
Vol.:(0123456789)

 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

Discover Computing

Research

Leveraging transformers architectures and augmentation for efficient
classification of fasteners and natural language searches

Nino Cauli1 · Marco Murgia1 · Diego Reforgiato Recupero1,2 · Giuseppe Scarpi2

Received: 12 September 2023 / Accepted: 17 May 2024

© The Author(s) 2024   OPEN

Abstract
A primary concern in the realm of mechanical engineering is to ensure the efficient and effective data entry of hardware
devices. Fasteners are mechanical tools that rigidly connect or affix two surfaces or objects together. They are small
and often different fasteners might look similar; it is therefore a long and prone-to-risk procedure to manually analyze
them to classify and store their related information. With the widespread diffusion of AI frameworks in several domains,
equipment manufacturers started to rely on AI technologies for these heavy tasks. Automatically classifying fasteners
by type and extracting metadata from natural language questions are important tasks that fastener manufacturers and
suppliers encounter. In this paper, we address these challenges. To address the first task, we introduce an augmentation
methodology that starts with a small set of 3D models representing each of the 21 types of fasteners we aim to classify.
This methodology efficiently generates multiple 2D images from these models. Next, we train a vision transformer using
the collected data to address a single-label multi-class classification task. For the second task, we introduce a prompt-
engineering technique designed for conversational agents. This technique leverages in-context knowledge to extract
(metadata field, value) pairs from natural language questions. Subsequently, we tackle a question-answering task to
the description fields of the extracted fasteners. Our evaluation demonstrates the effectiveness of both approaches,
surpassing the baselines we tested.

Keywords  Recommendation · Transformers · Natural language processing · E-Recruitment

1  Introduction

A primary concern in the realm of mechanical engineering is to ensure the efficient and effective data entry of hardware
devices. Fasteners such as bolts, nuts, and washers are devices that attach one thing to another or hold something in
place. The cost of a single fastener is typically just a few cents or fractions of a Euro. Due to their small size and often
similar appearance, manually classifying these elements and storing their related information is a laborious and error-
prone procedure.

Historically, the automatic optical inspection [1] has been the preferred solution for the analysis of fasteners. This
involves specialized machinery capturing images of the components under examination, comparing them to reference

Nino Cauli, Marco Murgia, Diego Reforgiato Recupero and Giuseppe Scarpi have contributed equally to this work.

 *  Diego Reforgiato Recupero, diego.reforgiato@unica.it; Nino Cauli, nino.cauli@unica.it; Marco Murgia, m.murgia98@studenti.unica.it;
Giuseppe Scarpi, giuseppe.scarpi@r2msolution.com | 1Department of Mathematics and Computer Science, University of Cagliari, Via
Ospedale 72, Cagliari 09124, Italy. 2R2M Solution S.r.l., Via Fratelli Cuzio, 42, Pavia 27100, Italy.

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

models, and providing an automatic classification of their types using unsupervised approaches for subsequent analysis
of various kinds.

However, with the increasing standards for quality, equipment manufacturers are increasingly shifting towards AI-
based systems. These systems offer improved performance related to the capability to identify the fastener type and
even respond to questions about them.

A recurring challenge in working with AI systems is the requirement for large datasets containing diverse images of
each fastener type for effective classification, as noted by manufacturers [2]. Managing diverse fastener metadata (e.g.,
type, description, etc.) typically involves utilizing a database. However, this alone is insufficient. Adding new samples to
the database can be labor-intensive and error-prone. Additionally, retrieving existing samples is often time-consuming,
necessitating the specification of numerous details.

Building upon these open issues, we endeavored to develop original solutions by leveraging cutting-edge technolo-
gies to support operators. It is important to emphasize that human involvement remains irreplaceable in these tasks.
However, AI can play a vital role in assisting human operators, streamlining processes, and reducing the likelihood of
errors.

In line with this approach, this paper presents a novel methodology we have developed to automate the classification
of fasteners and efficiently retrieve candidate fasteners based on natural language queries. To the best of our knowledge,
we are the first to propose a solution addressing these two tasks specifically within the domain of fasteners.

During the data entry phase, for each fastener, we equipped operators with a Vision Transformer (ViT) [3]1 specifically
trained to identify the type of fastener. The type was just one of several metadata attributes included for each fastener in
the database. As we will discuss later, training the ViT posed challenges due to the limited availability of non-commercial
fastener images online. We adopted a novel approach that proved highly effective and has potential applicability in simi-
lar contexts once validated. Specifically, we generated a large dataset of images corresponding to 21 different types of
fasteners. To accomplish this, we began with a small number of 3D image samples found online for each fastener type.
Using the Unity framework, we created multiple 2D versions by systematically varying characteristics such as background,
scene illumination, resolution, and more.

Next, leveraging a database containing various fasteners with associated metadata (including type and description),
we addressed a question-answering task when presented with a natural language query about a fastener. Initially, we
retrieved a list of appropriate candidate fasteners based on the query, followed by applying state-of-the-art transformers
fine-tuned for question-answering to extract relevant information. This list comprised fasteners whose metadata aligned
with details extracted from the natural language question. For example, from the question “Can you describe where M10
copper bolts are used?”, the system should retrieve the following {metadata field, value} pairs: {fastener, bolt}, {materials,
copper}, {thread_type, M10}.

To streamline data retrieval, we employ effective prompt engineering techniques [4] tailored for use within conver-
sational agents, utilizing domain-specific context. The baseline against which we compared our proposed technique
involves directly generating SQL queries from a natural language sentence using fine-tuned transformers [5].

Our evaluation of the image classification task and metadata retrieval demonstrates two key findings: (i) the collected
dataset and employed vision transformer achieve high F1 values; (ii) the effectiveness of our proposed approach for
extracting metadata from natural language queries, as evidenced by results from the question-answering task applied
to fastener descriptions. As additional contributions, we are releasing the set of 2D images produced, along with the
questions used for question-answering and the prompts employed.

The remainder of this paper is organized as follows. Section 2 provides past works about two concepts: (i) the appli-
cation of vision transformers to image classification tasks and (ii) the different ways to employ transformers (through
fine-tuning for machine translation tasks) and large language models (through appropriate prompt engineering strate-
gies) for translating natural language questions in SQL queries. Section 3 discusses the two research tasks we target in
this paper. Regarding the first task, Sects. 4 and 5 detail the innovative methodology used to collect the fastener dataset
and the vision transformer along with its parameters that were utilized. Sect. 6 outlines the approach we proposed to
address the second task. In Sect. 7 we report the evaluation we have carried out for the two tasks. Finally, in Sect. 8, we
conclude the paper with final remarks and discuss future directions.

1  https://​huggi​ngface.​co/​docs/​trans​forme​rs/​model_​doc/​vit.

https://huggingface.co/docs/transformers/model_doc/vit

Vol.:(0123456789)

Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8	 Research

2 � Related work

In this section, we will illustrate recent works about vision transformers used for image classification, fine-tuned transformers
for translating natural language questions in SQL, and prompt engineering techniques to extract metadata from text using
large language models [6].

The seminal work about vision transformers has been performed by authors in [3]. They applied a typical Transformer
directly to images. To do this, they divided an image into patches and fed the series of their linear embeddings into a Trans-
former. Image patches are handled in the same manner as tokens (words) in Natural Language Processing applications.
Moreover, the authors used supervised learning to train the model for image classification and proved that the tested vision
transformer outperformed competitors on different datasets such as ImageNet, ImageNet-ReaL, CIFAR, and VTAB. Other
authors have then applied vision transformers for video classification [7]. From the input video, their model extracts spatio-
temporal tokens, which are then encoded by a number of transformer layers. Different variations of the proposed model are
tested to factorize the spatial and temporal dimensions of the input with the aim to manage the lengthy token sequences
found in the video. The work published in [8] describes a review of papers about the vision transformers distinguishing each
of them by the addressed task. The advantages and disadvantages of each mentioned method and future research directions
for vision transformers are analyzed and discussed. Other relevant works about vision transformers are [9–11].

Due to its practical applicability in creating natural language interfaces to database systems and its capacity to trans-
late the semantics of natural language into SQL queries, text-to-SQL [12] has gained interest from both the natural
language processing and database sectors. Encoding natural language meaning, decoding to SQL queries, and trans-
lating the semantics between these two forms are the main issues in text-to-SQL. In general, given an input sentence
in natural language, two techniques that are commonly used to extract information from a database are: (i) fine-tuning
a transformer for a dedicated machine translation task (from natural language text to SQL); and (ii) using in-context
learning and asking the conversational agent to return the (database field, value) pairs out of a sentence in natural lan-
guage. Authors in [13] presented a systematic overview examining current developments in text-to-SQL for datasets,
methodologies, and assessment. Whether or not one strategy is better than the other is still a point where different
researchers are working. In [4], authors tried to shed light on this problem and compared the generalization of few-shot
fine-tuning and in-context learning to challenge datasets. The outcome of the analysis demonstrates that well-tuned
language models can in fact generalize effectively across domains. Moreover, both methods generalize similarly; they
display considerable variation and depend on factors like model size and the number of examples, highlighting the fact
that effective task adaptation is still a difficult process. Other authors heavily analyzed in-context learning and found
different use cases to jailbreak questions given to ChatGPT across eight prohibited scenarios [14]. The study emphasizes
the significance of prompt engineering in jailbreaking large language models and explores the difficulties in creating and
preventing effective jailbreak prompts. Other authors have described in [15] a catalog of prompt engineering techniques
to be used to solve common problems during an interaction with large language models. First, they offer a framework
for identifying patterns for organizing prompts to address a variety of problems so that they can be customized for use
in various domains. Second, they offer a list of patterns that have been used to enhance the results of large language
model talks. Thirdly, they describe how many patterns may be combined to create prompts and provide examples of
how some patterns can be improved by being combined with others.

To the best of our knowledge and distinct from existing literature, we are the first to apply vision transformer technology
to the single-label multi-class classification of fasteners. We trained this model using a gold standard dataset of 2D images
representing 21 different fastener types, generated from a few samples of 3D models for each type. The high F1 scores
achieved in our evaluation against real-world 2D images underscore the effectiveness of our augmentation methodology.

Subsequently, we utilized various prompt engineering techniques to efficiently extract (metadata field, value) pairs
from natural language questions related to a collection of fasteners stored in a database alongside their metadata.

3 � Tasks definition

This paper sets out to address two distinct tasks. The initial task pertains to a single-label multiclass classification problem
within the domain of object categorization. More in detail, our objective is to categorize 21 specific fasteners2:

2  A fastener is a mechanical device, often made of metal or plastic, that is designed to physically connect or secure two or more items. Com-
mon examples include bolts and nuts.

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

•	 Bolts with cylindrical head and three types of insets: slot (DIN3: 84), shoulder-slot (DIN: 923), hex (DIN: 912);
•	 Six other kinds of bolts: countersunk head with hex inset (DIN: 7991), eyed (DIN: 444), hexagonal head (DIN: 914),

raised countersunk with slot inset (DIN: 964), set screw bolt (DIN: 417), thread insert bolt (DIN: 7965);
•	 Five types of nuts: castellated (DIN: 935), grooved (slotted) (DIN: 1804), hexagonal self-locking (DIN: 985), winged

(DIN: 315), hexagonal (DIN: 936);
•	 Blind rivet (DIN: 7337);
•	 Four securing elements: circling for bore (DIN: 472), circling for shaft (DIN: 471), serrated internal (DIN: 6798), with tab

lock (DIN: 462);
•	 Split-pin (DIN: 94);
•	 Plain washer (DIN: 6916).

Therefore, each object in the dataset can be assigned to only one of the 21 categories. The objects we are trying to clas-
sify are typically small and may vary in minor details.

The second task we are addressing involves retrieving (metadata field, value) pairs associated with fasteners stored in
a database. This is achieved by providing a natural language query that may contain various expressions and language
nuances indicating one or more characteristics.

We are not focusing on the database and its schema because the methodology we propose is domain-agnostic and
schema-agnostic.

In the rest of the paper, we will refer to the two tasks as task 1 and task 2.

4 � The collected dataset of images

As previously mentioned, the first task falls within the scope of object categorization. It aims to differentiate among 21
types of fasteners, which often differ by small details.

The initial challenge we encountered was related to the data collection for training the transformer. This was primarily
due to the fact that a substantial portion of high-quality fastener images are copyrighted.

Data augmentation has been widely applied in several domains in the literature [16–18]. Therefore we decided to
generate our own synthetic dataset from open-source 3D models using open-source applications. However, we rec-
ognized that this approach would introduce an extra variable as training a ViT with synthetic images to categorize real
ones can be tricky.

Although the methodology is general and anyone can use any off-the-shelf tool, in our specific case we used three
software tools: Unity3D, a versatile graphics engine popular for video game development but adaptable to many other
applications; Blender, a well-known open-source software for 3D modeling; and FreeCAD, an open-source 3D CAD. Of
course, any other software can be adopted, provided it can execute the operations that we describe in the rest of the
paragraph.

As a first step, we selected publicly available CAD models4 (files with.igs and.stl extensions) for each fastener of interest.
These had to be converted to.fbx files for compatibility with Unity3D. This involved an intermediary conversion of the
CAD files into.obj files using FreeCAD, followed by a transformation of these into.fbx files using Blender. The conversion
to.obj was unnecessary for.stl files since Blender natively supports the.stl format.

Unity offers several advantages over other 3D rendering tools:

•	 It possesses a powerful and user-friendly interface designed for a wide range of users, including designers, program-
mers, artists, and researchers.

•	 In addition to the graphical user interface, it provides a powerful C# scripting API that allows for quick program
organization. It enables easy modification of objects in the scene through scripting, facilitating procedural loops to
randomize generated images. This includes adjusting camera parameters and position, light position and intensity,
objects’ pose, size and material, background, and more.

3  https://​en.​wikip​edia.​org/​wiki/​List_​of_​DIN_​stand​ards.
4  All these models are made available under the Creative Commons Attribution license and were downloaded from http://​grabc​ad.​com. We
extend our acknowledgments to the authors John Fall, Eira, Binilbabu, Rusty Smith, and Anderson Alfonso Silva.

https://en.wikipedia.org/wiki/List_of_DIN_standards
http://grabcad.com

Vol.:(0123456789)

Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8	 Research

•	 Unity offers various render pipelines, such as Built-in, Universal Render Pipeline, and High Definition Render Pipeline,
which provide high flexibility in rendering quality. They also allow for the customization of shaders in use. Users can
choose the appropriate trade-off between rendering speed and quality to obtain photorealistic images.

•	 Unity is free to use and provides a vast database of free assets in its asset store.
•	 Unity is widely utilized in computer vision research, and numerous plugins exist to assist researchers, such as the

Perception Package, Synthetic Humans, and MLAgents.

Next, we created a script for Unity3D to process 3D fastener models and generate a variety of unique 2D images from
each 3D representation.

More in detail, the features we were able to vary for each 3D image were:

•	 The angle from which to take an image, either fixed or random;
•	 The distance of the camera from the object;
•	 The background against which the photo is taken;
•	 The intensity, direction, and color of the illumination of the scene;
•	 The resolution of the generated 2D synthetic images.

We generated around 4000 images for each of the 21 types of fasteners thus collecting 84000 samples.5

In Fig. 1 we illustrate six different cad models for six fasteners whereas Fig. 2 depicts one of the 4000 generated images
for each of them. Figure 3, in particular, shows 6 different generated 2D images for the first fastener shown in Fig. 2. From
Fig. 3, it is evident that there is randomization in the camera position and distance (resulting in changes in the position
and size of the fastener in each image), as well as in the illumination direction, intensity, and color (leading to variations
in the size and color of reflections in each image).

An additional post-processing step was applied to the generated 2D image dataset to correct instances where the
fastener was not centered in the image.

5 � The used vision transformer

As far as task 1 is concerned, we used the vision transformer “vit-base-patch16–384”, pre-trained on the ImageNet-21k
dataset, which includes 14 million images and 21843 classes at a resolution of 224 × 224.6

Fig. 1   Example of six 3D
CAD models (winged nut,
self-locking nut, castellated
nut, hex bolt, seeger washer,
hex nut)

5  The set of images that we have generated is freely available at https://​drive.​google.​com/​file/d/​1eOjZ​wHwME​jO8SR​MDKMi​5hH7nW-​
o88AVB/​view?​usp=​shari​ng.

6  https://​www.​image-​net.​org/.

https://drive.google.com/file/d/1eOjZwHwMEjO8SRMDKMi5hH7nW-o88AVB/view?usp=sharing
https://drive.google.com/file/d/1eOjZwHwMEjO8SRMDKMi5hH7nW-o88AVB/view?usp=sharing
https://www.image-net.org/

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

The architecture of the used vision transformer is shown in Fig. 4. Each image is split into patches (in this case 16 ×
16 resolution). Linear embeddings are created from these patches, and positional embeddings are then added to retain
positional information. Standard learnable 1D position embeddings have been employed. Next, the classical transformer
encoder processes the resulting vector sequence as input. A token ([cls]) is then appended to the sequence to prepare
it for a classification task.

Note that the employed model (“vit-base-patch16–384k”) does not provide any fine-tuned heads. However, the model
includes the pre-trained pooler, which can be used for downstream tasks such as image classification. Therefore, the pre-
training of the model is useful for learning an inner representation of images that can then be used to extract features
useful for downstream tasks.

More details about this transformer are publicly available at [19].7

As far as fine-tuning is concerned, we chose 2e−5 as the learning rate, weight decay equal to 0.1, batch size equal to
10 and 5 epochs. The 84000 image samples we collected and mentioned in Sect. 4 have been fed to the transformer for
the fine-tuning step. We reserved 20% of the training set for the validation set.

Fig. 2   Generated 2D images
from the CAD models of Fig. 2

Fig. 3   Generated 2D images
from the winged nut model
of Fig. 1

7  https://​huggi​ngface.​co/​google/​vit-​base-​patch​16-​384.

https://huggingface.co/google/vit-base-patch16-384

Vol.:(0123456789)

Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8	 Research

6 � Extracting textual information

For task 2, our goal was to extract (metadata field, value) pairs from natural language queries related to fasteners that
are assumed to be stored in the database. In this particular context, we assume that the database was populated with
fasteners and their metadata. However, it should be noted that our methodology is universal, not contingent upon a
specific database schema. In the remainder of the paper, we will proceed under the assumption that we have stored in a
database a set of fasteners along with their metadata including binary, non-binary fields, and one description. The binary
fields are restricted to true/false values, while non-binary fields are related to a finite list of values. The description is a
textual field that we will later use for question-answering. Our search methodology leverages the OpenAI GPT-3.5 turbo
engine, which is tailored through meticulous prompt engineering to deliver the most efficacious outcomes. This part
posed a considerable challenge, given that users could stipulate any level of complexity in their query, constraining the
desired values of one or multiple fields.

The pipeline we have created assumes that:

•	 The search is restricted to non-text columns (binary and non-binary fields);
•	 For each non-text column, we describe its allowed values with the format {Column Name, Value 1 | Value 2 | ...}
•	 The database already contains items describing various fasteners, each of them with the relevant fields correctly

populated as previously mentioned.

With these assumptions, our pipeline works as follows:

1.	 With appropriate prompt engineering we instruct the conversational agent (in our case we used ChatGPT) about
the existence of the columns of our database and all the values that each column may contain. This task can be done
only once unless the metadata changes;

2.	 The user asks a question in natural language;
3.	 We then ask the conversational agent to retrieve all the key-value pairs {Column Name, values} from the input user

question. In other words, we are using the conversational agent as a very smart query analyzer and preprocessor.
4.	 We extract from the database the items that satisfy all the pairs {Column Name, values};

6.1 � In‑context learning

In this paragraph, we will give technical details about each step of the proposed pipeline.
In step (1), we explain ChatGPT the task to perform, namely to extract key-value pairs of our interest from questions

in natural language.

Fig. 4   Architecture of the
used ViT (taken from [19])

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

Here are the prompts that we used (only the relevant parts are shown)8:
Human I will propose you a list of metadata with related acceptable values. The metadata describe some features of

metallic fasteners. The format of the metadata is: Metadatum: <name of metadatum> Values: <comma delimited list
of values> Example of question: <an example of question that a human can do in natural language> Correct answer:
<list of metadata contained in the question with their respective value(s)> The difficulty is that a human will not put the
metadata names in the query. For example, if thread_code defines the type of thread in a bolt, a human would never
say “find bolts with thread_code = M3”. They will instead ask “find all M3 bolts”.

GPT Sure, I can help you with that. Please provide me with the metadata and their acceptable values, along with an
example question, and I’ll assist you in constructing the correct answer.

Human: Metadatum: fasteners Values: bolt, nut, rivet, screw, securing element, threaded plug, threaded rod, washer
Example of question: find all bolts Correct answer: {fastener:bolt}

Metadatum: material Values: steel, iron, copper, brass Example of question: retrieve fasteners in brass Correct answer:
{material:brass}

Metadatum: turned_stamped Values: turned, stamped Example of question: get all the steel nuts stamped Correct
answer: {fastener:nut material:steel turned_stamped:stamped}

Metadatum: is_coated Values: coated, non coated Example of question: get all screws in copper non coated Correct
answer: {fastener:screw material:copper is_coated:non coated}

Specialized metadata when metadatum fasteners = bolt
Metadatum: thread_type Values: M<integer from 1 to 32>, ISO<integer from 1 to 32>, ANSI <any possible ANSI code for

threads> Example of question: search all the bolts with thread 0–80 2B Correct answer: {fastener:bolt thread_type:ANSI
0–80 2B}

Metadatum: head_type Values: eye, cylinder, button, countersunk, round, ring, pan, winged, T-head, raised counter-
sunk, knurled, none Example of question: find M4 bolts with countersunk head Correct answer: {fastener:bolt thread_
type:M4, head_type:countersunk}

Metadatum: slot type Values: Straight, Phillips, Cross, Square, Torx, Hex, Pozi-drive, Robertson, Tri-wings, Span-
ner, Clutch, JIS, Pentalobe Example of question: find M3 Torx bolts in copper with cylindrical head Correct answer:
{fastener:bolt thread_type:M3, head_type:cylindrical, slot_type:Torx}

Specialized metadata when “fasteners” = nut
Metadatum: thread_type Values: M<integer from 1 to 32>, ISO<integer from 1 to 32>, ANSI <any possible ANSI code

for threads> Example of question: find M6 nuts Correct answer: {fastener:nut thread_type:M6}
Metadatum: nut_type Values: hexagon, flanged, capped, winged, caged, knurled, castellated, squared, grooved,

ringed, with washer, drive-in Example of question: find flanged M8 nuts Correct answer: {fastener:nut thread_type:M8
nut_type:flanged}

Specialized metadata when “fasteners” = washer Metadatum: washer_type Values: Standard, rosette (also called coun-
tersunk), sealing, squared, conical, contact disk Example of question: check if the database contains squared or conical
copper washers Correct answer: {fastener:washer material:copper washer_type:squared,conical}

Metadatum: diameter_ext Values: <real from 1 to 50> Example: find steel washers with external diameter 22 Correct
answer: {fastener:washer material:steel diameter_ext:22}

Metadatum: diameter_int Values: <real from 1 to 50> Example: find iron washers with external diameter 22 and
internal 10, and stamped Correct answer: {fastener:washer material:iron turned_stamped stamped, diameter_ext:22,
diameter_int:10}

Metadatum: is_knurled Values: knurled, not knurled Example: extract from DB all knurled washer in steel Correct
answer: {fastener:washer material:steel is_knurled:knurled}

GPT: (the answer confirms that GPT understood the task).

Human: I will pass you some new questions. Can you now extract the metadata and their values? I would get the answers
in format {metadatum: comma-delimited values}, for example: {fasteners: nut, washer}

8  The complete prompts are publicly accessible at http://​192.​167.​149.​18/​promp​tsFas​tener​sGPT.​txt.

http://192.167.149.18/promptsFastenersGPT.txt

Vol.:(0123456789)

Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8	 Research

For steps 2) and 3), the user proposes questions in natural language and ChatGTP extracts the corresponding pairs.
For example:

Human: Check if the database contains squared or conical copper washers.

GPT: {fasteners: washer}, {material: copper}, {washer_type: squared,conical}
Step 4 is the simple conversion of the key-value pairs into an SQL query. We omit this trivial operation.

6.2 � Question‑answering

As previously mentioned, we assume that a description field is included for each fastener sample in the database. Using
the description of the extracted fasteners as indicated at point 4 of the pipeline shown in Sect. 6, we perform a question-
answering task as follows.

1.	 While the number of retrieved fasteners is higher than 50 we perform a column-splitting strategy that filters out the
fasteners not important for the user - see below for details;

2.	 We perform extractive question-answering on the description field of the remaining fasteners and sort in decreasing
order of confidence score the obtained results.

The column-splitting strategy operates as follows. Let C be the set of the retrieved fasteners. It first computes the dis-
tribution of the values for each fastener c ∈ C along each column of the metadata. For a binary column, we will have
two values associated with a distribution whereas for non-binary columns we will have the distribution of each possible
value. For example, the field TurnedStamped (which indicates if a fastener is obtained from rotational tools like a lathe, or
stamped with metal-forming techniques) is binary and each item in the database has it set to false or true. Let us suppose
that for this field we have the split true, 35% and false, 65% meaning that 35% of the fasteners in C have true for this field
and 65% have false. On the other hand, the field FastenerType (the type or fastener) is non-binary and can assume values
like {Bolt}, {Nut}, {Screw}, {Washer} to mention some. Let us suppose that for this field the distribution of the values Bolt,
Nut, and Washer for the fasteners in C is, respectively, 26%, 31% , and 43% . For all the other fields we operate similarly and
compute the distributions as already shown. For each column, we consider the minimum value of the distributions just
calculated (e.g., 35% for TurnedStamped and 26% for FastenerType). Let this set be M. To perform the column-splitting we
choose the column with the highest value in M (e.g., 35% thus we choose the column {TurnedStamped}). Upon determin-
ing the optimal column, we query the user about their interest in the specific value of that column. The rationale for our
column-splitting approach is to eliminate the maximum number of fasteners that do not meet the user’s criteria, even if
they select the value that splits the least. In our example, if the user chooses, in the worst case scenario, false for the field
{TurnedStamped}, we could filter 35% of fasteners from C and obtain a new C ′ . If the size of the C ′ is greater or equal to
50, then the column-splitting strategy is repeated (clearly, the column {TurnedStamped} will not be a winner anymore
because it will have the same value for all the elements in C ′).

As far as the technical details are concerned, to perform the question-answering we wrote a Python script based on
the schema of the database we used. Finally, we employed bert-large-uncased-whole-word-masking-finetuned-squad,
which is a BERT large model pre-trained using a masked language modeling objective as described in [20], and fine-
tuned on the SQuAD dataset.9

7 � Evaluation

In this section, we will illustrate the performance evaluation we have carried out for the two tasks, classification, and
metadata retrieval.

9  https://​rajpu​rkar.​github.​io/​SQuAD-​explo​rer/.

https://rajpurkar.github.io/SQuAD-explorer/

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

Table 1   F1-measure,
precision, and recall for the
k-cross validation procedure
within the synthetic dataset.
Values are shown for each
of the 21 classes and their
average for the vision
transformer and a pre-trained
CNN

Name of fastener Prec Vis % Rec Vis % F1 Vis % Prec CNN % Rec CNN % F1 CNN %

Bolt countersunk hex inset 100 100 100 99 97 98
Bolt cylindrical head with

shoulder slot inset
100 99 99 99 97 98

Bolt cylindrical head hex inset 100 100 100 100 98 99
Bolt cylindrical head slot inset 98 100 99 99 99 98
Bolt eyed 100 100 100 99 99 99
Bolt raised countersunk inset 100 99 100 98 100 99
Bolt set screw 100 100 100 98 99 99
Bolt thread insert 100 100 100 99 100 99
Bolt hexagonal 100 100 100 100 99 100
Nut castellated 100 99 100 100 98 99
Nut self-locking 99 100 100 98 100 99
Nut winged 100 100 100 100 99 100
Nut-hexagonal 100 100 100 100 99 100
Nut-grooved (slotted) 100 100 100 100 100 100
Securing circling for bore 100 100 100 99 100 100
Securing circling for shaft 100 100 100 100 99 99
Securing serrated internal 100 100 100 100 100 100
Securing tab lock 100 100 100 99 99 99
Split-pins 100 98 99 98 100 99
Rivet-blind 98 100 99 99 100 99
Washer plain 100 100 100 99 99 99
Average 100 100 100 99 99 99

Table 2   F1-measure,
precision, and recall for the
210 real images (10 for each
class) and their average for
the vision transformer and a
pre-trained CNN

Name of fastener Prec Vis % Rec Vis % F1 Vis % Prec CNN % Rec CNN % F1 CNN %

Bolt countersunk hex inset 80 80 80 70 70 70
Bolt cylindrical head with

shoulder slot inset
83 50 62 70 70 70

Bolt cylindrical head hex inset 71 100 83 37 100 54
Bolt cylindrical head slot inset 69 90 78 62 50 56
Bolt eyed 100 90 95 88 70 78
Bolt raised countersunk inset 100 100 100 100 70 82
Bolt set screw 95 100 91 91 100 95
Bolt thread insert 100 90 95 69 90 78
Bolt hexagonal 100 80 89 100 20 33
Nut castellated 100 100 100 100 100 100
Nut self-locking 82 90 86 60 30 40
Nut winged 100 100 100 100 100 100
Nut-hexagonal 89 80 84 62 80 70
Nut-grooved (slotted) 91 100 95 53 80 64
Securing circling for bore 100 90 95 27 40 32
Securing circling for shaft 91 100 95 78 70 74
Securing serrated internal 100 100 100 100 40 57
Securing tab lock 100 100 100 46 60 52
Split-pins 83 100 91 91 100 95
Rivet-blind 100 80 89 100 60 75
Washer plain 100 90 95 67 20 31
Average 92 91 91 75 68 71

Vol.:(0123456789)

Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8	 Research

7.1 � Classification

We evaluated the performance of the model in two distinct ways: (i) by only using the generated dataset with a k-cross
validation with k=10; (ii) by extracting online 10 real images per fastener and testing the trained model on the result-
ing 210 real images. The metrics we adopted for assessing the performance of the model were F1 measure, precision,
and recall. The precision, recall, and F1 values that we have obtained for the first evaluation with the proposed vision
transformer and the CNN are indicated in Table 1. At each step of the k-cross validation, the two classifiers were trained
on the same portion of the training set and tested on the same portion of the test set. As the reader may notice, the
results are very high for both approaches. This outcome was expected and the reason lies within the synthetic process
that has been used to create all the elements. More curious, and practical for real case scenarios, are the results of the
second evaluation indicated in Table 2.

It shows the average results we obtained for each of the 21 classes of objects and the overall average for the proposed
vision transformer and a pre-trained CNN on imageNet which acted as a baseline10 (fine-tuned with weight decay equal
to 0.1, batch size equal to 8 and 5 epochs).

As far as the technical details are concerned, we have used Python as the programming language and PyTorch11 as the
framework, via the Huggingface API.12 The experiments have been run on a server with an RTX 3070 GPU. As the reader
may notice, the F1 values are high, especially if we consider that we are addressing a single-label multi-class classification
problem with 21 different classes. As mentioned in Sect. 3, the fasteners covered by the classification task described in
this paper are often very similar to each other making the classification in 21 different classes hard. This is reflected in the
performance, especially when considering the fastener bolt cylindrical head with shoulder slot inset and the fastener bolt
cylindrical head slot inset. These two fasteners are very similar, and the transformer struggles to correctly classify them.
This is the reason why these two fasteners have the lowest F1 scores.

7.2 � Question‑answering

The evaluation we carried out for the second task involved the creation of 100 questions13 related to a set of 1000 samples
previously stored in a database. The reader notices that the same fastener may clearly be present multiple times in differ-
ent samples as several metadata might differ (e.g., size, material, presence of defections, color, etc.). Questions were gen-
erated by a domain expert who knew all the metadata of the fasteners. Questions were of different complexity meaning
that they could contain one or more values for any field previously identified and corresponding to a database column.
For example, the question:“Can you find M10 copper bolts with a hex slot and a T-head?”is considered simple as it includes
one value for each mentioned metadata and should return the pairs:{fasteners: bolt}, {materials: copper}, {thread_type:
M10}, {slot_type: Hex}, {head_type: T-head}.Conversely, a question like:“Can you find all the bolts that are either M6 or M8,
made of steel, and have a countersunk or button head?”,is considered complex as it includes multiple values for some meta-
data and should return the pairs:{fasteners: bolt}, {material: steel}, {thread_type: M6, M8}, {head_type: countersunk, button}.

These questions have been run through the pipeline previously described in Sect. 6 and then through the question-
answering described in Sect. 6.2.

For each question we have kept the 10 results sorted in decreasing order of confidence score. Then we defined the
precision@K as the number of times the right result (the one looked for from the user) was found within the first K

Table 3   Precision@K of the
question-answering task for
the proposed approach and
the baseline

Method Precision@1 Precision@3 Precision@5

Prompt 0.78 0.86 0.95
Engineering
Fine-tuned 0.67 0.73 0.88
Transformer

10  https://​huggi​ngface.​co/​micro​soft/​resnet-​50/.
11  https://​pytor​ch.​org/.
12  https://​huggi​ngface.​co/​docs/​trans​forme​rs/​main_​class​es/​train​er.
13  Publicly available at http://​192.​167.​149.​18/​100qu​estio​nsFas​teners.​txt.

https://huggingface.co/microsoft/resnet-50/
https://pytorch.org/
https://huggingface.co/docs/transformers/main_classes/trainer
http://192.167.149.18/100questionsFasteners.txt

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

candidates. We varied K in {1, 3, 5} and in Table 3 we show the results. They have been validated by one annotator, the
same domain expert who generated the 100 questions. His tasks were to read the entire collection of descriptions of
the fasteners, and the first ten generated responses to each of the 100 questions. Then he had to: (i) assess whether all
the key-value pairs {column name, value} were correctly extracted for each question and (ii) assess where the correct
response was among the first 10 returned results.

The initial prompt resulted in 12 missing key-value pairs {column name, value}, which the annotator identified. Sub-
sequently, prompt engineering was conducted by adjusting the prompt slightly to maximize the retrieval of pairs. After
several iterations, a refined prompt was developed that successfully retrieved all key-value pairs {column name, value},
with no further missing pairs detected. This refined prompt was enhanced by incorporating examples of expected and
unexpected outcomes, leveraging metadata fields that had not been recognized in earlier iterations.

We performed the same task (retrieval of {metadata field, value} using the T5-base transformer14 and fine-tuning it
with the WikiSQL dataset. The obtained SQL queries have been manually post-processed to identify the involved data-
base fields and values. We used the semantic textual similarity15 of Sentence Transformers16 to match the SQL columns
of the generated queries with those of our database. If the similarity score exceeded 0.6, we considered the column as a
match for the underlying field. We then applied the same question-answering task to the extracted fasteners using the
identical transformer utilized in our proposed in-context-learning approach.

Table 3 shows the results of the question-answering task that we carried out on top of the descriptions of the fasteners
retrieved by the previous step using our in-context-learning approach and a fine-tuned transformer.

In our approach, correct answers were provided by the first response 78% of the time. Furthermore, the correct answer
was found within the first 3 responses 86% of the time and within the first 5 responses 95% of the time. In cases where
the correct response was not among the top 10 results, it typically appeared between the 11th and 20th response. As
previously mentioned, these errors are attributed to the limitations of the fine-tuned transformers used for question-
answering, which are beyond the scope of this paper for improvement. In contrast, the baseline approach performed less
effectively compared to our method. This performance difference suggests that the extraction of {metadata field, value}
pairs was less accurate in the baseline, likely due to using the same transformer for question-answering as our approach.

We can conclude by saying that, with the proposed in-context-learning approach, the task of extracting key-value
pairs {column name, value} was successfully executed after a proper tuning of the prompt and this improves the follow-
ing question-answering task.

8 � Conclusions and future works

In this paper, we have discussed AI-based systems for the automatic classification of fasteners and their intelligent
retrieval from a database. Two tasks have been proposed: one about image classification of fasteners and another related
to the extraction of {metadata field, value} pairs of fasteners out of a database whose entries included different charac-
teristics of fasteners. We have proposed a vision transformer trained on a collection of 2D images of fasteners to auto-
matically perform single-label multi-class classification on 21 different classes of fasteners. The augmentation technique
that we proposed starts with a few 3D samples per fastener and, by randomly varying different characteristics such as
the angle from which to take an image, the distance of the camera from the object, the background against which the
photo is taken, intensity, direction, and color of the illumination of the scene, generated a collection of 84.000 2D images.
The second task aimed at extracting {metadata field, value} pairs from a question in natural language asking specific
information about fasteners. With such a list of pairs, we could filter the database thus keeping the records with the
required information. A splitting strategy has been applied to reduce the list of candidates further. Finally, we performed
question-answering on the description field of the list of remaining candidates and sorted the results in decreasing order
of confidence value. The evaluation that we have carried out for both tasks produced impressive results indicating that
the methodologies to create the images of fasteners and to extract key-value pairs {column name, values} are effective.

While the results of our work are promising, we view them just as the tip of the iceberg. Three main objectives form
the roadmap for our future activities, enabling the evolution of our concepts and ideas:

14  https://​huggi​ngface.​co/​t5-​baseR​etrai​ning.
15  https://​www.​sbert.​net/​docs/​usage/​seman​tic_​textu​al_​simil​arity.​html.
16  https://​www.​sbert.​net/​index.​html.

https://huggingface.co/t5-baseRetraining
https://www.sbert.net/docs/usage/semantic_textual_similarity.html
https://www.sbert.net/index.html

Vol.:(0123456789)

Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8	 Research

•	 Expanding the application scope of Vision Transformer to recognize a broader range of fasteners.
•	 Enhancing the Natural Language Processing interface correspondingly.
•	 Investigating methodologies to visually recognize non-standard fasteners that do not allow a description through

standard attributes.

The first objective presents a considerable challenge, given the vast number of existing fasteners, often distinguish-
able only through small details. To train a ViT for comprehensive recognition would require an unprecedented quantity
of images. A possible approach we intend to explore involves deploying multiple ViTs, each specialized in identifying
individual components of fasteners, such as the head, thread, or slot. Alternatively, we may implement a hierarchical
recognition method, stratifying fasteners into tiers of types, subtypes, sub-subtypes, and so forth.

The second objective, though conceptually straightforward, requires the identification of additional metadata for
an extended range of fasteners - a task both intricate and time-consuming. Moreover, as the complexity of the model
increases, so does the potential for erroneous responses, making validation an increasingly critical aspect.

The final objective might seem unreachable if not for the existence of universal classification methods17 capable of
categorizing any type of fasteners based on a finite set of physical features. The application of these methods is difficult
also for a human and requires an understanding of mechanics: automating these methods with AI, albeit complex, would
bring our methodology to another level and give a concrete contribution to the manufacturing industries.

Author contributions  All the authors contributed equally to this work.

Funding  Open access funding provided by Università degli Studi di Cagliari within the CRUI-CARE Agreement. We acknowledge financial
support under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5 - Call for tender No.3277 published
on December 30, 2021 by the Italian Ministry of University and Research (MUR) funded by the European Union - NextGenerationEU. Project
Code ECS0000038 - Project Title eINS Ecosystem of Innovation for Next Generation Sardinia - CUP F53C22000430001- Grant Assignment Decree
No. 1056 adopted on June 23, 2022 by the Italian Ministry of University and Research (MUR). Moreover, this research was partially funded by:
H2020 ProjectSTAR- Novel AI technology for dynamic and unpredictable manufacturing environments (Grant Agreement 956573). H2020 Project-
Mind4Machines- Connecting machines with people, process and technology (Grant Agreement 101005711).

Data availability  The dataset of 84000 fasteners images generated for this work is freely available from https://​drive.​google.​com/​file/d/​1eOjZ​
wHwME​jO8SR​MDKMi​5hH7nW-​o88AVB/​view?​usp=​shari​ng. The complete prompt used to explain ChatGPT the task to perform are publicy
accessible at http://​192.​167.​149.​18/​promp​tsFas​tener​sGPT.​txt The set of 100 questions used for the question-answering task are publicly
available at http://​192.​167.​149.​18/​100qu​estio​nsFas​teners.​txt.

Declarations 

Ethics approval and consent to participate  Not applicable.

Competing interests  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Abd Al Rahman M, Ebayyeh A, Mousavi A. A review and analysis of automatic optical inspection and quality monitoring methods in
electronics industry. IEEE Access. 2020;8:183192–271.

	 2.	 Kim TH, Kim HR, Cho YJ. Product inspection methodology via deep learning: an overview. Sensors. 2021;21(15):5039.
	 3.	 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J,

and Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

17  An example is the Opitz classification.

https://drive.google.com/file/d/1eOjZwHwMEjO8SRMDKMi5hH7nW-o88AVB/view?usp=sharing
https://drive.google.com/file/d/1eOjZwHwMEjO8SRMDKMi5hH7nW-o88AVB/view?usp=sharing
http://192.167.149.18/promptsFastenersGPT.txt
http://192.167.149.18/100questionsFasteners.txt
http://creativecommons.org/licenses/by/4.0/

Vol:.(1234567890)

Research	 Discover Computing (2024) 27:10 | https://doi.org/10.1007/s10791-024-09443-8

	 4.	 Mosbach M, Pimentel T, Ravfogel S, Klakow D, and Elazar Y. Few-shot fine-tuning vs. in-context learning: a fair comparison and evalu-
ation, 2023.

	 5.	 Kumar A, Nagarkar P, Nalhe P, and Vijayakumar S. Deep learning driven natural languages text to SQL query conversion: a survey. CoRR,
arXiv:​abs/​2208.​04415, 2022.

	 6.	 Buscaldi D, Dessí D, Motta E, Murgia M, Osborne F, Recupero DR. Citation prediction by leveraging transformers and natural language
processing heuristics. Inf Process Manag. 2024;61(1): 103583.

	 7.	 Arnab A, Dehghani M, Heigold G, Sun C, Lucic M, Schmid C. Vivit: A video vision transformer. In 2021 IEEE/CVF international conference on
computer vision (ICCV), IEEE Computer Society: Los Alamitos, CA, USA, 2021. pp. 6816–6826

	 8.	 Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y, Yang Z, Zhang Y, Tao D. A survey on vision transformer. IEEE Trans
Pattern Anal Mach Intell. 2023;45(01):87–110.

	 9.	 Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, and Guo B. Swin transformer: hierarchical vision transformer using shifted windows. 2021
IEEE/CVF International conference on computer vision (ICCV), 2021;9992–10002.

	10.	 Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, and Guo B. Swin transformer: hierarchical vision transformer using shifted windows. In
2021 IEEE/CVF International conference on computer vision (ICCV), 2021;9992–10002.

	11.	 Yin H, Vahdat A, Alvarez JM, Mallya A, Kautz J, and Molchanov P. A-vit: adaptive tokens for efficient vision transformer. In 2022 IEEE/CVF
conference on computer vision and pattern recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA, 2022. pp. 10799–10808

	12.	 Yu T, Zhang R, Yang K, Yasunaga M, Wang D, Li Z, Ma J, Li I, Yao Q, Roman S, Zhang Z, and Radev D. Spider: a large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-SQL task. In Proceedings of the 2018 conference on empirical methods
in natural language processing, Association for Computational Linguistics: Brussels, Belgium, 2018. pp. 3911–21

	13.	 Deng N, Chen Y, and Zhang Y. Recent advances in text-to-SQL: a survey of what we have and what we expect. In Proceedings of the 29th
International conference on computational linguistics, International Committee on Computational Linguistics. Gyeongju, Republic of Korea,
2022. pp. 2166–2187

	14.	 Yi L, Gelei D, Xu Z, Yuekang L, Yaowen Z, Ying Z , Lida Z, Tianwei Z and Liu Y. Jailbreaking chatgpt via prompt engineering: an empirical
study; 2023.

	15.	 White J, Fu Q, Hays S, Sandborn M, Olea C, Gilbert H, Elnashar A, Spencer-Smith J, and Schmidt DC. A prompt pattern catalog to enhance
prompt engineering with chatgpt, 2023.

	16.	 Mumuni A, Mumuni F. Data augmentation: a comprehensive survey of modern approaches. Array. 2022;16:100258.
	17.	 Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):60.
	18.	 Alomar K, Aysel HI, Cai X. Data augmentation in classification and segmentation: a survey and new strategies. J Imag. 2023;9(2):46.
	19.	 Dosovitskiy A, Beyer L, Kolesnikov Ar, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J,

Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR. 2021.
	20.	 Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, arXiv:​

abs/​1810.​04805. 2018.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/2208.04415
http://arxiv.org/1810.04805
http://arxiv.org/1810.04805

	Leveraging transformers architectures and augmentation for efficient classification of fasteners and natural language searches
	Abstract
	1 Introduction
	2 Related work
	3 Tasks definition
	4 The collected dataset of images
	5 The used vision transformer
	6 Extracting textual information
	6.1 In-context learning
	6.2 Question-answering

	7 Evaluation
	7.1 Classification
	7.2 Question-answering

	8 Conclusions and future works
	References

