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Log-likelihood approximation in Stochastic EM
for Multilevel Latent Class Models

Silvia Columbu, Nicola Piras and Jeroen K. Vermunt

Abstract Multilevel cross-classified Latent Class Models are an extension of stan-
dard latent class for handling data in which each observation is simultaneously
nested within two groups. The likelihood associated to the model is untractable
and approximation methods such as stochastic versions of the EM can be applied.
The knowledge of a final estimate of the log-likelihood can be helpful in the evalu-
ation of parameter estimates and for selection purposes. We propose two alternative
log-likelihood approximation procedures and test their performances in the Hierar-
chical Multilevel Latent Class Model for which a finite estimate of the likelihood is
provided through a special version of the EM.
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1 Introduction

Latent Class Models can be extended to deal with multilevel cross-classified (CC)
data structures in which units are simultaneously grouped within multiple higher
level units (for example, children nested within both schools and neighborhoods).
A similar extension is that of Hierarchical Multilevel Latent Class (MLC) (see [3])
where it is considered the nesting of each observation within a single group. Un-
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like the MLC, in the cross-classified context the presence of a double missing data
structure at the higher level causes the intractability of the derived log-likelihood
that cannot be factorized as a product of the mixing probabilities. To overcome this
issue, in [1] we have proposed the implementation of a Stochastic version of the EM
algorithm including a Gibbs sampler between the E and the M step. The Gibbs step
consists in the consecutive sampling from marginal posterior distributions of higher
and lower level latent variables. This sampling procedure generates an irreducible
Markov chain with a unique stationary distribution concentrated around the max-
imum likelihood parameter estimates. Therefore, our estimation procedure, unlike
what happens in the MLC (see [3]), does not provide a finite estimate of the maxi-
mum log-likelihood.
The availability of such a finite approximation would be useful in the assessment
of convergence of the estimation algorithm as well as in the definition of global
model selection procedures based on the BIC. In this work we propose an approach
to obtain a good approximation of the maximum of log-likelihood moving from the
Markov chains obtained in the stochastic estimation algorithm. Given the finite esti-
mate of maximum log-likelihood in the MLC setting, we propose to assess the best
approximation procedure in stochastic versions of EM algorithms by performing
comparative simulation studies in that frame. These results can then be extended to
the Multilevel cross-classified latent class (MCCLC) formulation.

2 Log-likelihood approximation

The estimation of parameters in latent class models usually involves the introduc-
tion of the complete data log-likelihood, known in a classification context also as
classification log-likelihood (CL). Its expression can be directly linked to the log-
likelihood itself and therefore used to derive an approximation once that an estima-
tion of model parameters is plugged in. In fact, following [2], the log-likelihood can
be expressed as

logL(θ̂) =CL(θ̂)+EN(θ̂) (1)

where CL(θ̂) is the classification log-likelihood which is equivalent to the expected
complete log-likelihood once the classification is given and EN(θ̂) is an entropy
term which gives a measure of the separation of classes in the data. Their analytical
expression depends on the specific model assumed. In particular, in this contribution
we will consider the application of such a decomposition to estimate the maximum
of the log-likelihood in two multilevel extensions (MLC and MCCLC) of latent class
models. In what follows we will remind model formulations and their corresponding
CL and EN expressions.

Log-likelihood approximation for MLC Let Yi jk be the response on item i (i =
1, ..., I) of individual or first level unit j ( j = 1, ...,nk) belonging to the group level
units k (k = 1, ...,K). Following [3], we consider two sets of discrete latent vari-
ables X jk and Wk with associated ℓ (ℓ = 1, ...,L) latent classes of level-1 and h
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(h = 1, ...,H) of level-2. In this framework the model is described by two sepa-
rate equations for the second level units and for the first level units, with resulting
log-likelihood

logL =
K

∑
k=1

log
H

∑
h=1

P(Wk = h)
nk

∏
j=1

[ L

∑
ℓ=1

P(X jk = ℓ|Wk = h)P(Y jk|X jk = ℓ)

]

The set of model parameters is θ = {πh = P(Wk = h),πℓ|h = P(X jk = ℓ|Wk =
h),πyi|ℓ = P(Y jk|X jk = ℓ)}, where last ones are probability distribution parameters.
Following [4] the Classification Log-likelihood for the estimated parameters, is
computed as

CL(θ̂) =
K

∑
k=1

H

∑
h=1

P(Wk = h|yk) log(P(Wk = h))

+
H

∑
h=1

n

∑
j=1

L

∑
ℓ=1

P(Wk = h,X jk = ℓ|yk)log(P(X jk = ℓ|Wk = h)P(Y jk|X jk = ℓ))

where P(Wk = h,X jk = ℓ|yk) = P(Wk = h|yk)P(X jk = ℓ|y jk,Wk = h), while the En-
tropy (EN) term is

EN(θ̂) =
K

∑
k=1

H

∑
h=1

−P(Wk = h|yk) log(P(Wk = h|yk))

+
H

∑
h=1

n

∑
j=1

L

∑
ℓ=1

−P(Wk = h,X jk = ℓ|yk)log(P(X jk = ℓ|Wk = h,yk))

Log-likelihood approximation for MCCLC The extension of MLC models to
cross-classified structures requires the introduction of a third latent variable for
level-2 memberships (Zq) as well as a corresponding set of latent classes q (q =
1, ...,Q) (see [1]). The expression of the log-likelihood becomes:

logL(θ) = log
H

∑
h1=1

H

∑
h2=1

· · ·
H

∑
hK=1

R

∑
r1=1

R

∑
r2=1

· · ·
R

∑
rQ=1

K

∏
k=1

P(Wk = hk)
Q

∏
q=1

P(Zq = rq)×

nkq

∏
j=1

[
L

∑
ℓ=1

P(X jkq = ℓ|Wk = hk,Zq = rq)P(Y jkq|X jkq = ℓ)

]
,

so that the Classification Log-likelihood and the Entropy are computed as

CL(θ̂) =
K

∑
k=1

H

∑
h=1

P(Wk = h|yk)log(P(Wk = h))+
Q

∑
q=1

R

∑
r=1

P(Zq = r|yq)log(P(Zq = r))

+
H

∑
h=1

R

∑
r=1

n

∑
j=1

L

∑
ℓ=1

P(Wk = h,Zq = r,X jk = ℓ|y jkq) log(P(X jkq = ℓ|Wk = h,Zq = r)P(Y jkq|X jkq = ℓ))



4 Silvia Columbu, Nicola Piras and Jeroen K. Vermunt

with P(Wk = h,Zq = r,X jkq = ℓ|y jkq) = P(Wk = h,Zq = r|y jkq)P(Xkq = ℓ|y jkq,Wk =
h,Zq = r), and

EN(θ̂) =
K

∑
k=1

H

∑
h=1

−P(Wk = h|yk)log(P(Wk = h|yk))+
Q

∑
q=1

R

∑
r=1

−P(Zq = r|Yq)log(P(Zq = r|yq))

+
H

∑
h=1

R

∑
r=1

n

∑
j=1

L

∑
ℓ=1

−P(Wk = h,Zq = r,X jk = ℓ|y jkq) log(P(X jkq = ℓ|Wk = h,Zq = r,y jkq))

3 Estimation and assessment of log-likelihood approximation

With the aim of assessing the performances of the estimation obtained through the
decomposition in (1), in the MLC we use two estimation approaches, the upward-
downward EM proposed in [3], and a Stochastic version of the EM (SMLC). The
finite estimation obtained with the first version is compared with the approximated
one in two separate simulation studies for binary and categorical observations.
The SMLC algorithm scheme is the following, after initialization of πh,πℓ|h,πyi|ℓ ,
iterate the following sampling steps:

SE step:

1) Draw w(t) from a Multinomial distribution with probabilities

P(Wk = h|yk) =
πhP(Yk|Wk = h)

P(Yk)
, where P(Yk|Wk = h) =

nk

∏
j=1

P(Y jk|Wk = h)

2) Draw x(t) from a Multinomial distribution with probabilities

P(X jk = ℓ|y jk,w(t)) =

[
πℓ|hP(Y jk|X jk = ℓ)

]wh
jk

P(Y jk)

M step:

πh =
∑K

k=1 wh(t)
k

K
, πℓ|h =

∑n
j=1 wh(t)

jk xℓ(t)jk

∑n
j=1 wh(t)

jk

, πi|ℓ =
∑n

j=1 xℓ(t)jk yi jk

∑n
j=1 xℓ(t)jk

.

with wh
k binary indicator of units’ membership at higher level, xℓjk binary indicator

of units’ membership at lower level and wh
jk the expansion of higher level latent

class indicators over the first level units j. Final estimates are then calculated as the
mean over the total number of iterations after a burn-in period.
Following the Iterative scheme of the stochastic EM the final computation of CL
and EN can be performed following two different approaches:

(a)taking θ̂ as the mean over the iterations of the stochastic algorithm
(b)plugging-in the current θ (t) parameter values at each iteration and computing the

final CL(θ̂) and EN(θ̂) as average over the iterations.
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To evaluate the goodness of these different approaches we have performed two sim-
ulation studies each including 50 synthetic datasets with K = 50, nk = 30 (number of
units per group) and a fixed number of classes L = 4, H = 3. A total of 500 iterations
were considered in the SMLC implementation, including 150 as burn-in period. In
simulation 1 six binary indicators were generated, in simulation 2 we generated six
categorical variables: two binary, two with three modalities and two with four. In
Table 1 the results of both simulations scenarios are summarised through the aver-
age absolute error resulted in the comparison of the approximated values of logL, as
decomposition in the sum of CL and EN, obtained by applying the two approaches
proposed, and the finite values of the three components in (1) obtained through the
EM, computed with LatentGOLD 6.0 software (see Table 2).
Results from simulations show that the approximation of log-likelihood values com-
puted through approach (a) are preferable, in terms of the error produced, than those
given from approach (b). More specifically, we observe that the estimates though ap-
proach (b) are to be preferred in the approximation of the CL component, whereas
the other approach works better for the approximation of EN.

Table 1 Average absolute errors in the comparison between Stochastic EM approximation and
EM finite estimate

Log-likelihood CL EN

Simulation 1

Approach (a) 1.88 11.00 9.30
Approach (b) 11.14 7.15 14.42

Simulation 2

Approach (a) 1.08 10.35 9.69
Approach (b) 14.79 8.76 17.67

Table 2 Average values for Log-likelihood, CL and EN computed with LatentGOLD 6.0

Log-likelihood CL EN

Simulation 1 -5552.33 -6221.07 668.74

Simulation 2 -8062.26 -8655.73 593.47

4 The case of MCCLC models

In the extension to cross-classified data structures the estimation algorithm takes
into consideration the simultaneous belonging of observations to Wk and Zq level-2
latent variables, see [1]. In the stochastic algorithm the first point of SE step becomes

1.1) Draw w(t) from a Multinomial distribution with probabilities
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P(Wk = h|yk,z(t−1)) =
πhP(Yk|z(t),Wk = h)

P(Yk|z(t))
,

P(Yk|z,Wk = h) =
QK

∏
qk=1

R

∏
r=1

[
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

]zr
q

;

1.2) Draw z(t) from a Multinomial distribution with probabilities

P(Zq = r|yq,w(t)) =
πrP(Yq|w(t),Zq = r)

P(Yq|w(t))
,

P(Yq|w,Zq = r) =
KQ

∏
kq=1

H

∏
h=1

[
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

]wh
k

.

In this case, the computation of CL and EN terms requires the knowledge of the
double joint posterior probability P(Wk = h,Zq = r|ykq) which cannot be factorised
as product of the conditional probability of each higher level latent class. The esti-
mation through the approach (b) proposed in Section 3 can be performed running an
additional Gibbs sampler at each iteration of the stochastic EM, with πh and πr set to
their current values π(t)

h and π(t)
r . In this case steps 1.1) and 1.2) are repeated several

times and that probability is given as mean of the samplings over these iterations.

5 Conclusions

We have provided preliminary results on the study of likelihood approximations in
stochastic EM for multilevel latent classes with the aim of extending these insights
to situations in which no finite likelihood estimate is available. The simulations in
the hierarchical model have suggested that the best likelihood approximation is ob-
tained taking approach (a). We assume that this behaviour is also valid in the cross-
classified extension where a double sampling is performed at level-2. In this case the
choice of approach (a) over (b) is particularly convenient in terms of computational
complexity, indeed it is sufficient a single Gibbs sampling at each E step.
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