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Abstract

All mechanisms of clinical antibiotic resistance benefit from activities of polyspecific efflux 

pumps acting to reduce intracellular accumulation of toxins and antibiotics. In Gram-negative 

bacteria, the major polyspecific efflux transporters belong to the Resistance-Nodulation-cell 

Division (RND) superfamily of proteins, which are capable of expelling thousands of structurally 

diverse compounds. Recent structural and functional advances generated novel insights into 

mechanisms underlying the biochemical versatility of RND transporters. This opinion article 

reviews these mechanisms and discusses implications of the polyspecificity of RND transporters 

for bacterial survival and for the development of efflux pump inhibitors effective in clinics.
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Introduction

Bacteria adopt numerous and complex antibiotic resistance mechanisms, both intrinsic and 

acquired. Amongst these mechanisms, extrusion of antibiotics through efflux transporters is 

extremely effective. When first discovered in bacteria more than 25 years ago, multidrug 

efflux transporters were accentuated for their striking substrate polyspecificity [1,2]. Unlike 

typical poly-specific enzymes that tolerate minor modifications around chemical cores of 

compounds, polyspecificity of multidrug transporters encompassed substrates with various 

chemical scaffolds and physico-chemical properties. There is a large body of evidence that 

polyspecific efflux bestows multiple benefits for bacterial growth and proliferation. 

Polyspecific transporters are implicated in various aspects of bacterial physiology that 

require proliferation and spread into new environments including pathogenicity and 

virulence [3–6], cell-to-cell communication [7,8], biofilm formation and the efflux of 

secondary metabolites and toxic intermediates [9,10]. In clinics, polyspecificity of efflux 

pumps is the major driver for mutations needed to gain antibiotic resistance [11]. 

Polyspecificity also enables redundancy. A typical bacterial cell possesses several 

structurally and regulatory unrelated transporters able to remove the same molecule [12]. As 

a result, most genes that encode efflux pumps appear to be non-essential for bacterial growth 

[13]. For example, E. coli strains lacking up to ten various efflux pumps as well as P. 
aeruginosa lacking up to seven major efflux pumps do not have profound growth defects 

under laboratory conditions [14–17].

Among the different families of bacterial efflux transporters, members of the Resistance-

Nodulation-cell Division (RND) superfamily (Fig. 1) are the dominant efflux power of 

Gram-negative bacteria and represent a paradigmatic example of polyspecificity [18]. In this 

opinion article, we will focus only on RND transporters, highlighting recent advances in 

understanding mechanisms underlying polyspecificity of these transporters and emerging 

efflux inhibition strategies.

Efflux pumps of the RND superfamily: a paradigm of poly-specific transport

RND transporters can expel from cells an extremely broad range of compounds. Synergistic 

interactions with the low permeability barrier of the outer membrane (OM) are one of the 

enabling mechanisms of such polyspecificity. RND pumps functioning in the context of two 

membranes appear to be powerful with slowly permeating compounds even though such 

compounds are very poor substrates in biochemical terms [15,19,20]. Most RND efflux 

pumps function as tripartite complexes comprised of 1) an inner membrane (IM) RND 

transporter, 2) a periplasmic membrane fusion protein (MFP), and 3) an OM factor (OMF, 

Fig. 1). Notorious examples of these complex biological assemblies are AcrAB-TolC and 

MexAB-OprM, from Escherichia coli and Pseudomonas aeruginosa, respectively, featuring 

an IM transporter (AcrB/MexB), a MFP (AcrA/MexA), and an OMF (TolC/OprM) with 

stoichiometry 3:6:3 [21,22].

The IM protein plays a central role in the activity of the whole efflux assembly, being 

responsible for recognition and capture of compounds from within the cell and for energy 

transduction. The best characterized RND transporter is AcrB, whose structure has been 

solved both in apo and holo forms, with bound substrates and inhibitors [23]. Structurally, 
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AcrB is an asymmetric homotrimer with each protomer comprising three domains: (i) a 

trans-membrane (TM) domain in the IM, where energy conversion takes place via proton 

coupling; (ii) a pore (porter) domain located in the periplasm, where recruitment and 

transport of substrates is believed to occur (although recent works pointed to additional entry 

gates at/or underneath the TM/pore interface [24,25]); and (iii) a periplasmic funnel domain, 

which connects the RND transporter to the OM channel protein via the assembly of the MFP 

in the complete pump (Fig. 2A). Apparently, substrate transport in these proteins follows a 

“functional rotation mechanism” in which concerted cycling of the protomers occurs 

through any of the so far identified asymmetric states: Access or Loose (L), Binding or Tight 

(T), and Extrusion or Open (O) [26,27]. A recent investigation demonstrated that the 

occurrence of such functional states might depend on the assembly of the tripartite 

machinery, whereby a chaperone-like complex between the OMF and the MFP allosterically 

controls the activity of the RND transporter [28].

Two drug-binding pockets, named proximal (or access, AP) and distal (or deep binding, DP), 

were previously identified in AcrB as the main sites contributing to transport of substrates 

[26,29]. These pockets are separated by a glycine-rich loop (or switch loop) whose 

flexibility is believed to be key for drug entry into the DP [30]. The latter appears to be 

visited during extrusion by all captured compounds (Fig. 2). The pocket comprises the so-

called hydrophobic trap, HT, (lined by residues F136, F178, F610, F615, and F628), which 

is a critical recognition site for several inhibitors [31,32]. In addition to the periplasmic entry 

pathway leading from the AP to the DP, multiple entry channels have been proposed over the 

years (Fig. 2). These channels are thought to contribute to the polyspecificity of AcrB 

[24,25,33]. A prominent role of water molecules was put forward in stabilizing the binding 

of inhibitors [34] and in ensuring continuous substrate hydration on the inner surface of the 

channel leading from the DP to the funnel domain [35]. Thus, while unrelated drugs are 

sequestered by different entrance gates, screening specific interactions by water could enable 

smooth poly-specific transport within a unique duct.

RND efflux systems of Gram-negative bacteria have distinct but complementary substrate 

preferences leading to extrusion of most clinically relevant antibiotics from the bacterial cell 

(Fig. 3A). A prominent example is represented by the relevant differences in the substrate 

specificities of the clinically important RND transporters MexB, MexF and MexY of P. 
aeruginosa [36–40]. The substrate specificity of MexB is very similar to that of AcrB of E. 
coli as both proteins transport macrolides such as erythromycin, most beta-lactams such as 

carbenicillin, novobiocin, etc. In contrast, MexF is the most efficient in efflux of 

trimethoprim, chloramphenicol and fluoroquinolones, but not so much against other 

antibiotics. In addition to other antibiotics, MexY is the only pump which is also effective 

against aminoglycosides such as gentamicin or tobramycin (Fig. 3A).

These substrate preferences, however, are conditional and change depending on the 

permeability properties of the OM and the expression levels of these pumps. Clinical isolates 

overproducing either one of the MexAB-OprM, MexEF-OprN or MexXY-OprM gain 

resistance to a broad spectrum of antibiotics, although only the overexpression of MexXY 

confers clinical levels of resistance to aminoglycosides in the absence of other mechanisms 

[41]. At the same time, hyper-porination of the OM diminishes this polyspecificity due to 
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the overproduction of efflux pumps without affecting the transport of specific substrates 

[14,42]. This conditional polyspecificity implies the same underlying mechanism: a 

synergistic relationship with the OM barrier and structural flexibility of binding pockets and 

tunnels. On the other hand, the preferred substrates are pumped out with high efficiency, 

requiring only low efflux pumps expression levels and pointing to specific interactions and 

transport mechanisms [14]. Disentangling poly-specific and specific mechanisms in RND 

transporters is crucial for development of effective efflux pump inhibitors (EPIs).

Approaches to inhibition: stop the machine or prevent its assembly.

Several strategies to reduce active efflux have been proposed and pursued over the years and 

these can be grouped into three mechanistic classes: 1) prevention of efflux pump expression 

[43], 2) inhibition of efflux complex assembly [44,45], and 3) inhibition of fully assembled 

functional efflux pump [46–48] (Fig. 1B). The largest number of discovered EPIs are those 

acting on a fully assembled pump, specifically its RND component. Such EPIs are as 

structurally diverse as efflux substrates and can be identified using a variety of screening 

approaches. The first EPIs identified are cationic peptidomimetics able to penetrate the OM 

of Gram-negative bacteria and inhibit activities of various efflux pumps (Rempex 

compounds) [49] (Fig. 3b). Pyranopyridines were screened from large libraries and are 

potent inhibitors of AcrB and similar pumps in Enterobacteriales [31]. More than forty new 

efflux inhibitors, likely substrates of AcrB, were recently identified from two compound 

libraries selected for their high chemical and pharmacological diversity [48]. At least six 

structural classes of EPIs were singled out using computational methods with focused and 

pre-filtered compound libraries and E. coli AcrA as a target [44,50]. A series of 4-

substituted 2-naphthamide derivatives [51] and compounds belonging to a series of 

piperazine arylideneimidazolones [52] were shown to potentiate the action of antibiotics by 

targeting the AcrAB-TolC in E. coli. Three chemical classes of inhibitors were identified 

using in-cell screening approaches [53].

Surprisingly, many of these EPIs are also good substrates of RND pumps [54,55], raising 

intriguing questions on how the two orthogonal properties co-exist within the same chemical 

scaffold and why EPIs do not inhibit their own efflux. EPIs that are also substrates typically 

act through a competitive inhibition mechanism, which is not particularly effective for 

specific interactions, and even less so for inhibition of poly-specific transporters. In a 

classical competitive inhibition, EPIs are expected to be effective at low concentrations of 

substrates and lose their potency at saturating concentrations. It is important to emphasize 

that biochemical analyses are very challenging with efflux pumps and much of the current 

understanding of the mechanisms of EPIs is based on measurements of inhibition of 

bacterial growth. Synergy with the OM and cell killing mechanisms are crucial in the 

interpretation of such findings but often are ignored.

The best characterized and the most effective EPIs-substrates interact with the DP of RND 

pumps and are thought to inactivate the pump through the binding inside the HT of the DP 

[32,34]. Peptidomimetic, pyridopyrimidine derivative ABI-PP and pyranopyridine EPIs (Fig. 

3b), which share aromatic moieties able to form stacking bonds within the HT, apparently 

act by this mechanism. Importantly, the hydrophobicity or aromatic bonding alone are poor 
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predictors of the ability of compounds to act as EPIs-substrates. As an example, Rempex 

compounds are polar and positively charged molecules, the features characteristic for 

aminoglycoside antibiotics as well. Yet, Rempex compounds are both the substrates and 

inhibitors of MexB, while aminoglycosides are expelled only by MexY.

To explain inhibition of efflux, binding of EPIs-substrates in the DP was proposed to prevent 

conformational transitions in the transporter [32,34,56,57], the mechanism distinct from the 

classical competitive inhibition. Indeed, structural analyses showed that pyridopyrimidine 

derivative ABI-PP, as well as pyranopyridines such as MBX-2319, bind tightly to the HT 

[32,34]. More recently, cryo-EM analyses of the fully assembled AcrAB-TolC showed that a 

pre-treatment with a pyranopyridine inhibitor MBX-3132 changed the distribution of AcrB 

conformers with the majority of the apo-AcrB seen in the LLL state, whereas inhibitor-

bound AcrB was found predominantly in the symmetric TTT conformation [58]. However, if 

the blockage of the conformational rotation in AcrB is indeed the mechanism of inhibition, 

how could EPIs also be substrates that are pumped out from the cell? It seems that the 

answer to this question is in the finding that many substrates also interact with the HT, but 

this binding does not inhibit the transporter. It is possible that when two competing 

substrates enter the DP, those with affinities to the HT are expelled better, whereas the 

delayed efflux of the second compound is manifested in the apparent inhibition of the 

substrates that interact weakly with the HT.

The two mechanisms of inhibition can be distinguished in microbiological and biochemical 

assays. Interference with the conformational transitions in AcrB is expected to affect all 

substrates of a transporter and such EPIs cannot be its own substrates. In contrast, for 

competitive inhibitors, the inhibitory effect will vary depending on a paired substrate, and 

the inhibitor will be recognized by the pump as a substrate. It is more challenging however, 

to identify physicochemical features in compounds that are distinctly associated with efflux 

substrates, inhibitors and avoiders.

Recently, these authors analyzed a set of 260 Rempex compounds that have potent 

antibacterial activity against P. aeruginosa [59]. Growth-dependent and -independent assays 

were used to establish propensities of compounds to inhibit efflux, to be pumped out or to 

avoid efflux pumps. Surprisingly, depending on chemical modifications, some of the 

Rempex compounds were found to be either exclusively substrates or EPIs, whereas others 

comprised both properties in the same scaffold or were efflux avoiders/non-EPIs. Machine 

learning models using physicochemical and efflux descriptors showed that compounds with 

properties of substrates and EPIs cannot be readily distinguished from each other based on 

these descriptors, because both interact with the same sub-sites on the MexB transporter. 

However, efflux avoiders can be distinguished from EPIs-substrates. The derived efflux 

avoidance and inhibition models indicated that avoiders and EPIs-substrates exhibit different 

binding affinity with the AP and DP of MexB (Fig. 4). Among the physicochemical 

properties distinguishing the two classes are molecular shape (represented by acylindricity, 

measuring deviation from cylindrical symmetry), amphiphilicity (represented by anisotropic 

polarizability) and partition coefficient logD (Fig. 4). The propensity to be an EPI-not-

avoider increases with increasing acylindricity and anisotropic polarizability but decreases 

with increasing partition coefficient and lipophilicity. The above models were shown to be 
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predictive of such properties among compounds with unrelated chemical scaffolds [59], and 

the developed protocol can be used to effectively optimize efflux avoidance and inhibition.

Conclusions

The majority of RND transporters in Gram-negative bacteria are poly-specific, albeit to 

different degrees, suggesting that polyspecificity is an intrinsic property of their structures. 

Synergy with the low permeability barrier of the OM and variable entry tunnels leading to 

the DP are major underlying mechanisms of this polyspecificity. Their invariable presence in 

bacterial genomes supports the notion that the polyspecificity of RND transporters is a gift 

enabling environmental versatility and persistence of Gram-negative bacteria. On the other 

hand, identification of various EPIs from several structural classes suggests that such 

polyspecificity could also be a curse, because substrates are either already EPIs or can be 

converted into such through focused manipulations. Further characterization of specific and 

poly-specific mechanisms in RND transporter and identification of physicochemical 

properties distinguishing substrates and EPIs could potentially lead to new small molecule 

therapeutics controlling the activity of multidrug efflux pumps.
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Highlights

• Polyspecificity of bacterial RND efflux pumps is the key to environmental 

versatility and antibiotic resistance of Gram-negative bacteria.

• Mechanisms to achieve polyspecific transport include synergy with the outer 

membrane, multiple entry channels, multifunctional binding sites and water-

mediated substrate translocation.

• Inhibitors of RND transporters act by competing with substrates or by 

preventing conformational transitions.

• Machine learning models using physico-chemical and efflux descriptors 

represent a promising tool to identify specific and poly-specific features of 

ligand-RND interactions.
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Figure 1. 
A) Structure of the fully assembled AcrAB(Z)-TolC efflux pump of E. coli [PDB ID 5O66, 

[58]]. For each component, monomers are shown as molecular surfaces colored differently. 

Numbered lightnings indicate very approximately the targets for different inhibition 

strategies listed in B. Created with VMD1.9.3 and BioRender.com.
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Figure 2. 
A) Structure of the AcrB transporter of E. coli (PDB ID 4DX5,[29]) (modified from ([60]). 

Subdomains and secondary structural elements of the T protomer are shown in ribbons 

colored differently, and key elements putatively related to function are highlighted. The L 

and O monomers are shown as transparent surfaces. Transparent spheres indicate the 

approximate positions of TM1–2 (blue), access (green) and distal (red) binding pockets as 

deduced from co-crystallyzed structures. Residues D407, D408 and K940 lining the proton 

relay pathway within the TM region are shown as sticks colored according to their type (red 

and cyan for D and K residues respectively); B) Putative entry channels detected to date. 
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Left (adapted from [24]): Vestibule, CH1 to CH3, shown as solid channels colored 

differently within the T protomer. The exit Gate opening towards the Funnel Domain in the 

O protomer is also shown. Right (adapted from [25]): CH4 entry channel, with sidechains of 

lining residues shown as violet sticks; C) Residues lining the DPT, APL (adapted from [61]) 

and TM1–2T sites (adapted from [25]) are shown as sticks. The subscripts T and L indicate 

the Tight and Loose protomers, respectively. Phenylalanines lining the HT within the DP are 

colored in violet. D) Spatial distribution function isosurfaces (isovalues of 5 and 1 with 

respect to the average value in bulk water are shown as light cyan nets and transparent 

surfaces, respectively) of water oxygen atoms within the transport channel leading from the 

DP to the Funnel domain via the exit Gate, as seen in molecular dynamics simulations of the 

transport of doxorubicin (red and blue sticks at the beginning and end of the simulation, 

respectively) during the LTO → TOL conformational change (shown schematically below). 

The pathways traced by the center of mass of the drug are displayed as dark gray tubes. 

Residues lining the HT and exit Gate are shown as red and blue surfaces, respectively 

(adapted from [35]).
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Figure 3. 
Representative antibiotics (A) and EPIs structures (B).
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Figure 4. 
Structures of representative Rempex compounds with associated physicochemical 

descriptors, including average binding affinities for the AP and DP of MexB as predicted by 

molecular docking [59].
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