable of capturing platform-

aware details, depending on the implemented dataflow and the embedded resources,

and impacting the performance, such as the efficiency in exploiting the parallelism en-

abled by the computing units, or the need to repeat some data transfers during inference

execution;

• be flexible: the model captures abstract properties, which can describe different plat-

form structures and is not limited to any specific processing element architectural tem-

plate;

• be modular: the model relies on two components, one describing the resources avail-

able on the platform, and the other the specific deployment strategy resulting from the

selected implementation of CNN layers. As a consequence, different compositions of

these two elements can be exploited to accurately model different scenarios;

• require low development effort: the information required to define the model can be

easily derived from the hardware specifics or a general understanding of the deployment

strategy enforced by the library, without involving a benchmarking phase.

We evaluate the accuracy of our proposed method in comparison with the estimations result-

ing from commonly used alternatives requiring a similar, limited, development effort, showing

a significant improvement. We reference two different target platforms, theNEURAghe accel-

erator, based on a hardware engine implemented on the FPGA and supporting the CPU [32],

and the Jetson TX2 module, a system-on-chip (SoC) integrating CPU and GPU [26], which can

be considered as representatives of the three main classes of common processing elements in

the embedded domain: CPUs, GPUs, and dedicated processing elements. Moreover, we as-

sess the impact of a higher degree of platform awareness on the outcome of a NAS process.

Considering the optimal design of a CNN topology for image classification on the CIFAR-10
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dataset [45] targeting the reference platforms, we compare the selections resulting from ex-

ploiting different hardware-performance estimation methods to evaluate the compliance with

a set of user-defined latency constraints. The NAS predictability is significantly improved by

the proposed ALOHA method, when compared to the considered abstract and easy-to-use

alternatives, resulting in a final design very similar to the one obtained by accessing actual

on-hardware measurements during the search process.

To provide a brief outline of the chapter, we recall in Section 4.1 the background concepts

and definitions of convolution implementation, and performance estimation based on the OPS

count and the Roofline model. After providing a general overview of the proposed ALOHA

method in Section 4.2, in Section 4.3 we introduce the ALOHA model for the platform and

dataflow description, specifically defined to be exploited by our proposed estimation method,

and we provide the example of its implementation for the NEURAghe accelerator and the Jet-

son TX2. In Section 4.4 we describe the ALOHA evaluation procedure, exploiting the ALOHA

model to provide layer-level hardware metrics estimations, while we present the aggregation

module for network-level estimation for sequential and pipelined execution on parallel pro-

cessors in Section 4.5. Finally, the experimental results are presented in Section 4.6.

4.1 Background

4.1.1 The computational tensor of a CNN layer.

A CNN can be represented as a sequence of layers L, applying a specific functionality to trans-

form the input data Xi into the output data Yi [73]. Common CNN operators opi (such as

convolution, MaxPooling, GEMM, ReLU etc. [73]) involve processing the input with a sliding

windowKi, parameterized with weightsWi. An example of a CNNwith layers L = {l1, l2, l3}

is given in Figure 4.1. The most typical execution schedule involves sequential processing of

the CNN layers in |L| computational steps. Given the mismatch between the typical memory

footprint of state-of-the-art CNNs and the local storage resources accessed by the computa-

tional units of most embedded processing platforms, the layer execution involves three main

stages:
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Figure 4.1: CNN

1. the input data Xi and weights Wi are loaded from the global memory into the local

memories of the processor allocated for the layer;

2. the workload of the layer is computed on the allocated processor;

3. the computed data Yi of layer li from the local memories of the allocated processor into

the platform’s global memory;

In this thesis, we represent the data handled during inference execution as tensors T having

the format [T.B, T.C , T.H , T.W ], where T.B, T.C , T.H , T.W represent respectively the

batch size, the number of channels, the height, and the width. We particularly focus on the

processing case where the batch size is equal to 1, which is the most common for embed-

ded inference execution, as required by most real-time applications. We thus omit the T.B

dimension in the notation.

The typical computational workload of a layer can be represented using a set of nested

loops enclosing a simple operation, whose size is defined by the dimensions of tensors Xi

and Yi, as well as the sliding window Ki. We thus represent a generic CNN layer as a

computational tensor, as defined in Listing 4.1. Starting from this general description, the

most common CNN layers can be obtained as shown in Table 4.1, replacing the generic loop

bounds with the values listed in Columns 2 to 8, and including the operation in Column 9 for

the layer in Column 1. The Table can be further extended with new CNN operators. To give

an example, we provide in Listing 4.2 the computational tensor representing the first convo-

lutional layer in Figure 4.1: the number of the output and input features of the layer, OF and

IF , is replaced with their layer-specific values: Y1.C = 512, and X1.C = 128; the height and

width of the output features, FH and FW , is equal to Y1.H = 28, and X1 = 28, whereas the

height and width of the layer sliding window, KH and KW , is replaced by K1.H = 1, and
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Computational tensor boundaries
CNN op BS IF OF FW FH KH KW simple op

Conv X.B X.C Y.C Y.W Y.H K.H K.W MAC
GEMM X.B X.C Y.C X.W X.H 1 1 MAC
ReLU X.B 1 Y.C Y.W Y.H 1 1 max

MaxPool X.B 1 Y.C Y.W Y.H K.H K.W max

Table 4.1: Layer-specific computational tensor parameter

K1.W = 1; the generic operation simple op is configured as a MAC. Finally, the external loop

on batch size BS is omitted, assuming the batch size equal to 1.

1 for batch in range(BS):
2 for o_feat in range(OF):
3 for i_feat in range(IF):
4 for fh in range(FH):
5 for fw in range(FW):
6 for k_y in range(KH):
7 for k_x in range(KW):
8 do simple_op

Listing 4.1: Generic CNN layer computational tensor

1 for o_feat in range(512):
2 for i_feat in range(128):
3 for fh in range(28):
4 for fw in range(28):
5 for k_y in range(1):
6 for k_x in range(1):
7 do MAC

Listing 4.2: Computational tensor of Convolutional layer l1

4.1.2 OPS-based Performance prediction

One common approach to latency estimation in the literature refers to the total number of

OPS required, as in:

tOPS = OPS/AP (4.1)

where the attainable performance AP is considered equal to the peak performance of the

hardware platform, APmax [OPS/s]. The value of OPS is computed as:

OPS =
N∏

n=1

T.dimn ∗#OPS enclosed (4.2)
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where

∏N
n=1 T.dimn is the product of all computational tensor dimensions dimn, n ∈

[1, N ];#OPS enclosed is the number of OPS enclosed in the loops of the layer computational

tensor. To give an example, for the convolutional layer in Listing 4.2 the total number of oper-

ations is evaluated as 512∗128∗28∗28∗1∗1∗2 ≈ 102, 76∗106, where 512∗128∗28∗28∗1∗1 is

the product of the tensor dimensions and 2 indicates that every iteration of the loop performs

two operations: one multiplication and one addition.

4.1.3 Roofline Model

Thewell-known RooflineModel [79] introduces the impact of memory access on the execution

time. It is defined as a curve in the OPS/s vs OPS/byte plane, composed of a horizontal line,

representing peak performance, and a diagonal line with 45°inclination, indicating the band-

width available to off-chip memory. Its use requires the definition of the Operational Intensity,

Int(li), of a given kernel, obtained as the ratio between OPS count and total data transferred:

Int(li) = OPS(li)/Trafficmem(li) (4.3)

For a CNN layer li the size of data transfers can be estimated as:

Trafficmem(li) = Size(Xi) + Size(Wi) + Size(Yi) (4.4)

where Size(Xi), Size(Wi) and Size(Yi) stand for the amount of data (in Bytes) in input data

Xi, weightsWi and output data Yi of layer li. The amount of data in a data tensor T is computed

as:

Size(T ) =
N∏

n=1

T.dimn ∗ sizeof(pixel) (4.5)

where

∏N
n=1 T.dimn is the total number of elements in the data tensor; sizeof(pixel) is

the number of bytes required to store one element of data tensor T .

The operating point in the curve, which is the intersection with the vertical line represent-

ing the kernel’s operational intensity, defines the best-case execution time. Thus, the estima-

tion is based on Equation 4.1, with AP = AProof evaluated as:

AProof = min(APmax, Int ∗ bw) (4.6)

where bw is the bandwidth to the off-chip memory.
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4.2 ALOHA estimation method

In this section, we describe the workflow of the estimation method representing the sec-

ond contribution of this thesis, indicated as ALOHA method
1
. Figure 4.2 provides a general

overview. The list of expected inputs includes:

• a CNN description (ONNX [98] is an example of accepted format);

• a description of the hardware target based on the ALOHA platform model, introduced

in Section 4.3;

• an optional CNN execution configuration, explored in Section 4.5.

CNN

ALOHA

Platform

model

CNN

Execution

configuration

Computational
tensor

generation

Computational
tensor

refinement

Computational
tensor

analysis

ALOHA evaluation procedure

Aggregation module

Schedule 
generation

Metric
aggregation

Layer-level

estimations

Network-

level

estimations

Figure 4.2: ProposedALOHA estimationmethodworkflow. The required inputs to the different

stages are depicted as grey boxes, whereas green boxes represent the single phases of each

stage, as described in Sections 4.4 and 4.5.

The definition of the ALOHA description format, as well as the ALOHA evaluation procedure

and the aggregation module, represent the different elements of the estimation method, and

the main contribution described in this chapter. The estimation process consists of two phases:

• Phase 1: The CNN description and the ALOHA platform model are used by the ALOHA

layer-level evaluation procedure, described in Section 4.4 to:

1
The presented workflow corresponds to the open-source implementation of our ALOHA method, available

at https://gitlab.com/aloha.eu/alohaeval
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– generate a computational tensor for every layer in the CNN, based on its parame-

ters; we indicate this process as Computational tensor generation, described in Sec-

tion 4.4.1;

– refine the computational tensor based on the platform model, setting the correct

order of the loops, defining the position of data transfers, mapping the operations

on the available processing elements, and partitioning them depending on the lim-

its imposed by storage resources. In this way a new platform-aware computational

tensor is obtained for every layer; we refer to this process as Computational tensor

refinement, described in Section 4.4.2;

– analyze the refined tensor to derive an accurate estimation of the metrics under

evaluation; this process is referred to as Computational tensor analysis, described

in Section 4.4.3.

• Phase 2: The estimations provided for single layers are exploited as input to an aggre-

gation module, described in Section 4.5, delivering the final estimation of the platform-

dependent metrics based on the execution schedule.

4.3 ALOHA platform Model

TheRooflinemodel, as well as other simple representations, cannot account for all the details of

the platform and the execution data flow, whichmay have a significant impact on the hardware

performance. In order to capture these characteristics, we have defined a more detailed model,

which is still abstract and easy to generalize. In this section, we describe the main details,

providing two examples in Table 4.2 and Table 4.3, wherewe apply it to the reference platforms,

NEURAghe (see Section 4.3) and Jetson TX2 (see Section 4.3). As long as the vendor provides

complete information regarding the working frequency and achievable performance, the local

storage size, and the communication resources in the documentation, this description scheme

may also be used to model MCU-based platforms. Referring to the example given in Table 4.2

for the description, our platform model is composed of three main elements:
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• Memory resources (Row 2): lists the available on- and off-chip memory blocks and

their size, assigning an ID to each one;

• IO channels (Row 3): lists the available connections that can be used to transfer the

data between the external storage space and the internal memories, associating the cor-

responding bandwidth and assigning an ID;

• Processors (Rows 4 to 16): lists the set of processors available on the heterogenous

platform and sharing the CNN workload. For the sake of brevity, in Table 4.2 and Table

4.3, we provide full processor description only for the platform accelerators.

For every processor in our proposed platform model, we provide two main elements: a

processor description and a computational model, describing how the computational workload

is distributed on the resources specified in the platformmodel. The processor description (Rows

4 to 8 and Rows 15 to 16) consists of:

• General characteristics (Row 5 and Row 16): it assigns a unique processor identifier

(id), and lists the core type and sub-type, top performance, and frequency.

• Parallelism (Row 6): it describes the available parallelism as an n-dimensional grid,

considering accelerators are commonly implemented as multi-dimensional structures of

processing elements. The user must list n parallel factors corresponding to the hierarchy

levels organizing the processing element structures in the platform.

• Power (Row 7): it provides optional information about the power consumption of the

processor, reporting the corresponding value in the active and idle state, and an energy

cost per bit accessed in the global memory.

• Overhead: (Row 8) it can optionally account for the programming cycles required to

start computations on the given processor.

The computational model (Rows 9 to 14) defines the following parameters, referring to the

generic layer computational tensor, given in Listing 4.1:

• Loop nesting order and usage (Row 10): specifies the loops’ execution order on the

specified processor.
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• Data transfers positioning (Row 11): specifies the exact positions of data transfers in

the computational tensor. As discussed in [104], this parameter can significantly affect

the layer latency and energy consumption.

• IO channels assignment (Row 12): assigns the IO channels to the transfer input data,

output data, and weights.

• Memory assignment (Row 13): specifies the assignment of the platform’s local memo-

ries to input data, output data, and weights. This parameter is used to model the impact

of limited memory resources on the layer execution, causing certain loops to be tiled,

partitioned in portions that can be handled with the data fitting those memories. To

specify which of the loops in the computational tensor is affected, we assign it the lim-

iting memory identifier.

• Parallelism levels assignment (Row 14): describes how the different degrees of par-

allelism available are used to partially unroll the convolution loops, associating a com-

putational tensor loop level with each dimension of the parallel computational grid of

the platform accelerator.

Example 1: describing NEURAghe

NEURAghe is a convolution accelerator that can be implemented with different parameteri-

zation, but we consider in this thesis a setup deployed on Ultra96 board by Avnet, embedding

a Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 and a RAM Micron 2 GB LPDDR4 Memory.

The memory subsystem in NEURAghe includes four storage spaces, defined in the Memory

Resources slot of Table 4.2. The memories specified as memory 0, memory 1 and memory 2 are

local to the hardware convolution accelerator available on the platform and are respectively

destined to weights, activation data, and computed results, while the last one, specified as

memory 3 is the off-chip memory, shared between the hardware accelerator and the general-

purpose processor. The data transfers between the global and local memories are handled

through three separate DMA channels, transferring 8 B/cycle, described in Table 4.2 as IO

channel 0 and 1, operating at 90 MHz, and IO channel 2 operating at 180 MHz.
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NEURAghe Platform

ID Size
Memory 0 73728 B

resources 1 163840 B

2 92160 B

3 2097152 B

ID Bandwidth (BW)
IO 0 0.72 GB/s

channels 1 0.72 GB/s

2 2.88 GB/s

Processor description

id 0

General type/sub-type accelerator/FPGA engine

characteristics top performance 129.6 GOPs/s

frequency 0.18 GHz

Level Dimension Description
Parallelism level 0 9 MAC matrix has

level 1 10 9*10 MACs,

level 2 4 4 pixels/cycle

active power 3.6W

Power idle power 1.8W

bit access to DDR 91pJ

Overhead 0.1 ms

Computational Model

Loop iterating on Assigned order
OF level 1

Loop nesting IF level 0

order FH level 2

and usage FW level 3

KH level 4

KW level 5

Transfer type at loop level
Data transfers Input Features level 1

positioning Output Features level 0

Weights level 1

Transfer type to channel ID
IO channel Input Features 0

assignment Output Features 1

Weights 2

Data type to memory ID limited loop
Memory Input Features 0 FH (Loop level 2)

assignment Output Features 1 OF (Loop level 1)

Weights 2 OF (Loop level 1)

Level to loop iterator
Parallelism 0 IF (Loop level 0)

levels 1 OF (Loop level 1)

assignment 2 FW (Loop level 3)

Processor description

id 1

General type/sub-type CPU/Arm Cortex-A53

characteristics top performance 9,6 GOPs/s

frequency 1,2 GHz

…

Table 4.2: ALOHA platform model for NEURAghe
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Jetson Platform

ID Size
Memory 0 8589934592 B

resources 1 131072 B

2 524288 B

ID Bandwidth (BW)
IO 0 20 GB/s

channels 1 20 GB/s

2 35 GB/s

Processor description

id 0

General type/sub-type accelerator/GPU

characteristics top performance 666.6 GOPs/s

frequency 1.3 GHz

Level Dimension Description
Parallelism level 0 2 MAC matrix contains

level 1 16 x 2 SM x 16 blocks

level 2 128 per SM x 128 cores

Power active power 15W

Overhead 0.01 ms

Computational Model

Loop iterating on Assigned order
OF level 0

Loop nesting IF level 1

order FH level 2

and usage FW level 3

KH level 4

KW level 5

Transfer type at loop level
Data transfers Input Features level 0

positioning Output Features level 0

Weights level 0

Transfer type to channel ID
IO channel Input Features 1

assignment Output Features 0

Weights 0

Data type to memory ID limited loop
Memory Input Features 1 OF (Loop level 0)

assignment Output Features 0 OF (Loop level 0)

Weights 0 OF (Loop level 0)

Level to loop iterator
Parallelism 0 IF (Loop level 1)

levels assignment 1 OF (Loop level 0)

2 FH, FW (Loop level 2, 3)

Processor description

id 1

General type/sub-type CPU/ARM Cortex A-57

characteristics top performance 16.28 GOPs/s

frequency 2.35 GHz

…

Table 4.3: ALOHA platform model for Jetson TX2
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The computational resources consist of an ARM Cortex-a53 core exploited as a general-

purpose processor and a convolution-specific FPGA-based accelerator. Table 4.2 only describes

the hardware accelerator.

The considered configuration features a matrix of 90 MAC modules, distributed over 9

parallel input channels and 10 parallel output channels, working at 180 MHz clock frequency.

Moreover, each MAC module in NEURAghe is designed to process four neighboring pixels in

an input row per cycle. Table 4.2 models its computing resources by defining, in the Paral-

lelism field, a level0 and level1 parallelism, respectively set to 9 and 10 and representing the

dimensions of the computational grid, and a level2 parallelism, set to 4 and corresponding to

the number of pixels processed per cycle. Thus the platform is able to deliver a peak perfor-

mance of 129,6 GOPS/s for 16-bit CNN data precision. The platform power consumption was

assessed using the Xilinx Power Estimator tool [105], obtaining Pact=3,6W for the active state,

and Pidle=1,8W for the idle state. Moreover, we have accounted for DDR energy consumption.

To this aim, we have used the DRAMpower tool [106], fed with transaction traces obtained by

RTL simulation. We obtained a per-bit energy contribution ofEnbit=91 pJ/bit for a 4GbMicron

LPDDR3 memory. A typical CNN execution data flow on the platform is described in the Com-

putational model field. Parallelism levels are linked to their corresponding loop levels in the

Parallelism level assignment section, by referring to the specific nesting order implemented in

the platform, and defined in the Loop nesting order and usage section. The level0 parallelism is

exploited to unroll computations over IFs, while the level1 parallelism, defines unrolling over

OFs and level2 parallelism allows unroll by a factor of 4 the X loop. The Memory assignment

section defines how CNN data is stored in each of the storage spaces available, and how their

limited size affects the execution dataflow of a CNN layer.

Example 2: describing Jetson

Jetson TX2 [26] is a GPU-based platform from NVIDIA. The memory system includes three

defined storage spaces, listed in Table 4.3 as memory 0, memory 1, and memory 2, indicating

a shared 1.866-GHz DRAM memory, directly accessed by all platform processors, a local GPU

memory of total size 128 KB, and a shared L2 cache with a configurable size of 512 KB to 2

MB. Separate data transfer channels, reported in Table 4.3 as IO channels 0, 1, 2 are available
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for communications between the global memory and other platform memories. The computa-

tional resources of the Jetson TX2 platform are constituted by an NVIDIA Pascal GPU, a quad-

core Dual-Core NVIDIA Denver 2 64-Bit CPU, and a quad-Core ARM Cortex-A57 MPCore.

For brevity reasons, we only provide in Table 4.3 the full description of the platform GPU. The

GPU processor of the NVIDIA Jetson TX2 has two StreamingMultiprocessors (SMs), each hav-

ing 128 1.3-GHz cores and capable of running 2048 threads, organized in 2048/128=16 thread

blocks. These resources are described in the Parallelism field of Table 4.3 as three parallelism

levels: �extitlevel 0 having size 2 and referring to the number of SMs, a level 1 having size 16

and referring to the number of blocks available for each SM, and a level 2 having size 128 and

referring to the number of threads executed per block. The GPU reaches a peak performance

of 666.6 GOPs/s for FP32 CNN data precision (see field General characteristics in Table 4.3).

CNN inference is typically performed using the TensorRT DL framework [107], provided by

NVIDIAs as an official DL framework for the platform. We refer to the TensorRT implementa-

tion to describe how the parallelism is exploited and report the information in the Loop nesting

order and usage field of Table 4.3. As specified in theMemory assignment field, the output data

and the weights of a CNN layer are stored in the global platform memory, while the input data

is stored in the shared GPU memory. The sizes of the platform memories affects the execution

of the CNN workload as specified in the Memory assignment field of Table 4.3.

4.4 ALOHA evaluation Procedure

We describe at this point how our proposed ALOHA evaluation procedure is applied, to obtain

a fast, yet accurate, target-oriented evaluation of the CNN layer’s performance. The increased

reliability over the Roofline model and the OPS-based estimations is obtained in our contribu-

tion by accounting for:

• repeated transfers of the layer input data and weights to the local memories of the

platform processors, occurring when the size of the data to be stored exceeds the size of

the local storage space. The same effect can be observed for the output data transferred

from the local memory to the global one, causing additional time and energy overheads

during the CNN layer execution;
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• occupancy/rounding effect, representing a waste of the available computational

power, caused by the inefficient exploitation of the parallel computing units on the plat-

form. It is typically measured in terms of wasted computational cycles, or partial pro-

cessor occupancy, and translated in reduced performance of the platform computational

resources [104];

• separate bandwidth ceilings instead of considering only the peakmemory bandwidth,

which accounts for high utilization of all data communication channels, it includes the

communication overheads caused by an uneven distribution of the CNN layer data (input

data, output data, and weights) over the platformmemories and the data communication

channels.

As anticipated in 4.2, the evaluation procedure involves three main phases:

• Computational tensor generation. This phase generates a representation of a CNN layer

enabling explicit specification of the parallelism available within the CNN layer.

• Computational tensor refinement. In this phase, the generated platform-agnostic layer

computational tensor is refined of platform-aware parameters derived from the proposed

ALOHA platform model, to obtain a platform-aware computational tensor.

• Computational tensor analysis. This phase involves the final estimation of the platform-

dependent metric of interest from the refined computational tensor.

A detailed description of each phase is given in Section 4.4.1, 4.4.2, and 4.4.3, using as an

example the convolutional layer l1, shown in Figure 4.1, executed on theNEURAghe platform,

modeled with our proposed ALOHA platform description in Table 4.2.

4.4.1 Computational tensor generation

Starting from the generic CNN layer representation as a 6-dimensional computational tensor,

given in Listing 4.1, our proposed ALOHA evaluation procedure exploits Table 4.1 to generate

the layer computational tensor. For example, for the CNN layer l1, shown in Figure 4.1, the

ALOHA procedure generates the CNN layer computational tensor provided in Listing 4.2.
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4.4.2 Computational tensor refinement

At this point, specific platform-aware transformations are applied to the generated compu-

tational tensor, in four steps (see Steps 1 to 4 below). We show as an example how the

platform-agnostic computational tensor in Listing 4.2 is refined for modeling the execution

on the NEURAghe platform.

• Step 1: Apply loop nesting order and usage to the computational tensor loops. This

step swaps lines 1 and 2 in Listing 4.2, resulting in Listing 4.3;

• Step 2: Apply the unrolling defined by the parallelism level assignment to the cor-

responding computational tensor loop. During this step, an indented loop par ∗, rep-

resenting parallel computations, is inserted in the nested structure, according to the

Parallelism level assignment field. As a consequence, the number of iterations of the

new pair of loops is rounded over the corresponding computational grid dimension. For

example, the level 0 parallelism of size 9, shown in Table 4.2, and assigned to the IF loop

of the computational tensor, causes the insertion of loop par 0 with 9 iterations in List-

ing 4.4 (line 2), and rounding of the IF loop (line 1) to roundup(128/9) = 15 iterations.

Analogously, the level 1 parallelism of size 10, shown in Table 4.2, and assigned to the OF

loop of the computational tensor, causes the insertion of loop par 1with 10 iterations in

Listing 4.4 (line 4), and rounding of loop OF (line 3) to roundup(512/10) = 52 iterations.

• Step 3: Introduce data transfers, i.e., explicitly specify when the transfer of the layer

input data, output data, and weights is performed in the layer computational ten-

sor. Every data transfer is assigned to a specific loop, as described in the data trans-

fer positioning field of the platform computational model, and is represented as a line

action(data bytes,memi, chj), where action ∈ (load, store) specifies the direction of

the transfer. If action = load, the data transfer is placed before the computations within

the assigned loop are performed. If action = store, the data transfer is placed after the

computations within the assigned loop are performed; data bytes specifies the amount

of data (in bytes) transferred during the data transfer action and is assessed for every

op/data type, using specific properties of the CNN layer and the layer computational
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tensor. The parametermemi specifies the platform memory where data is accumulated,

whereas chj specifies the IO channel used. For example, in Listing 4.5, this step leads

to the insertion of line 2, where the input data of size 9 ∗ 28 ∗ 7 ∗ 4 ∗ 2 bytes is loaded

from the device main memory into the processor local memorymem0 through the data

communication channel ch0. How to evaluate the data transfer size is further detailed

in Equation 4.7, introduced in the following phase, describing the Computational tensor

analysis.

• Step 4: Pose memory constraints to the size of computational tensor loops. During

this step, the evaluation procedure checks the utilization of the platformmemory within

the loops associated with a limited platform memory, as specified in theMemory assign-

ment field of the platform model. If the memory constraint is violated, the loop is tiled.

For example, as specified in Table 4.2, the OF loop of the computational tensor is limited

by the local memory mem1 of size 163840 bytes. In Listing 4.5, the layer tries to accu-

mulate 815360 bytes in memorymem1 (line 13), thus violating the constraint placed by

memorymem1 on the OF loop, as 815360 > 163840. This causes the introduction of the

additional loop out tile (line 1 in Listing 4.6) with 6 iterations, and the reduction of the

OF loop (line 6 in Listing 4.6) bounds to 52/6 = 9 iterations. In Listing 4.6, the layer stores

9 ∗ 10 ∗ 28 ∗ 7 ∗ 4 ∗ 2 = 141120 bytes < 163840 bytes of output data in memorymem1 at

each iteration of loop out tile, thus satisfying the memory constraint.

1 for i_feat in range(128):
2 for o_feat in range(512):
3 for fh in range(28):
4 for fw in range(28):
5 for k_y in range(1):
6 for k_x in range(1):
7 do MAC

Listing 4.3: Step 1. Loops nesting order and usage

1 for i_feat in range(15):
2 for par0 in range(9):
3 for o_feat in range(52):
4 for par1 in range(10):
5 for fh in range(28):
6 for fw in range(7):
7 for par2 in range(4):
8 for k_y in range(1):
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9 for k_x in range(1):
10 do MAC

Listing 4.4: Step 2. Parallelism levels assignment

1 for i_feat in range(15):
2 load(9*28*7*4*2, mem0, ch0) #input data
3 load(9*52*10(1*1+1)*2, mem2, ch2) # weights
4 for par0 in range(9):
5 for o_feat in range(52):
6 for par1 in range(10):
7 for fh in range(28):
8 for fw in range(7):
9 for par2 in range(4):
10 for k_y in range(1):
11 for k_x in range(1):
12 do MAC
13 store(52*10*28*7*4*2, mem1, ch1) #output data

Listing 4.5: Step 3. Data transfers introduction

1 for out_tile in range(6):
2 for i_feat in range(15):
3 load(9*28*7*4*2, mem0, ch0) #input data
4 load(9*9*10(1*1+1)*2, mem2, ch2) # weights
5 for par0 in range(9):
6 for o_feat in range(9):
7 for par1 in range(10):
8 for fh in range(28):
9 for fw in range(7):
10 for par2 in range(4):
11 for k_y in range(1):
12 for k_x in range(1):
13 do MAC
14 store(9*10*28*7*4*2, mem1, ch1) #output data

Listing 4.6: Step 4. Limits posing (tiling)

4.4.3 Computational tensor analysis

In this phase, our proposed ALOHA evaluation procedure exploits the platform-aware com-

putational tensor, to accurately quantify the total number of operations and data transfers per-

formed during the execution of the CNN layer. According to Equation 4.2, the total number of

operations OPSre performed by the refined computational tensor in Listing 4.6, is computed

as OPSre
2= 6 ∗ 15 ∗ 9 ∗ 9 ∗ 10 ∗ 28 ∗ 7 ∗ 4 ∗ 1 ∗ 1 ∗ 2 ≈ 110, 07 ∗ 106.

2
Description in Listing 4.6 is simplified for the reader. It does not present some details, e.g. in the last iteration

of the loop at line 2, the loop at line 6 stops as soon as roundupOF = 520 OFs have been processed.
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We note that this number of operations does not match the total number of operations

OPSth = 102, 76∗106, computed in Section 4.1.2 considering the platform-agnostic CNN layer

computational tensor in Listing 4.2. The difference between OPSre and OPSth estimations

results from an imperfect distribution of the layer computations over the platform processors,

thus some of the computational cycles in the implementation in Listing 4.6 are wasted. We

refer to this as the rounding effect. The refinement of the layer computational tensor with

platform details enables for consideration of the rounding effect and therefore enables for

more precise representation of the CNN layer execution on the target platform.

Analogously, the actual amount of memory transfers, impacting the layer’s operational

intensity, is assessed. Equation 4.5 defines the theoretical transfers based on data tensor di-

mensions, under the assumption that all of the data can be transferred at once to local memo-

ries and made available throughout the entire computation. However, our proposed ALOHA

method considers how the specific nesting structure implemented impacts the actual memory

traffic.

The amount of data transferred for every data tensor can be evaluated as:

Sizere(T ) =
N∏

n=1

T.dim′
n ∗ sizeof(pixel) ∗ iterationstl (4.7)

where, if one of the T.dimn dimensions of data tensor T is subject to partitioning among

multiple loops, we define as T.dim′
n the dimension that is handled in the convolution loops

internal to the transfer level tl, which is subject to a certain number of iterationstl, based on

the loop nesting structure.

Finally, given the IO channel assignment, the ALOHA method evaluates the operational

intensity over single available channels, exploiting Equation 4.3, where the OPS count is eval-

uated in detail, considering rounding effects and tiling according to Listing 4.6, and the traffic

value accounts for repeated transfers, based on Equation 4.7.

At this point, it is possible to use an approach inspired by the Roofline model, but turning

Equation 4.6 into:

APALOHA = min(APmax, Intch0 ∗ bwch0, ..., Intchn ∗ bwchn) (4.8)
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Considering AP = APALOHA in Equation 4.1, the execution time is evaluated as:

tALOHA = OPSre/(APALOHA) + ov (4.9)

where a known programming overhead is added to the predicted value as a fixed offset ov.

4.5 CNN metric aggregation

We describe in this section our CNNmetric aggregation module. As anticipated in Section 4.2,

this module accepts as inputs the estimations of the hardware metrics of single CNN layers

and aggregates them to deliver the network-level estimations, in terms of latency, energy con-

sumption, and throughput.

Some research efforts have demonstrated that systems with multiple accelerators can be

useful also in the embedded domain [108, 109], although not very common. The ALOHA

method introduced in this chapter thus allows taking into account an arbitrary number of

processing elements. We neglect any possible contention on the off-chip memory since pre-

vious experiments have shown that the effect of this issue is limited, as shown in [108] for

multiple instances of NEURAghe accessing the same DDR memory. We also assume asyn-

chronous communication with the host, thus we do not consider the host CPU intervention

to become a bottleneck, aligning with most of the approaches in the literature.

As discussed in Section 4.2, the aggregation module accepts an optional CNN execution

configuration input, describing:

1. the distribution of CNN operators over the target platform processors;

2. whether task-level (pipeline) parallelism is exploited.

The first one specifies how the CNN layers should be distributed over the heterogeneous

processors in a target platform, which can be dedicated to different sets of operators (consid-

ering NEURAghe as an example, only some of the CNN operators can be accelerated on the

FPGA, and the rest of the CNN operators are performed on the platform CPUs). Formally,

we define the assignment as a set of tuples op dist = {(op, proc type)}, where op is a CNN

operator (such as Convolution or Pooling) and proc type is the type of a platform processor
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(e.g. CPU or GPU). For example, a set of tuples {(conv, accelerator), (gemm,CPU)} spec-

ifies that convolutions are always offloaded to the platform accelerator, whereas GEMM are

always performed on the platform CPUs. If no processor type is specified for a given oper-

ator, the aggregation module assumes that the corresponding layer can be executed on any

available processor.

The second one specifies if a CNN is executed sequentially or as a pipeline. Sequential

execution allows processing only one of the CNN layers at every moment in time, and it is

the typical schedule for the majority of widely used DL frameworks such as PyTorch [71] or

TensorFlow [72]. On the other hand, when the execution is pipelined, several CNN layers can

be executed in parallel to process a different input, resulting in a higher throughput [74, 75].

The execution schedule should thus be taken into account when delivering the system-level

performance evaluations. We formalized it as a flag pipeline set to true or false (default).

Based on these inputs, a CNN schedule generator generates an execution schedule J for

the evaluated network, assigning each layer li ∈ L a starting time si ≥ 0 and a processor

PEj, j ∈ [1,M ] to be executed on. The supported schedules are sequential or pipeline,

although the tool can be extended with additional options.

Algorithm 3 shows how a sequential schedule is generated: it starts in Line 1 from an empty

schedule J and sets the current starting time s to 0. In Lines 2 to 17, a starting time si ≥ 0 and

a processor PEj ∈ PE are assigned to every layer li ∈ L. In Lines 3 to 9, a list of processors

PEsuitable suitable for the execution of layer li is created, based on the tuples specified in the

distribution op dist. In Lines 10 to 14, Algorithm 3 selects, from the list of suitable processors

PEsuitable, the processor PEj providing the shortest execution latency t(li, PEj). In Lines 15

to 17, Algorithm 3 assigns time si = s and processor PEj to the layer li (Line 15) and updates

the starting time s by adding the estimated latency. Finally, in Line 18, Algorithm 3 returns

the sequential schedule of the input CNN.

As for the pipeline schedule, it is generated according to the heuristic algorithm proposed

in [74]. At this point, the CNN metric aggregation sub-module uses Equation 4.10, Equa-

tion 4.11, and Equation 4.12 to estimate CNN latency tCNN (in seconds), CNN throughput

ThCNN (in frames per second) and CNN energy cost EnCNN (in Joules), respectively.
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Algorithm 3: Sequential schedule generation

Input: CNN(L,E), PE, op dist, {t(li, PEj)}
Result: CNN schedule J
J = ∅; s = 0;
for i ∈ [1, |L|] do

PEsuitable = ∅;
if ∃(op, proc type) ∈ op dist : op = li.op then

for (li.op, proc type) ∈ op dist do
for PEj ∈ PE : PEj .type = proc type do

PEsuitable = PEsuitable + PEj ;

else

PEsuitable = PE;

PEj = PEsuitable.pop();
while PEsuitable ̸= ∅ do

PEk = PEsuitable.pop();
if t(li, PEk) < t(li, PEj) then

PEj = PEk;

si = s;
J = J + (si, PEj);
s = s+ t(li, PEj);

return J

tCNN = s|L| + t(l|L|)− s1 (4.10)

ThCNN =

1/maxj

∑
(si,PEj)∈J t(li) if pipeline

1/tCNN otherwise
(4.11)

EnCNN =
∑

(si ,PEj )∈J

t ∗ Pact + tidle ∗ Pidle + bacc ∗ Enbit (4.12)

In Equation 4.10, the total CNN latency is computed as the difference between end time

s|L|+t(l|L|) of the last CNN layer l|L| and the start time s1 of the first one l1; where layer latency

is estimated based on the ALOHA per-layer evaluation procedure, described in Section 4.4.

Equation 4.11 describes the evaluation of throughput for pipeline and sequential sched-

ule. If a CNN is executed as a pipeline, it is evaluated based on the maximum time required

to execute the layers mapped on one processor, while for sequential execution the equation

considers the network’s execution latency.
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The total CNN energy EnCNN is computed in Equation 4.12, as the sum of the energy

costs of all layers. The energy cost of layer li ∈ L accounts for three factors: the inference

contribution, obtained as the product of the layer latency and the peak power consumption; the

idle contribution, defined according to a latency constraint and the idle power consumption;

the cost of bit accesses to the global memory, depending on the number of bits bacc transferred

by the processor PEj during the execution of layer li.

4.6 Experimental Results

In the following, we present experimental results involving execution time and energy con-

sumption predictions obtained with the ALOHA method, representing the contribution de-

scribed in this chapter. In section 4.6.1, we assess the accuracy of our proposed method, in

comparison with the OPS count and the Roofline model, estimating the execution time of sin-

gle layers on both the target platforms, NEURAghe and Jetson, with a reduced average error.

In section 4.6.2, we consider an energy consumption model characterized for NEURAghe, and

show the impact of accurate execution time and memory access count predictions on the pre-

cision of the energy consumption estimation, comparing the ALOHAmethod and the Roofline

model. In section 4.6.3, we assess the impact on a NAS process, aiming at selecting optimal

CNN architectures for both target platforms,NEURAghe and Jetson. The last section 4.6.4 con-

siders throughput estimations for CNNs executed on a heterogeneous platform, such as Jetson

TX2, with different scheduling schemes. We thus evaluate the combined impact of layer-level

ALOHA prediction accuracy and the proposed CNN metric aggregation. All of the considered

estimation methods, as well as the aggregation module, and the evolutionary algorithm, were

implemented in python3 scripts, running on Azure NC6 v2 Virtual Machine, and exploiting

an NVIDIA Tesla P100 GPU.

4.6.1 Layer-level accuracy

To evaluate the ALOHA method in execution time estimation, we defined a grid of over 2000

common CNN convolutional layer configurations, summarized in Table 4.4. We consider as a

reference the measured latency value and we quantitatively compare with estimations based
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on the OPS count and the traditional Roofline model.

Parameters

Input Features 3, 8, 16, 32, 48, 64, 96, 128, 192, 256, 384, 512, 1024

Output Features 16, 32, 48, 64, 128, 192, 256, 384, 512, 1024

Image Size 2x2, 4x4, 8x8, 14x14, 16x16, 28x28, 32x32,
56x56, 64x64, 112x112, 128x128, 224x224, 256x356, 512x512

Kernel Size 1x1, 3x3, 5x5, 7x7, 11x11

Table 4.4: Parameters of the convolutional layers measured for the ALOHA method accuracy

assessment. The evaluated layer configurations were obtained as different combinations of the

listed values, for Input Features, Output Features, Image Size, and Kernel Size.

Figure 4.3a and 4.3b show the prediction error distribution for the three methods, through

comparison with execution time measured on the target platforms.

NEURAghe.

The execution time predictions are deeply affected by the rounding effects introduced by the

computing matrix size, introducing an average 0.25 underestimation (up to a factor of over

0.85) of the actual number of OPS performed during the layer execution. To highlight the con-

tribution of the other non-idealities captured by our approach, the rounding effect correction

was included also in the Roofline- and the OPS-based estimations. Nonetheless, as shown in

Figure 4.3a, the OPS count method, despite being very immediate and comfortable to build,

provides latency estimations having a 63.4% average error. The Rooflinemodel, although intro-

ducing rough data transfer time evaluation considering the IO bandwidth ceiling, still shows a

57.3% estimation error. On the other hand, our proposed NEURAghe’s ALOHA model proves

to be significantly more accurate, reducing the average estimation error to 12.7%.

Jetson.

Compared the hardware-based scheduling in NEURAghe, the runtime management in the

GPU engine is intrinsically less predictable. Inefficiencies connected to the Operating System

are accounted for in the ALOHAmethod only in terms of startup time, modeled for Jetson as a
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Figure 4.3: Error distribution on the latency estimation for the examined estimation methods.

constant startup overhead, thus resulting in a less accurate platformmodel. Themeasurements

for the accuracy assessment were performed on the TensorRT [107] implementation of the

layers in Table 4.4, which is the best-known and state-of-the-art Deep learning library for the

NVIDIA Jetson TX2 platform. The estimation error is represented in the boxplot in Figure 4.3b:

both the OPS count and the Roofline model provide very poor precision, with up to 2x times

over-estimation of the CNN layers performance measured on the platform, while our ALOHA

model shows a reduced 56.5% average error.
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Impact of batch processing on Jetson.

We finally consider the case of batch processing on the Jetson platform, thus accounting for

other processing scenarios. Figure 4.3c reports the estimation error of the examined methods

when execution is performed with variable batch sizes, up to a value of 32. This scheduling

choice allows for better resource utilization, providing greater opportunities for paralleliza-

tion. As a result, the measured operating performance is closer to the peak value for the plat-

form, thus both the OPS- and the Roofline-based estimations show a reduced prediction error,

although its average value is still over 2× the one obtainable thanks to the ALOHA method,

presented as the contribution of this chapter.

4.6.2 Impact on energy consumption estimation

To assess the impact of our proposed ALOHA accurate modeling on the energy consumption

estimations, we consider in this section the dependence of this metric on the execution time

and the memory access count, as represented in Equation 4.13, which is a simplified version

of 4.12 considering only the power dissipated by a convolutional layer executed on the accel-

erator:

En = Pact ∗ t+ Enbit ∗ bacc (4.13)

As we are modeling the execution of a single layer, we neglect here the idle contribution, set-

ting tidle=0 in Equation 4.12. We have thus characterized Equation 4.13 for NEURAghe, using

the values reported in Table 4.2 for Pact and Enbit. A similar model could be exploited to

perform energy consumption estimations for the Jetson, as long as the active and idle con-

sumption values, as well as the energy per bit accessed, are known.

We exploited the simple model in Equation 4.13 to produce an energy consumption estima-

tion for the grid of layers obtained in Table 4.4, considering access count and execution time

predictions based on the Roofline and ALOHA methods. Figure 4.4a shows the error distribu-

tion, evaluated through the comparison with estimates based on the same model and relying

on the measured execution time and the precise access count. The more accurate latency and

data transfer evaluations enabled by the proposed ALOHA method produce an average 11.3%

estimation error on the energy consumption value. Replacing these metrics with those pro-
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duced by the Roofline model results in an increased average error of around 52.7%. As shown

in Figure 4.4b, the error is mostly affected by the predicted execution time, contributing to

over 96%. Considering the measured execution time, only a 2% absolute energy estimation

error results from neglecting repeated transfers, due to an average 17% error in the memory

access count estimations.

4.6.3 Impact on NAS

We analyze here the impact of different degrees of platform awareness on a NAS process. We

consider the design of optimal CNN architectures for image classification, targeting CIFAR-

10 [45], to be deployed on the target platforms modeled in the previous sections, NEURAghe

and Jetson.

The search space is defined based on the structure of the well-known VGG architecture [2].

We restricted the exploration to the CNN topology, neglecting the impact of pre-processing

choices and quantization. The total number of considered design points sum up to 3.16M and

the considered network architectures are composed as indicated in Table 4.5. Each network

presents 5 convolutional stages. Within each stage, all convolutional layers share the same

kernel and feature sizes, defined in columns 4 and 5. The architectures differentiate on the
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number of convolutional layers in each stage, whose maximum value is reported in column 6,

and on their channel width value. Possible width values in each stage are listed in column 3. A

MaxPooling layer is placed between successive convolutional stages, while a Global Average

Pooling precedes the final GEMM stage, described in the last row of Table 4.5.

Stage Operator Output Kernel Input Max
Features Size Size Depth

0 Conv 48/64 3x3 32x32 2
1 Conv 96/128 3x3 16x16 2
2 Conv 192/256 3x3 8x8 4
3 Conv 384/512 3x3 4x4 4
4 Conv 384/512 3x3 2x2 4
5 GEMM 384/512 2

Table 4.5: Design Space Exploration parameters for NAS targeting NEURAghe and Jetson.

The design space exploration is approached based on the fast selection procedure described

in Section 3.2, limited to the first three steps: one-shot training with OFA, population initial-

ization, and exploration based on the GA. The application of a latency constraint defines a

restricted platform-aware search space [48], where the network architectures are only admit-

ted if they are compliant with the constraint, based on their latency estimation. The NAS

process results in the selection of the most accurate network in the last generation.

In the following, we define a set of constraints and consider a NAS process targeting the

reference platforms. We compare the resulting network selection when the latency evaluation

of the design points is performed based on the OPS count, the Roofline model, or our proposed

ALOHA method. As a reference for the quality of the final selection, we consider the output

of the same process accessing LUTs containing the latency measured on the target hardware.

Thus, the four NAS strategies considered (the one based on LUTs, and the ones based on the

three estimation methods) define different search spaces and produce after 20 generations an

independent selection output. Every NAS experiment is repeated 5 times, to account for the

effect of random selections within the genetic algorithm.
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Figure 4.5: a-c)Pareto plot of accuracy vs latency for the design points in the last generation

of one trial of evolutionary NAS targeting NEURAghe. Performance evaluation exploits LUTs

or ALOHA, Roofline, and OPS-based estimation. b-d)Latency deviation distribution, among

5 trials, of NAS selection. Performance evaluation based on the ALOHA, Roofline, and OPS

models is compared to NAS selection obtained by performance evaluation based on LUTs.

73



7.5 8.0 8.5 9.0 9.5 10.0
Latency [ms]

90.0

90.5

91.0

91.5

92.0

Ac
cu

ra
cy

LUT
ALOHA
Roofline
OPS

(a) 10 ms

OPS Roofline ALOHA
0

10

20

30

40

50

60

70

Hy
pe

rv
ol

um
e 

de
vi

at
io

n 
% 57.05

59.85

7.29

58.14
60.26

5.91

(b) 10 ms

9 10 11 12
Latency [ms]

90.0

90.5

91.0

91.5

92.0

92.5

Ac
cu

ra
cy

LUT
ALOHA
Roofline
OPS

(c) 12,5 ms

OPS Roofline ALOHA
0

10

20

30

40

50

Hy
pe

rv
ol

um
e 

de
vi

at
io

n 
%

24.80
21.84

5.44

22.74

14.16

6.36

(d) 12,5 ms

Figure 4.6: a-c)Hypervolume comparison for the Pareto fronts resulting from evolutionary

NAS. Performance evaluation is based on LUTs, and on the evaluated prediction methods.

b-d)Hypervolume deviation of the Pareto fronts resulting from NAS based on the examined

prediction methods, from the Pareto front produced in NAS exploiting LUTs.
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NAS targeting NEURAghe.

We have performed NAS to target two different deployment scenarios, defined by a 10 ms

and a 12.5 ms latency constraint. The Pareto plots in Figure 4.5a and 4.5c refer to one of the

trials and show the design points belonging to the last generation, placed based on their ac-

curacy and measured latency: the design points selected by the ALOHA-based NAS are much

closer to the points selected by the LUT-based NAS accessing direct latency measurements;

on the contrary, both the OPS-based and Roofline-based NAS mistakenly focus on complex

architectures, reaching higher levels of accuracy, but violating the search constraint on the

execution time. However, while the shape of the resulting Pareto fronts in Figure 4.5a for the

10ms constraint looks very different based on the evaluation method considered, the example

in Figure 4.5c shows that the inference time prediction accuracy has a lower impact on the

design points selection when the latency constraint is more relaxed.

Figure 4.5b and 4.5d, show the difference from the optimal LUT-based selection of the CNN

selected by the three estimation-based NAS, in terms of the considered performance metrics

(validation accuracy andmeasured inference latency), summarizing the result of five trials over

each constrained space. In general, the ALOHA-based solution is significantly more similar in

terms of latency to the optimal LUT-based one (around 3% deviation on average for the 10 ms

constraints and always a few percentage points for 12 ms).

To quantitatively estimate the similarity of the explorations, besides the final selection points,

we referred to common metrics as the Degree of Approximation [110] and the Hypervol-

ume [111] to compare the Pareto front resulting from each of the NAS processes. As shown in

Table 4.6, reporting the DoA values, the ALOHA-driven Pareto front is by one order of mag-

nitude closer to the LUT-driven one, compared to those obtained using the other methods.

Figure 4.6a and 4.6c refer respectively to one NAS trial on the 10ms and 12.5ms latency

constraint, showing the hypervolume shapes of the resulting Pareto fronts in the admissible

region. The hypervolumes in this section are evaluated by choosing a reference point aligned

with the constraint, with coordinates (90%, constraint ms). As can be observed, the pattern

resulting from ALOHA-based NAS is similar to the one based on LUTs, while the Roofline and

OPS count methods produce significantly different hypervolume shapes. Figure 4.6b and 4.6d
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Constraint OPS DoA Roofline DoA ALOHA DoA
this thesis

10 ms 0.54 0.63 0.02
12.5 ms 0.51 0.47 0.04

Table 4.6: Degree of Approximation from the reference Pareto front of the fronts resulting

from evolutionary NAS based on the examined estimation methods, targeting NEURAghe

with 10ms and 12.5ms latency constraint.

Constraint OPS Roofline ALOHA
this thesis

10 ms 2.5% 3.6% 100%
12.5 ms 26.2% 33.7% 100%

Table 4.7: Percentage of admissible design points evaluated in the last generation of evolu-

tionary NAS based on the examined estimation methods, targeting NEURAghe with 10ms

and 12.5ms latency constraint.

report the deviation of the hypervolume indicator from the optimal LUT-based value, through-

out the set of trials, confirming that the ALOHA-based Pareto front shapes are overall much

more similar to the LUT-based one compared to the alternatives.

Finally, we also compare the methods in terms of predictability and reliability. considering

how often the architectures included by the GA in the last population are instead inadmissible

according to their on-hardware measured inference time. Table 4.7 reports 100% of admissible

points when the exploration is based on our proposed ALOHAmethod. On the contrary, OPS-

and Roofline-based selections include a quite high rate of inadmissible points: only around 3%

of the points are legal when the constrain is 10ms and only around 30% when it is 12.5 ms.

NAS targeting Jetson.

In the case of NAS targeting Jetson, we selected a soft latency constraint equal to 3.18 ms, and a

more demanding one equal to 2 ms. Although in general the ALOHA method is less accurate

on Jetson, it is still able to reduce the discrepancy with the selection operated using LUTs

compared to the alternatives, as highlighted in Figure 4.7a and 4.7c. This was observed in all
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Constraint OPS DoA Roofline DoA ALOHA DoA
this thesis

2 ms 0.3 0.32 0.07
3.18 ms 0.16 0.15 0.07

Table 4.8: Degree of Approximation from the reference Pareto front of the fronts resulting from

evolutionary NAS based on the examined estimation methods, targeting Jetson with 2ms and

3.18ms latency constraint.

the trials targeting the tightest constraint, as reported in Figure 4.7b, whereas the inaccuracy

in performance estimation has a lower impact when the constraint is softened, as shown in

Figure 4.7d. Nevertheless, on average, the ALOHA method has enabled a NAS outcome more

aligned with the one resulting from the use of LUTs. The same trend is confirmed by the

comparison of the Pareto fronts. The hypervolumes in Figure 4.8a and 4.8c show that ALOHA

finds Pareto-optimal points that better follow the LUT’s Pareto front profile, especially in the

case of the 2ms constraint, where the average hypervolume deviation from the optimal one is

reduced from over 70% to 30%. The analysis of the DoA metric reported in Table 4.8 provides

similar results since ALOHA reduces the deviation by at least a factor of 4. When the constraint

is more relaxed the benefits are, as expectable, less visible, although ALOHA still reduces the

DoA by 2× and the hypervolume deviation by less than 3×, on average. Table 4.9 provides

a view of the effects of our proposed ALOHA method on predictability and reliability, when

the exploration targets Jetson. Considering the tightest constraint, when using Roofline and

OPS, only around 3% of the architectures in the last population are effectively legal. In this

case, also ALOHA is investigating some inadmissible points, however, the rate of legal points

at the end of the process is one order of magnitude higher than the other methods. When the

constraint is softer, finding admissible points is easier for all the estimation methods, however,

ALOHA still proves to be slightly more reliable (76% vs 62% ).

4.6.4 Impact of aggregation on prediction accuracy

Finally, we evaluate in this section the combined use of layer-level estimations based on the

ALOHA method and of the aggregation module, described in Section 4.5 and presented as the
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Figure 4.7: a-c)Pareto plot of accuracy vs latency for the design points in the last generation

of one trial of evolutionary NAS targeting Jetson. Performance evaluation exploits LUTs or

ALOHA, Roofline, and OPS-based estimation. b-d)Latency deviation distribution, among 5

trials, of NAS selection. Performance evaluation based on the ALOHA, Roofline, and OPS

models is compared to NAS selection obtained by performance evaluation based on LUTs.
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Figure 4.8: a-c)Hypervolume comparison for Pareto fronts resulting from evolutionary NAS.

Performance evaluation is based on LUTs, and on the evaluated prediction methods. b-

d)Hypervolume deviation of the Pareto fronts resulting from prediction methods, from the

Pareto front produced in NAS exploiting LUTs.
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Constraint OPS Roofline ALOHA
this thesis

2 ms 2.6% 2.1% 29.6%
3.18 ms 61.9% 61.9% 76%

Table 4.9: Percentage of admissible design points evaluated in the last generation of evolution-

ary NAS based on the examined estimation methods, targeting Jetson with 2ms and 3.18ms

latency constraint.

contribution of this chapter. We consider different CNN execution configurations to estimate

the throughput of over 1700 common CNNs, resulting from the NAS exploration described in

Section 4.6.3, whose structure is summarized in Table 3.2. We focus on estimating the through-

put obtainable on Jetson TX2 heterogeneous embedded platform [26], with different ways of

CNN execution. The experiment consists of two trials.

In Trial 1, we study the impact of CNN distribution over platform processors, the GPU and

4 ARM Cortex A-57 CPUs of the Jetson TX2 platform, estimating the throughput resulting

from sequential layer execution. We assume a schedule configuration requiring every convo-

lutional layer (where li : opi = conv) to be offloaded on the platform GPU, whereas every

other layer (having li : opi ̸= conv) is performed on the platform CPUs. We compare the

CNN throughput measured on the platform, with the throughput estimated by the ALOHA

method when the CNN execution configuration: A) is unspecified; B) is correctly specified as

pipeline = false and ops dist = {(conv, accelerator), (gemm : CPU), (pool : CPU)}. The

results of this experiment are given in Figure 4.9a representing the mean-and-error. When

the layers distribution is not considered, the throughput is estimated with an average error of

450% (estimation A). Taking into account the heterogeneity of the platform and the workload

distribution (estimation B) results in a reduced error, as low as 27%.

In Trial 2, we study the impact of considering pipeline execution schedule when evaluating

the throughput predictions. We assume layers to be distributed over all the available proces-

sors in the platform andwe compare the throughput estimation error, with respect to hardware

measurements. We consider a CNN execution configuration A) not modeling pipelined exe-

cution (setting pipeline = false and ops dist = ∅) and B) considering pipelined execution
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Figure 4.9: Error distribution on predicted throughput for CNNs distributed over heteroge-

neous processors of Jetson TX2

(setting pipeline = true and ops dist = ∅). Figure 4.9b summarizes the throughput esti-

mation error at network level. Neglecting parallel execution results in an average estimation

error around 48%, which is reduced to 21% when including pipeline-awareness.

4.6.5 Closing remarks

To the best of our knowledge, the estimation method presented in this chapter advances the

state-of-the-art of hardware performance modeling solutions, improving the accuracy of com-

mon flexible analytical methods, with a reduced modeling effort compared to measurement-

based and ML methods. Moreover, the proposed modular structure allows us to take into

account the mapping and concurrent execution of different computational kernels on the dif-

ferent processing units available on the platform. Thus, the proposed contribution can provide

an easy-to-use solution for the integration of platform awareness in hardware-oriented design.

The experiments conducted on the target platforms, NEURAghe and Jetson, show a reduction

of the average latency estimation error by a factor of respectively almost 5× and 3×, when

compared to alternatives of similar complexity, such as the Roofline model. We additionally

investigated the impact of the improved accuracy in the hardware performance estimation on
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the quality of a HW-NAS process. We show that, when performance estimation is based on

our proposed ALOHA model, a final network selection well-aligned with the one resulting

from a search process accessing LUTs collecting on-hardware latency measurements can be

obtained, for different sets of constraints defined on the two target platforms. The average

deviation from the hypervolume of the optimal Pareto front is reduced by a factor of 2× up

to a factor of 7×. Finally, the proposed method can also be exploited to model non-sequential

execution schedules.
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Chapter 5

Emerging Neural Networks: Optimal

Transformer Design

Finally, as emerging network models are joining the landscape of neural networks and edge-

processing, there is a need to evaluate and apply efficient hardware-aware design also to these

new architectures. The innovative structure of the transformer architecture introduces new

parameters to be considered in a design exploration for optimal performance on the target.

In the following, we present an example of an efficient transformer model for the monitoring

of epilepsy through electroencephalography (EEG) signal processing, resulting from a target-

oriented design exploration for deployment on edge devices. As the handling of transformers

requires specific support from the optimization tools, the exploration we present in the follow-

ing does not exploit the benefits of the selection strategy presented in the previous chapters,

but it shows that similar concepts still apply to other families of neural networks, as long as

the support for the new operands is integrated. To better motivate this statement, we list some

common relevant aspects for optimal design:

• data pre-processing: the epilepsy monitoring application typically relies on hand-crafted

feature extractors; the presented transformer proposes to eliminate this data-dependent

extraction step, but the model design is still impacted by data-preparation choices, such

as the size of the signal window to be observed with a single inference run;

• topology: as the attention layer typically represents the main part of the computational

83



workload, new parameters should be involved in the exploration, like the number of

parallel executions of the attention mechanisms;

• impact of quantization, which was not considered as a part of the exploration in this

work, but only applied to the finally selected design.

The study presented in the following was conducted thanks to the collaboration with Zurich’s

ETH (responsible for the funding PEDESITE project, supported by the Swiss National Science

Foundation) and the University of Bologna. To summarize the outline of the chapter, in Sec-

tion 5.1 we present the epilepsy monitoring problem and its challenges, motivating the need

for a new efficient small-scale seizure detector design. In Section 5.2 we describe our proposed

transformer model, the EEGformer, and two CNN-based detectors we consider as a reference

for performance comparison. In Section 5.3 we assess its performance on the CHB-MIT Scalp

EEG dataset [112, 113] and define a comparisonwith the state of the art of seizure detectors. Fi-

nally, we present in Section 5.4 the inference performance on a tiny MCU, the Ambiq Apollo4,

and on the multi-core PULP processors GAP8 and GAP9, by Greenwaves. The measurements

conducted on the three platforms considered show the target-oriented design resulted in an

efficient model, which can be run on a low-power monitoring device with as low as 13.7ms

inference time and 0.19mJ energy consumption.

5.1 Problem definition

According to theWorld Health Organization, more than 50 million individuals worldwide suf-

fer from epilepsy [114]. The use of antiepileptic drugs usually limits its impact on the quality

of life, however, this treatment isn’t always effective in preventing the occurrence of seizures,

causing the patients to lose control over their bodies and representing a danger to everyday

life. The analysis of the electroencephalography (EEG) signal represents the usual diagnostic

instrument and provides an opportunity for the development of monitoring solutions, based

on automatic seizure detection. The design of a suitable detector needs to satisfy both accu-

racy and hardware constraints, resulting not only from the limited computational and storage

resources of a low-power processing unit but also from a size factor compatible with an un-
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obtrusive signal acquisition. The tolerability of a similar device, conditioning its practical use,

depends on the possibility to disguise it with behind-the-ear accessories [115, 116, 117] and

on the reliability of the alarms raised.

The literature reports several examples of very accurate detectors [118, 119, 120], reach-

ing good performance metrics but relying on a complete acquisition setup [121, 122, 123, 92,

124, 125, 126, 127, 128]. Moreover, the most common approaches to EEG processing require

a feature extraction step: the work of [115] is an example of wavelet-based pre-processing,

providing energy values as input to the classifier. As the clinical practice involves data vol-

umes incomparable with the currently limited datasets available for research (the basis for the

design of feature extraction), we propose to exploit the learning process and rely on a clas-

sifier working on the raw signal. The attention mechanism in the transformer represents a

promising solution.

The use of transformers for epilepsy monitoring has been previously investigated in [124,

125, 92]. However, these works do not target unobtrusive acquisition, as they consider com-

plete electrode setups, not suitable for long monitoring. Moreover, they propose large-scale

transformers, especially in [124] and [125], whose complexity and footprint are out of scale

for embedded deployment. As for the work of [92], it doesn’t explicitly target edge processing

and a clear indication of the complexity of the detector is not given. While [124, 125] rely on

pre-processing based on Fourier transform, we mean to work on the raw signal, as in [92].

To the best of our knowledge, seizure detection based on unobtrusive low-channel count

acquisition is still rather unexplored and the best reference for the assessment of the detec-

tion results is the work of [115], performing detection based on the EEG signal acquired by

the temporal channels and exploiting wavelet-based energy features. This work shows very

promising results on a subset of the CHB-MIT scalp EEG dataset [112, 113], presenting an Ad-

aBoost (AB) model reaching up to 100% accuracy, but with an onset detection latency of 19s,

which still requires improvement. To consider the general state-of-the-art context, we will

also compare to [128, 127, 126], presenting detectors based respectively on CNNs, K nearest

neighbor (KNN), and Support Vector Machines (SVMs), and exploiting complete acquisition

steups. These works provide to the best of our knowledge the best tradeoff between high sen-

sitivity (up to 98%) and detection rate, and nearly zero false alarm rate (best-reported value is
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Figure 5.1: Architecture of the EEGformer.

0.2 FP/h).

5.2 Detector

We treated the seizure detection task as a simple classification problem applied to sliding win-

dows of the signal, where the detector needs to evaluate whether the processed sample belongs

to the non-seizure or to the seizure class. Considering the limited state-of-the-art references

based on low-channel count acquisition, we optimized two CNN structures for the seizure

detection task on the CHB-MIT dataset, to provide a more complete assessment of the perfor-

mance of our proposed model, the EEGformer. The structure of the EEGformer is described

in Section 5.2.1, whereas in Section 5.2.2 we describe a CNN-based detector, operating on the

raw EEG signal, and in Section 5.2.3 one operating on features representing the energy after

wavelet decomposition. As we target unobtrusive acquisition setups, we only consider data

acquisition from the temporal channels: F7-T7, T7-P7, F8-T8, T8-P8, according to the 10-20

international system.

5.2.1 EEGformer.

The EEGformer is configured as a Vision Transformer (ViT), which is the most common trans-

former structure for classification problems. The input image is replaced by a 4-dimensional

tensor, organizing the samples of onewindow of signal acquired by the temporal channels. The

most important processing stage is represented by the encoder structure, where the attention
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mechanism is applied. The attention principle [86] is defined in Equation 5.1 and allows to

evaluate the dependencies between two different points in the time series: query q, key k and

value v represent different linear projections of the input sequence, and d is the size of each

projection.

Attention(q, k, v) = Softmax(
qkT

√
d
) ∗ v (5.1)

To be properly processed by the attention layer, the input data needs to be arranged as a

sequence of patches. Exploiting image classification as a clear example, each patch represents

a tile of the image, while the dimensionality of the sequence can be adjusted based on the

parameters of the first embedding stage, which is represented by a pair of convolutional layers

in the EEGformer. The simple idea of the attention can be upgraded considering different

projections of the input sequence evaluated in parallel. As every parallel execution is known

as a head, this implementation is known as Multi-Head-Attention (MHA). The encoder block

is terminated with a feed-forward network, while the classification stage is obtained with a

Multi-Layer Perceptron (MLP).

As will be discussed in Section 5.4, the MHA represent the most computational intensive

portion of the transformer. We thus focused on defining the optimal parameters impacting its

size, to obtain an architecture suitable for efficient execution on tiny MCUs. Considering as

a reference a maximum footprint of 512KB, based on the commonly available storage space,

we performed a design exploration of the architectural parameters, aiming to optimize the

accuracy on the CHB-MIT dataset, where the EEG signal is acquired with a 256Hz sampling

frequency. Figure 5.2 reports the details of the exploration. We evaluated the size of the input

window, selecting a length of 8s, resulting in a 4×2048×1 input size (Figure 5.2b). The shape of

the attention input was explored as the result of the embedding stage: as shown in Figure 5.2c

the best results were obtained with a kernel size of 5 and the same value for the stride, in con-

volutional layers with 32 output channels. To refer to the common transformer terminology,

the attention is thus performed on a sequence of embeddings of size 81×32, while the value

selected for the projection size is d = 32. The exploration also involved the number of heads

in the MHA, resulting in the selection of H = 8, as shown in Figure 5.2a. Finally the MLP for

classification has a hidden layer size of h = 128 5.2d. The final structure of the EEGformer is

shown in Figure 5.1: it requires 50.6K parameters and 14.7 MOPs.
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5.2.2 CNN on raw EEG signal.

As a first model for comparison we optimized a CNN architecture operating on the raw EEG

signal. The first stage is very similar to the EEGformer’s, exploiting windows of 8s length and a

convolutional layer shaped in the same way as the EEGformer’s. The structure of the network

is summarized in Table 5.1: the model consists of two convolutional layers (Conv#), followed

by Rectified Linear Units (ReLU) activation functions, a MaxPooling and two Fully Connected

(FC#) layers. It has a memory footprint of 325KB, evaluated considering 8-bit representation,

and involves 2.22MOPs. We refer to this model as CNN B.

5.2.3 CNN on pre-processed input features.

Finally, we considered a reference model to evaluate the impact of signal pre-processing. The

CNN C is summarized in Table 5.2: its input is obtained with 8-level wavelet decomposition,

and represents the energy of the signal evaluated on each temporal channel during 8 different

time frames. Every time frame is a window of 8s length, and is partially overlapped to the

others with a 1s step size. The input shape is thus 4×8×8, corresponding to channels ×

levels× frames. The architecture exploits a sequence of 5 convolutional layers, followed by

ReLu activation. A MaxPooling layer reduces the dimensionality prior to the last FC module.

The network requires 12.5 MOPs and 105.3KB of parameters.

Layer Input Output Input Kernel Stride
Features Features Size Size

Conv1 4 32 1x2048 1x5 5
Maxpool 32 32 1x405 1x2 2
Conv2 32 32 1x203 1x5 2
Maxpool 32 32 1x102 1x2 2
FC1 1632 200 1x1
FC2 200 2 1x1

Table 5.1: CNN architecture with raw signal input

89



Layer Input Output Input Kernel Stride
Features Features Size Size

Conv1 4 16 8x8 3x3 1
Conv2 16 32 8x8 3x3 1
Conv3 32 64 8x8 3x3 1
Conv4 64 64 8x8 3x3 1
Conv5 64 64 8x8 3x3 1
Maxpool 64 64 8x8 2x2 2
FC1 1024 2 1x1

Table 5.2: CNN architecture with pre-processed input

5.3 Assessment on CHB-MIT dataset

We assessed the quality of seizure detection with the EEGformer considering the CHB-MIT

scalp EEG dataset [113, 112], which provides a meaningful common benchmark for a com-

parison with the state of the art. We first summarize the evaluation of two different training

strategies, to select the most effective for the assessment. Finally, we compare the perfor-

mance of the EEGformer with the CNN alternatives described in Sections 5.2.2 and 5.2.3 and

with the state of the art, considering low-channel count unobtrusive acquisition and complete

acquisition.

Evaluation Sensitivity; FP/h Detected
Period Specificity Seizures

without Pre-Training 2s 95.4; 99.9 0.9 7/7

Pre-Training 2s 86.6; 100 0 7/7

Table 5.3: EEGformer training strategy evaluation

Training strategy. First, we assess two different training approaches: a one-phase method

consisting of subject-specific training, lasting 100 epochs, and a two-phase strategy including

a global pre-training stage (100 epochs) and a subject-specific fine-tuning (50 epochs). For

every subject, the dataset provides a list of EEG records, some of which report a seizure event.

We focus on testing such records, with the leave-one-out approach, so that the test set is

alternatively represented by one seizure record. The remaining data is randomly split between
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a train set (80%) and a validation set (20%). The data is arranged into 8s-wide windows: in

the training set the windows are not overlapped, while for testing we consider overlapping

windows with 2s step size, to improve the detail of the performance evaluation.

The two training approaches are compared in Table 5.3, referring to tests conducted on

subject 1, with pre-training conducted on the data of subjects 2 to 8. As can be observed,

the pre-training phase improves the specificity of the detector, resulting in 0 false-positive-

per-hour (FP/h) rate, which is a very relevant metric for encouraging the use of a monitoring

device. Despite a drop in sensitivity, all the annotated seizure events were detected, we thus

selected the two-phase approach as more effective.

Detection performance assessment. At this point, we compare the EEGformer with the opti-

mized CNN alternatives presented in Section 5.2. Considering the benefits resulting from the

global pre-training phase, we applied this training approach to all three of the considered de-

tectors. For the performance assessment, we consider a subset consisting of 8 subjects. Thus,

the pre-training step is performed based on the data of seven patients, excluding the test sub-

ject. For each one, we assess with the leave-one-out approach the performance on each seizure

record and consider a cumulative evaluation of the most relevant quality metrics. Based on a

typical approach in the literature, we perform post-processing of the classifier output to limit

the number of FPs: we consider the minimum number of windows to be averaged in order

to improve the specificity, which is 3 for the EEGformer, and 5 for both CNN B and C. More-

over, as the instability induced by the seizures on the signal lasts several minutes, we neglect

the FPs occurring within 15 minutes after the end of the episode. Table 5.4 summarizes the

results, including the state-of-the-art AB model assessed on the same subset of subjects, with

equivalent 3 windows averaging. The comparison highlights that no significant degradation

results from the elimination of the feature-extraction step. On the contrary, we report in the

second line the metrics of the EEGformer if applied after an artifact removal stage, as the

one described in [129]. In this case, the performance is well-aligned with the state-of-the-art

of low-channel count detectors. We analyze in the following the numbers obtained with the

EEGformer. Figure 5.3 reports the distribution of the FP/h trend across the 40 tests performed:

the median value is 0 FP/h, which is the false alarm rate registered in over 80% of the left-

out records tested. The non-zero average is the result of 5/40 outliers and is mostly affected
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Figure 5.3: Record-wise FP/h signaled by the EEGformer on the CHB-MIT dataset.

by the two uppermost points in the plot. The analysis of the corresponding records showed

long-lasting EEG artifacts causing the FP occurrence, whose removal would produce the data

reported in the second line. Figure 5.4 shows the detailed detection rate on every patient:

100% of the annotated events are successfully detected on 6/8 subjects. The overall sensitiv-

ity is compromised by the poor performance obtained on patient CHB 6, presenting seizures

of a very short duration. Overall, the EEGformer reaches quality metrics comparable to the

state-of-the-art reference for unobtrusive detection based on the temporal channels, without

requiring handcrafted feature-extraction and introducing a 20% reduction in the average on-

set detection latency. Lower latency is reported in other works, such as [130, 131], but at the

expense of a lower specificity, which is crucial for the tolerability of a continuous monitoring

device.

For the sake of completeness, we also report in Table 5.5 the general state of the art, refer-

ring to the performance metrics reported in the corresponding papers and considering uncon-

strained models providing the best trade-off between very high sensitivity and near-zero false

alarm rate. We omit the size of the models in [127, 126], which is not explicitly reported. A

general analysis of the numbers reveals a performance gap compared to the results achievable

with access to complete acquisition setups, which encourages new advancements.
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Evaluation Sensitivity Specificity FP/h; Average Detected
Period Latency Seizures

EEGformer 2s 65.5 99.9 0.8 15.2s 32/44
EEGformer*1 2s 66 99.9 0.12 15.2s 32/42

CNN B 2s 65.3 99.9 2.8 18.2s 32/44
CNN C 2s 53.5 99.7 8.2 22.6s 30/44

AB ([115]) 4s-8s 72 99.9 0.5 19s 38/44

Table 5.4: Performance comparison on CHB-MIT dataset considering acquisition from tempo-

ral channels.

Sensitivity Specificity FP/h # acquisition needs pre- # params
channels processing

EEGformer 65.5 99.9 0.8 4 ✗ 50.6 K
EEGformer*1 66 99.9 0.12 4 ✗ 50.6 K
AB ([115]) 72 99.9 0.5 4 ✓ 4 K
SVM ([126]) 97.34 97.5 0.63 18-23 ✓ -
KNN ([127]) 98.4 99.1 - 18-23 ✓ -
CNN ([128]) 88.14 99.62 0.2 18-23 ✗ 105 K

Table 5.5: Comparison with the state of the art on the CHB-MIT dataset.
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Figure 5.4: Percentage of detected seizures per patient with the EEGformer on the CHB-MIT

dataset.
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5.4 Deployment

Finally, we assessed the efficiency of detection based on the EEGformer, running on three dif-

ferent resource-constrained platform. The reported results show that the EEGformer is suitable

for real-time monitoring on low-power devices. To improve the efficiency of the implemen-

tation, we performed quantization to 8-bit, thus reducing the memory footprint and enabling

byte-level processing, exploiting the Quantlab software package for quantization-aware fine-

tuning [132]. For every target, we considered the most energy-efficient setup of voltage supply

and working frequency.

5.4.1 Deployment on Apollo4

We first considered a single-core platform, the Ambiq Ultra-Low-Power Apollo4 MCU [28].

Its computing resources are represented by a 32-bit ARM Cortex-M4 processor accessing a

2MB MRAM and a 1.8MB SRAM. It is particularly suitable for health-monitoring applications,

because of its power efficiency (5µA/MHz) and the possibility to tune the clock frequency

based on the application’s requirements. We exploited the CMSIS-NN library [34] to obtain

an efficient implementation of the attention layer, as it is described in [133]. We report the

inference metrics in the first column of Table 5.6. Having tuned the frequency to 96MHz, we

measured 405 ms inference time and 1.79mJ energy consumption, based on the average power

consumption measured with the Keysight N6715C DC power analyzer.

5.4.2 Deployment on GAP: exploit parallelism

The parallel structure of MHA offers the opportunity to improve the inference performance

through parallel execution. We thus considered deployment on a multi-core platform, em-

bedding a cluster of parallel RISC-V processors. The targeted devices are the GAP8 [134] and

GAP9 [29] platforms, from Greenwaves.

The GAP8 integrates nine RISC-V parallel processors, with one serving as a control proces-

sor (Fabric Controller), and eight exploited as the computing cluster. The voltage and working

frequency of the cluster can be adjusted in accordancewith the application’s requirements. The

memory hierarchy includes a 512KB L2 shared memory and a small 64KB L1 memory which
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is local to the computing cluster. Multiple DMAs enable independent and power-efficient

data transfers. This processor is built with the 55 nm TSMC LP technology, which supports

clock frequencies up to 250 MHz. As demonstrated in Figure 5.5, the MHA layer represents

the primary computational workload, which we distribute on the computing cluster, along

the heads dimension. The implementation is inspired to the one described in [133], exploit-

ing a dataflow similar to the one enforced in the CMSIS library, efficiently grouping sets of

multiply-and-accumulate operations to be completed in a single clock cycle. Figure 5.6 illus-

trates as this solution enables an almost linear speedup with the number of cores. We selected

the most energy-efficient configuration, with 65MHz clock frequency and 1V voltage supply,

and evaluated inference performance. The results are reported in Columns 2 and 3 of Table 5.6.

Despite single-core execution not beingmore energy efficient than the first implementation on

Apollo4, parallel execution allows for over 3× speedup in the overall inference time, resulting

in a 30% lower energy consumption per inference.

With an operating frequency of up to 400MHz and a design based on 22nm TSMC LP tech-

nology, the GAP9 processor represents a more advanced technological node. The available

storage space is larger, providing a 128KB L1 memory and a 1.6MB L2 memory, and the com-

puting cluster is enriched with an additional supervising core. As demonstrated in the plots

in Figure 5.7b and 5.7c, the most power efficient setup for the platform is obtained with 1.8V

supply voltage and 240MHz: the power consumption is reduced by a factor of 1.6 for parallel

execution on 8 cores, resulting in 1.11× energy saving. Thanks to the parallel execution on

the computing cluster, we are able to obtain an inference time that is equal to 22% of the one

required by GAP8, with 89% energy savings over the original Apollo4 implementation. Fur-

ther improvements to the parallel implementation, delivering a higher performance gain, are

still possible.

5.4.3 Closing remarks

The main design knobs available for the optimization of CNNs define a similar design space

also for other emerging neural models, such as the transformer. In this chapter, we presented

the hardware-oriented optimization of a transformer-based seizure detector, obtained consid-

ering the storage constraints of common commercial micro-controllers and reaching perfor-
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mancemetrics well-alignedwith the state of the art. The different choices of input data size and

topologies compared in this chapter constituted a restricted set of alternatives. Nonetheless, a

design approach based on HW-NAS, as the one described in Chapter 3, can still be applied to

this family of networks, providing the necessary updates to the tools described. In particular,

the most relevant challenge is the integration of the support for theMHA layer on the different

training engines, as well as on the quantization and code generation tools. Moreover, since

the MHA represents the main computational workload in the transformer architecture, the

latency modeling tool should also be updated to correctly estimate the hardware performance

of this particular operand, whose impact on the hardware inference efficiency is indeed non-

negligible. AsMHA is configured as a set of simpler operands, it should be considered whether

its modeling would require the introduction of a new line in Table 4.1, representing the MHA

operand, or whether it would be more convenient to separately model its components and

aggregate the final performance estimation.

Apollo4 GAP8 GAP9

1 core 1 core 8 cores 1 core 8 cores

Frequency 96 MHz 65MHz 65MHz 240MHz 240MHz

Time/inference 405ms 283.9ms 62.2ms 72.99ms 13.7ms

Total Power 4.4mW 10mW 18.1mW 11.75mW 14.11mW

Total Energy/inference 1.79mJ 2.9mJ 1.2mJ 0.57mJ 0.19mJ

Table 5.6: Inference performance on hardware.
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Chapter 6

Conclusions

We have discussed the main challenges of optimal neural network design for embedded edge-

processing and presented our research effort to provide guidelines and methodologies to effi-

ciently address them.

As a first result, we described the ALOHA design flow, as an efficient method for the evalu-

ation of large design space explorations aiming at optimal design for CNN-based edge systems.

It is able to combine the network topology and data pre-processing exploration, provide target

awareness, and consider different quantization levels. We have proposed a fast implementa-

tion, to obtain near-optimal results with a reduced exploration time, and a more detailed one,

including a more precise characterization phase to refine the performance evaluation consid-

ered during the exploration with the impact of quantization on the final CNN model accuracy.

We have considered as a reference use case the design of CNN classifiers for a KWS task to

be deployed on the SensorTile MCU and tested our selection procedure on two deployment

scenarios defined by constraints derived from the state of the art [61, 62]. We showed how

the proposed automated procedure allows us to design specifically tailored network models,

whose performance is comparable with the state of the art of CNNs for KWS: with around

30h exploration (conducted on an NVIDIA Tesla T4 GPU and an NVIDIA Tesla P100 GPU) we

obtained a CNN model improving by 1.8% the accuracy of [61], with 40% less required storage

space for weights and activations.

We further focused on the impact of platform awareness on the quality of a target-oriented

design based on NAS. Considering the need of integrating an accurate and reliable hardware
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performance evaluation in the search problem, we developed the ALOHA estimation method

to improve the accuracy of inference modeling, especially when heterogeneous and parallel

platforms are targeted. We have tested the accuracy of the obtainable performance estima-

tions considering the modeling of two target platforms, the FPGA-based NEURAghe acceler-

ator, and the GPU-based Jetson TX2 platform. The proposed method is more accurate than

the others considered for the comparison, having a similar level of complexity and develop-

ment effort, namely OPS count and the Roofline model, and can be easily integrated into a

NAS process, thus eliminating the need to train complex ML-based predictors or having to

include the hardware-in-the-loop. The average error in latency estimation is reduced by 3×,

up to 5×, while the precision of the energy consumption estimation is improved by 2×. We

evaluated the impact on a NAS process selecting optimal CNN models for image classifica-

tion, considering both reference platforms and a set of throughput constraints. Comparing

the output of independent search processes where the performance evaluation exploits our

ALOHA method, OPS count, or the Roofline model, and considering as a reference an opti-

mal scenario where direct measurements of latency stored in LUTs can be accessed, we show

that the ALOHA method allows obtaining selection outputs very similar to the optimal case,

resulting in a 4× higher predictability of the search process.

Finally, moving forward from the restricted CNN design space, we consider the optimal

target-aware design of a transformer-based seizure detector, to be deployed on low-power un-

obtrusive health-monitoring devices. We addressed the design space exploration considering

the typical storage resources of tiny MCUs and explored the most relevant parameters impact-

ing the footprint and complexity, as well as the accuracy, of the proposed transformer model.

Our resulting architecture, the EEGformer, reaches performance metrics well-aligned with the

state of the art of low-channel count detectors on the CHB-MIT dataset and it is not too far

from unconstrained detectors. It does not require any handcrafted feature extractor and it is

able to detect 73% of the examined seizure events, with 100% specificity on 35/40 tests. Finally,

we exploit quantization up to 8-bit precision and show the inference performance on three dif-

ferent hardware targets, the Apollo4 MCU and two PULP-based processors of the GAP family,

GAP8 and GAP9. The EEGformer can be executed with as low as 13.7ms and 0.19mJ and is

thus suitable for deployment on tiny monitoring devices.
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At this point, while CNN optimization benefits from pretty efficient target-oriented design

and optimization approaches, a step forward is needed to extend these benefits to emerging

architectures. The presented epilepsy monitoring use case represents a meaningful example

of an application requiring the efficient design of a transformer detector. The automation of

the design space exploration raises new challenges, due to the new operands and topologies

considered. Furthermore, the classification accuracy on a reduced validation set is not always

a meaningful metric for pre-evaluating the performance of the candidate design points. When

highly unbalanced problems, like the epilepsy monitoring task, are addressed, a more complex

definition of the target metric would be needed, where different cross-validation approaches

are considered, and the accuracy metric is replaced by more suitable ones for the evaluation

of unbalanced cases, such as sensitivity and specificity.
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