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Recent developments revealed an error in Lerisson et al. (2020), which propagates into
Ledda et al. (2020). The mistake, reconducted from Lerisson et al. (2020), stems from
the fact that the normalization of the curvature involves two independent length scales,
which we erroneously assumed to be identical in the rest of this series of papers. The

presence of the parameter hN

lc
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assumed to be ℓ̃∗c = 1. The correct expression of the full curvature reads:
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Since the incorrect expression was employed in Ledda et al. (2020) (equations (3.3) and
(A1)), some clarifications should be made about the validity of the results.
The numerical simulations of Section 3.2 (and in particular Figure 3) are valid only for

the case ℓ̃∗c = 1. However, the discussion about the effect of the linear advection velocity
u = cot θℓ̃∗c remains valid.
In Section 4, the performed linear stability analyses are valid again only for the case

ℓ̃∗c = 1 (Figures 4, 5, 6, 7). For each value of ℓ̃∗c , a different rivulet profile is identified (see
corrigendum of Lerisson et al. (2020)), and thus the statement about the uniqueness of
the rivulet in Section 4.1 needs to be rectified. We complete the analysis by reporting
in Figure 1 of this corrigendum the results of the linear temporal and spatial stability
analyses for different values of ℓ̃∗c . We recall that the perturbation with respect to the
rivulet profile is assumed of the form η = η̂(y) exp[i(kxx − ωt)]. The temporal stability
analysis (i.e. kx ∈ R is fixed and one looks for ω ∈ C) shows a reduction of the temporal
growth rate Im(ω) as ℓ̃∗c increases. This reduction yields to the complete quenching of
the secondary instability for sufficiently large u and ℓ̃∗c (Figure 1). Similarly, the spatial
stability analysis (i.e. ω ∈ R is fixed and one looks for kx ∈ C) shows an analogous
reduction of the spatial growth rate −Im(kx) with ℓ̃∗c . In contrast, Re(ω) in the temporal
approach and Re(kx) in the spatial one do not vary significantly with increasing ℓ̃∗c .
An increase of ℓ̃∗c leads to a decrease of the film thickness and thus of the hydro-

static pressure gradients due to the gravity component normal to the substrate. As a
consequence, the growth rates are reduced and the flow is thus stabilized. However, the
quantities Re(ω) and Re(kx) are directly related to the advection of perturbations, which
is dominated by u.
The results of Section 5 are updated with the corrected theoretical amplifications.

Following the procedure outlined in the paper, the theoretical amplification follows the
same trend as the experimental one, without the need to fit the initial amplitude at x = 0,
that is now simply assumed to be the saturation value of the optical sensor, varying
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slightly from one set of experiments to the other (see Figure 2 of this corrigendum).
However, we have now included errorbars in Figure 2 of this corrigendum (replacing
Figure 9 of the original paper), which reflect the relative tolerance in the measurement
of ∆ and hN/ℓc of 15%. This relates to the experimental error due to the undersampling
in the identification of the position of the maximum thickness of the rivulet, since the
resolution in the spanwise location was ≈ 1mm, while the rivulet thickness varies from
h = 1.5 to h = 1.7 in a region of ≈ 1.5mm extension. Besides, the relation (5.1)b of the
original manuscript is now an approximation, since 1.65 < max(h) < 1.71 as ℓ̃∗c varies,
which gives a supplementary uncertainty of ≈ 4% on max(h) and therefore on hN .
Despite the assumptions reported in the paper and these uncertainties, the trends are

very similar and thus the correlation between theoretical and experimental amplification
is confirmed. We have also updated Figure 10 (Figure 3 of this corrigendum) to include the
marginal stability threshold below which perturbations are damped. The experimental
values of ∆ and hN/ℓc are mean values in the 15% uncertainty region mentioned earlier.
A good agreement is observed between the theoretical onset of the instability and the
growth of lenses on the rivulets. Note that the correlation between experiments and
theory and the trends are more convincing in this corrected version than in the original
manuscript. The main result of this corrigendum is the existence of a theoretical threshold
below which rivulets are stable, in complement to the previous conclusions.
The results of Section 6 remain valid since in the linear and weakly non-linear models

the curvature is linearized. While this does not modify the discussion, it should be
specified in Figure 13 that the fully-non linear simulation was performed with ℓ̃∗c = 1.
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Figure 1. Results of the linear stability analysis for varying ℓ̃∗c . (a) Temporal stability analysis:
temporal growth rate as a function of kx. (b): Spatial growth rate from the spatial stability
analysis (lines) and from the Gaster transformation (circles) as a function of ω. (c) Real part
of the complex frequency from the temporal approach as a function of kx. (d) Variation of

Re(kx) with ω, for the spatial approach. (e) Most unstable mode for u = 0.7 and varying ℓ̃∗c ,
real (solid lines) and imaginary (dashed lines) parts, for the temporal approach. The different

colours correspond to ℓ̃∗c = 1 (blue), ℓ̃∗c = 1.1 (black), ℓ̃∗c = 1.25 (red), ℓ̃∗c = 1.43 (maroon),

ℓ̃∗c = 1.67 (cyan), ℓ̃∗c = 2 (green), ℓ̃∗c = 2.5 (purple), ℓ̃∗c = 3.33 (yellow), ℓ̃∗c = 5 (orange), ℓ̃∗c = 10
(light blue).



4 P.G. Ledda, G. Lerisson, G. Balestra, F. Gallaire

0.4 0.6 0.8 1
10

-4

10
-2

10
0

0.4 0.6 0.8 1
10

-4

10
-2

10
0

0.4 0.6 0.8 1 1.2
10

-4

10
-2

10
0

0.4 0.6 0.8
10

-4

10
-2

10
0

0.3 0.4 0.5 0.6 0.7 0.8
10

-4

10
-2

10
0

0.2 0.3 0.4 0.5 0.6
10

-4

10
-2

10
0

Figure 2. Values of ∆ (blue dots) as a function of hN/lc, for different values of θ. The black
horizontal line denotes the plateau value due to the resolution of the optical sensor. The red
lines denote the amplification estimated using the spatial stability analysis of §4.4 and the size
of the plate, i.e. ∆ = ∆0 exp (−Im (kx)L), with initial amplitude the saturation value of the
optical sensor.
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Figure 3. Results of the analysis in the (θ, hN/lc) plane: experimental measurements of ∆
(coloured dots) and inlet disturbance amplification ∆/∆0 = exp(−Im(kx)L) evaluated by the
spatial stability analysis of Section 4.4 (blue iso-contours). The red solid line denotes the
iso-contour Im(ω) = 0, which identifies the marginal stability threshold.


