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Abstract—Several monitoring, protection, and control applica-
tions designed for modern power grids are based on detailed
grid models and thus require an accurate knowledge of line
parameters. A synchronized monitoring infrastructure based on
Phasor Measurement Units (PMUs) may be of great support to
the task of line parameters estimation, but the accuracy of the
estimated parameters may be largely affected by the uncertainty
of all the elements of the PMU-based measurement chain. Thus,
an accurate parameters estimation must appropriately consider
the metrological behavior of all these elements, and in particular
that of instrument transformers. To address this challenge, the
paper proposes an enhanced multi-branch method for accurate
estimation of the line parameters and of the systematic measure-
ment errors introduced by the instrument transformers when
measurements for multiple operating conditions are considered.
Indeed, multiple operating conditions are dealt with properly,
thanks to an in-depth analysis of the problem modeling within
the framework of Tikhonov regularization. The validity of the
proposed approach is confirmed by the results obtained on the
IEEE 14 bus test system.

Index Terms—phasor measurement units, power transmission
lines, instrument transformers, voltage measurement, current
measurement, power grids.

I. INTRODUCTION

The accurate knowledge of power grid line parameters

is the basis of most advanced management, protection, and

control applications. Nonetheless, the actual values of these

parameters may largely differ from those stored in Energy

Management System (EMS) database (see for example [1]),

depending on a number of factors, like degradation due to age,

modeling inaccuracies, etc., thus causing problems not only to

the applications underlying the functioning of EMS, but also

to the accuracy, reliability and economy of power dispatching

control [2].

Phasor Measurement Units (PMUs), thanks to their ability

to provide accurate absolute phase-angle measurements, rep-

resent an excellent tool to overcome some of the difficulties
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associated with traditional monitoring systems and have been

widely installed in recent years by many Transmission System

Operators (TSOs) all around the world. However, despite the

high accuracy of PMUs, phasor measurements are affected by

the uncertainty sources of the entire measurement chain. In

particular, the effects of Instrument Transformers (ITs), i.e.

Current Transformers (CTs) and Voltage Transformers (VTs),

may significantly affect the accuracy of the measured phasors.

Therefore, for an effective use of network parameters values,

it is necessary to apply an appropriate evaluation process,

taking into account the uncertainties of the entire measurement

infrastructure. Moreover, the estimation methods must be

based on suitable models of such uncertainty sources, so that

their effects can be properly taken into account and, if possible,

minimized.

In the context of power grid protection, the law of propa-

gation of uncertainty [3] is used, for example, in [4], where

it is discussed how the fault location results are affected

by the measurement uncertainty because the fault location

algorithms typically need to use the available transmission

line parameters. The problem of the uncertainty affecting

transmission line parameters is also addressed in [5], where

an analytical expression for the bounds of the transmission

line parameters calculated directly from PMU measurements is

derived. The same direct calculation is considered in [6] based

on field tests. Systematic and random errors contributions of

ITs and PMUs are considered, showing that the correlation

between voltage and current measurements must be properly

taken into account in the uncertainty propagation.

In the context of the line parameters estimation, several

studies addressing different aspects of such estimation problem

have been presented. Most of the papers consider only the

uncertainty of the PMUs, see for example [7]. In [8], a PMU-

based estimation of three-phase transmission line impedance

parameters is proposed, where PMUs are considered to define

the uncertainty but it is recognized that the accuracy of

the VTs and CTs must be taken into account as well for

the application of the proposal in actual grids. Other papers

consider the presence of ITs, but, mostly, taking into account

a given random uncertainty contribution, as in [9] and [10]. In

[11], for example, the availability of pre-calibrated instrument

transformers is assumed.
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In [12] the problem of simultaneous parameters estimation

and compensation of systematic measurement errors is ad-

dressed neglecting the systematic phase errors of the voltages

and the amplitude errors of the currents. In [13] the drawbacks

that arise when overlooking bias errors are discussed and a

new method is proposed by adding extra parameters in the

regression model which account for the bias errors present

in the non-calibrated ITs. Paper [14] presents a method for

calibrating VTs online using synchrophasor measurements,

finding the optimal locations where good quality measure-

ments must be added in order to bring the calibration error

of all the measurements below a predefined threshold. In [15],

revenue transducers installed on a single bus in the system

are exploited to propagate accuracy in the other nodes using

network topological information. In [16] and [17], the problem

of detection and correction of systematic errors in ITs along

with line parameter estimation using unbiased PMU data is

faced for a single branch, starting from bias error detection

tests to identify systematic errors in ITs.

In this context, this paper addresses the problem of an effec-

tive simultaneous line parameters estimation and compensation

of amplitude and phase-angle systematic errors of voltage and

current synchrophasor measurements when multiple operating

conditions are considered. No assumption is made about the

presence of pre-calibrated devices. In particular, the paper

improves the procedure proposed in [18], where the problem

was addressed in the Weighted Least Squares (WLS) sense

initially on a single branch and then on multiple branches con-

sidering few operating conditions. As underlined in [19], the

line parameter estimation problem can be under-determined

and it is necessary to exploit more snapshots of measurements

in order to obtain an overdetermined system. Furthermore, in

[20] the positive effect of adding measurements acquired in

different time instants and corresponding to different operating

conditions is highlighted, thus pointing to the importance of

including multiple measurement sets in the estimation method.

For these reasons, two or more operating conditions are used in

the literature in the formulation of line parameters estimation

problems, see for example [8], [14], [16] and [17]. In this

context, PMUs allow acquiring several measurements per

second, and thus it is important, for an estimation algorithm

based on synchrophasor measurements, to deal with many

available measurement sets.

This paper generalizes the estimation method by framing the

WLS in [18] as a particular case of Tikhonov regularization

and it thus provides a way to improve the estimation accuracy

by tackling the management of multiple loading conditions in

the estimation process. The main contributions of the paper

are: it gives a framework to provide an optimization of the si-

multaneous estimation of line parameters and systematic errors

in the presence of multiple operating conditions, it proposes

a configuration criterion for the estimation problem and it

introduces an enhanced multi-branch algorithm to leverage

PMU capabilities in this context. The proposal is based on

a detailed analysis of the estimation uncertainty.

II. ESTIMATION FRAMEWORK

A. Measurement Model and Network Constraints

A π-model as in Fig. 1 is considered for the generic branch

(i, j) of a transmission network. In this paper, for the sake of

a simpler introduction to the approach, an equivalent single-

phase model of the three-phase system is considered as in [15].

A synchrophasor measurement unit (e.g. a PMU) is assumed to

be available at each end of the line, thus allowing to measure

two voltage synchrophasors (vi and vj for the start and end

node, respectively) and two branch current synchrophasors (iij
and iji). zij = Rij + jXij is the line impedance in the π-

model, while Bsh,ij represents the shunt susceptance, which

is assumed equally divided into the two sides of the branch.

The synchronized measurements can be time-aligned and thus

represent a coordinated set of measurements referred to the

same time instant t.
The line model defines a measurement model that links the

set of measured values to the line parameters, which are not

exactly known, and to the errors that affect every measured

value. Each measured synchrophasor can be expressed as

a function of reference values (indicated in the following

equations by superscript R) and of measurement errors as

follows:

vh = Vhe
jϕh = V rh + jV xh

= (1 + ξsysh + ξrndh )V Rh e
j(ϕR

h +αsys

h
+αrnd

h )

iij = Iije
jθij = Irij + jIxij

= (1 + ηsysij + ηrndij )IRije
j(θRij+ψ

sys
ij

+ψrnd
ij )

(1)

where Vh and ϕh (with h ∈ {i, j}) are, respectively, the mag-

nitude and phase-angle measurements of node h voltage, while

Iij and θij are the measured magnitude and phase angle of the

branch current flowing from node i towards node j. Measured

current phasor iji (see Fig. 1) can be expressed in a similar

way. Superscripts r and x are used for the real and imaginary

parts of the corresponding phasors. The measurement errors

can be either systematic or random (superscripts sys and rnd,

respectively) and affect both magnitudes and phase angles of

the phasors. Indeed, the parameters ξh and ηij refer to the ratio

errors, while αh and ψij are the phase displacement errors for

the quantities in (1). The main difference between the two

error typologies is that systematic errors do not vary across

repeated measurements, while random errors give a different

contribution for each observation. In this paper, as in [18],

the idea underlying the estimation approach is that systematic

errors in the measurement chain cannot be neglected and are

Fig. 1. π-model for a generic transmission network branch and its parameters.
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thus considered unknown parameters to be estimated together

with the line parameters.

The estimation algorithm is based on the definition of the

constraints given by Kirchhoff’s laws, which allow writing

the relationships among line parameters, measured values and

measurement errors. Since the Kirchhoff’s laws are valid

among actual values, equations in (1) need to be rewritten

to explicit the reference values as functions of measurements

and errors as in [18] (see (A.27) in Appendix A for details).

The complex equations derived from voltage drop constraint

and from current balance constraint are:

(

vRi − vRj
)

= zij

(

iRij − j
Bsh,ij

2
vRi

)

(2)

(

iRij + iRji
)

=
Bsh,ij

2

(

vRi + vRj
)

(3)

where the line parameters can be expressed as a function of

their values available in the TSO database (the only known val-

ues, here indicated with the superscript 0) and their unknown

deviations from those values:

zij = R0
ij (1 + γij) + jX0

ij (1 + βij)

Bsh,ij = B0
sh,ij (1 + ρij)

(4)

where γij , βij and ρij are the relative deviations of actual

values from nominal ones. These deviations are unknown

and need to be estimated together with the other unknown

quantities. This representation allows, under realistic assump-

tions, the linearization of measurement functions and allows

introducing directly and homogeneously prior information as

discussed in the following.

Replacing (4) and (A.27) in (2) and (3) and neglecting

second order terms (see also [18]), four real-valued equations

are obtained for each branch, whose derivation and detailed

expressions are reported in Appendix A. From (A.28)-(A.31),

it is clear that each constraint can be seen as an equiva-

lent measurement that depends on the unknown systematic

errors and deviations from nominal values of line parameters

corresponding to the considered branch, and on the random

measurement errors. Considering a single branch (i, j) and

single measurement instant t (associated with the timetag of

PMU measurements), the following system of equations can

be defined [18]:

bij,t = Hij,t





































ξsysi

αsysi

ξsysj

αsysj

ηsysij

ψsysij

ηsysji

ψsysji

γij
βij
ρij


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































+Eij,t

























ξrndi

αrndi

ξrndj

αrndj

ηrndij

ψrndij

ηrndji

ψrndji

























= Hij,txij +Eij,teij,t = Hij,txij + ϵij,t

(5)

where bij,t is the 4 × 1 vector of equivalent measurements

at time t, Hij,t is the measurement matrix expressing the

linear measurement functions, while Eij,t is the transformation

matrix (Jacobian matrix) linking equivalent measurements

random error vector ϵij,t to the measurement random errors

in eij,t. xij is the vector of unknowns.

Considering multiple branches altogether (a branch set Γ of

cardinality l) at the same time, the problem can be defined

considering all the voltage constraints (2) and the current

equations (3) for all the branches (i, j) ∈ Γ. The unknowns are

thus all the systematic errors of the measurements of voltage

and current synchrophasors involved and all the line parameter

deviations of the branches. The system in (5) grows to become

a 4× l set of equations with n unknowns (vector xΓ):

bΓ,t =







bi1j1,t
...

biljl,t






= HΓ,txΓ+EΓ,teΓ,t = Hij,txΓ+ϵΓ,t (6)

where subscript Γ indicates that unknowns, equations and mea-

surements correspond to the given branch set. It is important to

notice that the number of unknowns does not increase linearly

with l since there are nodes and measurements shared among

branches. This is indeed the reason why the solution of (6)

is not the result of simple juxtaposition of individual branch

problems like (5), but it allows improving the estimation.

The estimation problem defined by (6) is typically under-

determined. However, as mentioned in Section I, multiple time

instants t1, · · · , tNt
, that is multiple synchronized measure-

ment sets, can be used and a new over-determined linear

system can be defined as follows:

bΓ=







bΓ,t1
...

bΓ,tNt






=







HΓ,t1
...

HΓ,tNt






xΓ+







EΓ,t1

. . .

EΓ,tNt













eΓ,t1
...

eΓ,tNt







= HΓxΓ +EΓeΓ = HΓxΓ + ϵΓ

(7)

where it is important to highlight that the unknown vector xΓ is

common to all the time instants, whereas measurement matrix

and random errors change with the timestamp. Due to the

high reporting rate of PMUs (up to hundreds of measurements

per second), different measurement sets can be considered

either as the result of repeated observations of the same

network load condition or as different snapshots of different

network conditions. The former scenario will be referred to as

repeated measurements in the following, while the latter will

be indicated as “operating cases” or simply “cases” since it

reflects variations in loads, generated powers, etc. Repeated

measurements obtained within a small time interval (e.g.

corresponding to 1 s or even less), can be averaged and used to

define an averaged version of (7), with averaged matrices and

vectors. This approach, which, besides minimizing the effects

of random error contributions, allows reducing the system size,

was proven to be valid in [21] and will be here adopted. Thus

the system definition from here on is based on different cases

and averaged repeated measurements for each case.

In addition to the information brought by different cases,

prior information about the unknowns is also added [18]. This

allows including the available prior knowledge, for instance,

on IT precision class and on maximum parameters variability.
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Considering the l branches and NΓ f 2l nodes in Γ, com-

bining C different operating cases (while averaging repeated

measurements) and adding prior information about unknowns,

an over-determined and augmented linear system is obtained:

btot =

[

bΓ

0n×1

]

=

[

HΓ

In

]

xΓ +

[

ϵΓ

eprior

]

= HtotxΓ + ϵtot

(8)

with bΓ ∈ R
m, HΓ ∈ R

m×n, Htot ∈ R
(m+n)×n, btot ∈

R
m+n, where m is the number of involved Kirchhoff’s con-

straints. In is the n-size identity matrix and 0n×1 is the n-

zeros vector. Then, m = 4×l×C and the number of unknowns

n includes both 2 × NΓ + 4 × l systematic errors of the

measurement chain and 3 × l line parameter deviations (if

γ, β and ρ parameters are all present in the model of each

branch). The n unknown variables can be estimated by means

of WLS, where the weight matrix is chosen as the inverse of

the covariance matrix of measurements:

Σϵtot
=





ΣϵΓ
0

0 Σeprior



 (9)

that includes:

• ΣϵΓ
∈ R

m×m, the covariance matrix of all the equivalent

measurements, defined by applying the law of propaga-

tion of uncertainty [3] to ΣeΓ
, the matrix representing the

PMU measurement uncertainties, assumed decorrelated

for all cases.

ΣϵΓ
= EΓΣeΓ

E
⊺

Γ (10)

It is worth pointing out that EΓ is a rectangular full raw

rank matrix, thus ΣϵΓ
is invertible.

• Σeprior
∈ R

n×n is the diagonal matrix including all the

prior variances of the unknowns.

The estimated state vector x̂ is thus the solution of the WLS

problem (a subscript is used to recall this):

(H⊺

totWtotHtot)x̂WLS = (H⊺

totWtot)btot (11)

where

Wtot = Σ−1
ϵtot

(12)

B. Augmented WLS as Tikhonov Regularization Problem

In the following, it is shown how the estimation method can

be framed as a particular case of Tikhonov regularization. This

approach provides a way to improve the estimation accuracy

by addressing properly multiple loading conditions, which can

be commonly observed in power grids, as described in Section

III.

The augmented WLS problem (11) can be transformed in

a Least Squares (LS) problem by means of the whitening

process:

∀ WCh ∈ R
m×m : W⊺

ChWCh = Σ−1
ϵΓ

bw ≜ WChbΓ =⇒ Σbw
= Im

(13)

Choosing as whitening matrix WCh = U
−⊺

Ch , where UCh is

the upper triangular matrix obtained by means of the Cholesky

decomposition of the matrix ΣϵΓ
, and defining L = Σ

−
1

2

eprior

(which is thus a diagonal matrix) the equivalent LS problem

is obtained:

x̂WLS = argmin
x

∥

∥

∥

∥

[

WChHΓ

L

]

x−
[

WChbΓ

0n×1

]∥

∥

∥

∥

2

2

(14)

Then, defining

y = Lx

A = WChHΓL
−1 (15)

and adding the regularization parameter µ ∈ R
+, the LS

problem becomes:

ŷµ = argmin
y

∥

∥

∥

∥

[

A√
µIn

]

y −
[

bw

0n×1

]∥

∥

∥

∥

2

2 (16)

which is equivalent to the Tikhonov regularization problem in

standard form:

ŷµ = argmin
y

∥Ay − bw∥22 + µ ∥y∥22 (17)

as it is immediate to verify by applying the normal equations

to (16). Once ŷµ has been estimated, the state x̂ including

the desired unknowns can be retrieved with a simple rescaling

(inverting the first equation in (15)).

Finally, it is possible to frame the WLS augmented prob-

lem (11) as a particular case of the Tikhonov regularization

problem where the regularization parameter µ is set to 1 and

x̂WLS = L−1ŷµ=1 (18)

thus retrieving the WLS solution from ŷµ=1 as discussed

above.

III. MULTIPLE OPERATING CASES MANAGEMENT

On one hand, [19] underlines the need to consider multiple

measurements in different operating conditions (cases), and

[20] highlights the positive effect on line parameter estimation

results of using a larger number of constraints. On the other

hand, PMUs allow acquiring several measurements per second.

The purpose of this section is to show how the management of

multiple cases in the estimation process can be optimized, thus

taking advantage of the high reporting rate given by PMUs.

A. Estimation Uncertainty Analysis

Equations (16) and (17) address the same problem. While

the first is formulated as an augmented LS problem, the second

one is formulated as a penalized problem involving two terms:

• ∥Ay − bw∥22 is the squared norm of the residual vector

and is a global index of how well the solution vector y

fits the measurement vector bw.

• ∥y∥22 is the square of the regularization term norm, which

takes into account the “energy” of the solution vector

y, that is that of the state vector x weighed with prior

information.

In both formulations it is possible to set the regularization

parameter µ in order to exploit a-priori information on the
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problem to be solved. By applying the normal equations to

(16), it follows:

(A⊺A+ µIn) ŷµ = A⊺bw (19)

and by means of the SVD decomposition of the matrix A =
UΣV⊺1, it is possible to express the analytic solution of the

estimation problem as the regularization parameter µ changes:

ŷµ = V (Σ⊺Σ+ µIn)
−1

Σ⊺U⊺bw

=
∑

σj>0

fj
u⊺

jbw

σj
vj =

∑

σj>0

gjvj = ŷTikhonov
(20)

where

fj =
σ2
j

σ2
j + µ

(21)

while uj and vj are the jth vectors in U and V, respectively.

The estimate ŷµ is obtained as a linear combination of vj ,

uT
jbw are the so-called Fourier coefficients, and fj is a “low-

pass” filter that cuts down components corresponding to σ2
j j

µ. Within this framework, it is now possible to investigate the

behavior of the estimation algorithm when different cases are

available and the effect of selecting different values for µ.

In order to perform such analysis, tests have been carried out

on a part of the IEEE 14 bus system [22] shown in Fig. 2, and

in particular, on the portion of the network considered in [18],

thus on the branches from 1 to 6 and corresponding buses,

using the multiple branches approach and the same assump-

tions that are reported in detail in the following Section IV.

The tests have been performed considering different scenarios

with different number of cases. To assess the performance of

the estimation algorithm, the relative root square error (RRSE)

is used:

RRSE =
∥ŷµ − y∥2

∥y∥2
(22)

Fig. 3 shows the trend in log-log scale of RRSE as a

function of µ ∈ [0, ..., 1000] in three different scenarios, using

C ∈ {10, 50, 500} different operating cases respectively. It

is important to point out that in [18] only the scenario with

C = 10 was considered. The RRSE values are averaged on

NMC = 5000 Monte Carlo (MC) trials corresponding to

different extractions of line parameters and systematic errors.

It is clear from the figure that the estimation is completely

unreliable when no prior information is used, i.e. when µ = 0.

The RRSE values drop, reaching a lowland and a minimum

value, which is different in the three considered scenarios;

for a higher number of cases the minimum is lower and

shifted to the right, corresponding thus to a higher µ value

(µmin in the following). The flatness of the curve around the

minimum means that the algorithm is quite robust with respect

1 The SVD decomposition of A ∈ R
m×n means that:

∃U ∈ R
m×m and V ∈ R

n×n : U⊺
U = UU

⊺ = Im ∈ R
m×m

and V
⊺
V = VV

⊺ = In ∈ R
n×n

∃Σ = diag (σ1, σ2, . . . , σn) ∈ R
m×n with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 :

A = UΣV
⊺

If n < m, the economy size SVD is used, i.e. A = UnΣnV
⊺ where

Un ∈ R
m×n (first n columns of U) and Σn ∈ R

n×n (first n rows of Σ).

Fig. 2. IEEE 14 bus system.

Fig. 3. IEEE 14 - 6 branches, average RRSE as a function of µ with a
varying number of operating conditions.

to a-priori information about unknowns. The unreliability of

the estimation algorithm for very low µ highlights how the

estimation problem starts as under-determined, becomes over-

determined exploiting different operating cases [19] but is

still not beneficial with larger C without weighting prior

information through µ. The vertical dashed line, labeled µ = 1,

indicates the average RRSE obtained with the WLS approach.

It is possible to observe that, when 10 cases are used as in

[18], µ = 1 is very close to µmin but, when more cases

are considered, a greater µmin is needed. Indeed, when 500
cases are considered, the RRSE obtained by means of WLS

is greater than 100%, that is higher than prior error.

Focusing on the causes of this behavior, it is possible to infer

that this is not a conditioning problem since, as stated in [19],

a higher number of cases leads to a slightly lower condition

number. However, the singular values profile significantly

shifts towards higher values, thus a greater µ is required to

have an appropriate low-pass filter effect through (21), which

is needed to satisfy the discrete Picard condition [23], [24].

The Picard condition states that the Fourier coefficients in (20)
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should decrease faster than the corresponding singular values

σj in order to have a limited solution in (16). In this regard,

it is thus possible to use this framework for a more accurate

estimation, as explained in the following.

B. Proposed Method and Regularization

The proposed approach is to use a value of µ which is

tuned to the needs of the problems at hand and depends on

its parameters. Tests conducted with different configurations

have shown that σj values increase with the square root of the

number of constraints embodied in the measurement matrix

A. For this reason, the regularization parameter has been

empirically chosen as:

µsqrt =

√

m

n
(23)

to take into account the singular values trend. Fig. 4 shows

the Picard condition plots relative to the scenario with C =
500: the red circle indicates the ideal solution, i.e. without

measurement errors, while the purple, blue and green asterisks

represent gj coefficients obtained with no prior (µ = 0), with

WLS (µ = 1) and with the proposed µsqrt, respectively. It is

possible to observe how the proposed regularization parameter

µ is more effective than the previous ones in containing the

coefficients.

Fig. 4. IEEE 14 - 6 branches, filtering effect.

The proposed method has been compared with the classical

algorithms for the choice of the regularization parameter in the

Tikhonov problem: the L-curve criterion (LCC), the General-

ized Cross Validation (GCV) and the Discrepancy Principle

(DP) [23], [25]. The L-curve is a useful graphical tool [25]

consisting in a log-log plot of the regularization term norm

versus the relative residual term norm, for all the considered

µ. The resulting curve assumes the aspect of an L (hence the

name). LCC selects as best regularization parameter the corner

value with the motivation that it represents a good trade-off

between the two terms involved in the penalized formulation

(17). The GCV is instead a statistically based approach. For

both LCC and GCV the implementations of [23] are here used.

DP [26] is the only method based on the knowledge of

the error norm and suggests choosing the µ value so that the

residual norm is close to the error norm. Thus:

µDP : ∥bw −AŷµDP
∥2 ≈ τ ∥ϵw∥2 , τ g 1 (24)

where ϵw = WChϵΓ is the whitened measurement error

vector, having the identity matrix as covariance matrix. In

order to obtain a suitable estimation of the measurement error

norm, the method illustrated in [27] has been used and adapted

to the specific problem. To solve (24), the method described

in [28] has been followed (see Appendix B).

Moreover, in order to have a benchmark for the performance

of the estimation algorithm within the Tikhonov regularization

problem framework, the optimal µ for each MC trial, defined

as

µopt = argmin
µ

RRSE (25)

has been also used. As clear from the definition, µopt is used

only as a reference and it is not available in practice since its

computation requires prior knowledge of y (true values).

Fig. 5 shows the average RRSE trends when C is changing

from 10 to 500. The RRSE of WLS method, corresponding

to µ = 1, improves at the beginning reaching a minimum

with about 50 cases, then increases becoming soon unreliable

for a high number of cases (see also Fig. 3). The classical

regularization methods (LCC, GCV, DP) are unable to reach

good estimation performance since the underlying problem is

not due to conditioning issues and, consequently, the regular-

ization parameters selected by means of these criteria lead to

a too strong low-pass filter effect. Finally, the figure shows

that the proposed selection method µsqrt in (23) is close to

the performance of the benchmark µopt.

Fig. 5. IEEE 14 - 6 branches: average RRSE (5000 MC trials performed)
when different numbers of operating conditions are considered.

A flow chart schematically representing the proposal is

shown in Fig. 6. Finally, some remarks on the computational

cost of the proposed method are reported in the following.

There are two important points to consider, i.e. the construc-

tion of the whitening matrix WCh and the SVD decomposition

of A. To reduce the computational cost, the whitening matrix
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ITs specifications 

and PMU accuracies

Line Parameters Estimation

+

Compensation of Systematic Measurement Errors

Tikhonov formulation 

Fig. 6. Flow chart of the proposed procedure.

is built from blocks, that is performing the Cholesky factor-

ization of the small submatrices of ΣϵΓ
corresponding to each

case, inverting the computed small triangular matrices and

finally integrating blocks. Even if the row size of A increases

with C, A becomes a very slim matrix (n j m) and the

economy size SVD (see footnote 1) allows a fast computation.

IV. TESTS AND RESULTS

In this Section, performance evaluation tests are reported to

assess the validity of the proposed approach. All tests have

been carried out using the IEEE 14 bus system [22] shown

in Fig. 2. Classical regularization methods are compared

with the proposed one (as discussed in Section III-B) and

different number of involved branches are used. Tests have

been performed on C ∈ {10, 20, ..., 1000} cases (as mentioned

before, to take into account different network conditions) and

M = 10 repeated measurements for each case. NMC = 5000
trials have been used to validate statistically the results.

For each MC trial, different systematic errors have been

simulated. Systematic errors are attributed to the ITs, thus

depending on their accuracy class, whereas random errors are

considered associated with the PMUs. For each measurement

instant and each case, random errors are extracted and added,

together with the systematic errors of the considered trial, to

the powerflow reference voltages and currents to obtain both

magnitude and phase angle synchrophasor measurements. The

following assumptions are used in the tests, in order to have

a realistic set-up:

1) Maximum deviations of line parameters Rij , Xij and

Bsh,ij have been assumed equal to ±15%.

2) ITs are assumed to be of class 0.5, thus using 0.5% for

maximum voltage and current ratio errors, 0.9 crad for

maximum CT phase-angle displacement and 0.6 crad for

maximum VT phase-angle displacement. For every test

in the following, the errors have been extracted from

uniform distributions to define the actual systematic

errors for each MC trial.

3) For the errors associated with PMUs, a maximum am-

plitude error of 0.1% and a maximum phase angle error

of 0.1 crad (10−3 rad) are used.

4) Load/generator variability of ±10% with respect to

nominal values (for both active and reactive powers)

among different cases is considered.

To assess the performance of both the estimation of the line

parameters and the compensation of systematic errors, the root

mean square error (RMSE) is used:

RMSE =

√

√

√

√

NMC
∑

i=1

(ν̂ − ν)2

NMC

(26)

where ˆ indicates the estimated quantity. In (26) ν
is a placeholder for each unknown in x and can

thus be (considering a generic branch (i, j)) equal to

ξsysi , αsysi , ξsysj , αsysj , ηsysij , ψsysij , ηsysji , ψ
sys
ji , γij , βij or ρij . In

the following, for the sake of simplicity, each branch will

be indicated with a single index k as in Fig. 2 and thus the

associated parameters will be γk, βk, ρk.

A. Estimation on a Set of Selected Branches

The first series of tests is conducted on a part of the IEEE 14

network, on the high voltage nodes from 1 to 5, considering the

multi-branch approach. The tests have been carried out using

all the methods presented in Section III but, according to the

analysis summarized in the Fig. 5, from here on the results

are mainly focused on the comparison of the performance of

the WLS (µ = 1, [18]) with the proposed method (µsqrt-
method). The performance with the ideal µopt value in each

trial is also considered as an upper bound. Both results, WLS

and µsqrt-method, are presented choosing the best scenario for

each method, i.e. the value of C that allows best performance

(Cbest)
2. In addition, the basic scenario C = 10 is also

used with the WLS method to have a clear comparison with

the multi-branch estimation results presented in [18]. Table I

reports the considered scenarios and the corresponding RRSE

results averaged among 5000 trials.

In the following, all the estimation results presented in

terms of RMSE for a specific unknown must be compared

with the corresponding prior standard deviation. Considering

the systematic measurement errors, the prior standard devi-

ation is ∆ξ/
√
3 = ∆η/

√
3 ≃ 0.29% for the amplitude

error of voltage and current measurements, respectively (∆
indicates the maximum deviation), ∆α/

√
3 ≃ 0.35 crad and

∆ψ/
√
3 ≃ 0.52 crad for the phase displacement error of

voltage and current measurements, respectively. Considering

network parameters, the standard deviation of the relative

errors is ∆γ/
√
3 = ∆β/

√
3 = ∆ρ/

√
3 ≃ 8.66%.

In Fig. 7, the RMSE results for the branch resistance

estimations are reported, considering the scenarios of Table

I. It is possible to notice that the results obtained according to

[18] (green plus signs) can be improved on average of about

32.2% when the same WLS configuration is used but with 40
cases (blue plus signs). However, the best WLS configuration

is outperformed by the proposed regularization method (red

2The ideal results with µopt are presented using the same C as µsqrt.
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asterisks), with an additional average improvement of 25.5%.

It has to be mentioned also that, in this case, the µsqrt-method

is very close to µopt results. It is important to highlight that

RRSE is a summary index that considers all the errors on

the unknown parameters together (see (22) and (25)). For this

reason, the RMSEs achieved with µopt, only for some specific

quantities or some branches, might not be the lowest. This is

the case of Fig. 7, where µsqrt-method is even slightly better

for γ, but for other unknowns (see ξ-related results in the

following) µopt is more accurate.

The comprehensive picture of line parameters estimation is

shown in Fig. 8 where all parameter types are considered. It

is clear that the proposed method (bars in foreground with

solid line edge) significantly improves the best WLS results

(bars in background with dash-dotted edge) for all the line

parameters and for all the branches. The average improvements

(percent error reduction) are 34.9% and 57.2% for βk and ρk,

respectively.

TABLE I
IEEE 14 - 6 BRANCHES: BEST AVERAGE RRSE (5000 MC TRIALS) FOR

DIFFERENT METHODS

Method Average RRSE [%]

WLS (µ = 1), C = 10 [18] 56.35
WLS (µ = 1), Cbest = 40 53.14

µ =
√

m/n, Cbest = 500 51.21
µopt, C = 500 50.20

Fig. 7. IEEE 14 - 6 branches: estimation results for γ parameters.

The RMSE results for ξ estimation, which represent the

voltage magnitude compensation performance, are shown in

Fig. 9 as a function of C for all the regularization methods

presented in Section III. It is possible to highlight that the

results of WLS (green plus signs) and, for more than 50
cases, DP with τ = 1.00 (blue triangles) tend to diverge

significantly, going even beyond prior values (black dashed

line). In particular, WLS method can lead to unreliable results

when the number of cases increases, confirming the results

previously shown in Figures 3 and 5.

Fig. 8. IEEE 14 - 6 branches: estimation results for all line parameters.

Fig. 9. IEEE 14 - 6 branches: ξ estimation results as a function of the
number of cases for all the considered methods.

The considerations drawn for multi-branch approach are

similar to those that can be derived for the single-branch case

(see [18]). Table II reports, for example, a comparison of the

RMSE for ξ1 when both µ = 1 and µ =
√

m/n are used with

C = 10, 500. While confirming the significant enhancement of

the multi-branch method (see Fig. 4 in [18]), Table II shows

that the regularization brings clear benefits when C is high

also in the single-branch approach and prevents from critical

conditions for ξ as those already identified in Fig. 9.

TABLE II
IEEE 14 - NODE 1: RMSE (5000 MC TRIALS) FOR ξ1 - COMPARISON

BETWEEN MULTI-BRANCH AND SINGLE-BRANCH APPROACHES

Method C
RMSE [%]

Multi-branch Single-branch

µ =
√

m/n 10 0.16 0.22

µ =
√

m/n 500 0.16 0.21
WLS (µ = 1) 10 0.16 0.22
WLS (µ = 1) 500 1.01 0.46
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B. Estimation on the Entire Network

Further analyses have been carried out on the entire IEEE 14

bus test network using the multiple branches approach. Several

scenarios have been simulated considering a variable number

of cases (C ∈ {10, 20, ..., 1000}) and comparing WLS and

µsqrt methods. For both methods, the best scenario is selected

as done in previous tests: Cbest depends on the configuration.

In particular, repeating the analysis and optimization according

to Section III on the entire network, it results Cbest = 30 for

WLS and Cbest = 200 for µsqrt-method. Fig. 10 shows the

RMSEs for βk estimations (focusing on k = {1, ..., 6}, i.e.

the reactance of the branches from 1 to 6) evaluated with

the two methods and two different multi-branch measurement

matrices: the first one is obtained using only the constraints

due to the first 6 branches (l = 6), while the second one

embodies the constraints of the entire network (l = 20). The

results obtained in [18] using the WLS with C = 10 cases

are reported with the green plus signs. The figure shows the

benefits of exploiting in a suitable way a greater number of

constraints, which are due to both a larger number of cases

and a wider set of monitored branches. It is also possible

to highlight that the average improvement going from the

WLS as applied in [18] to the best results obtained with

µ =
√

m/n, Cbest = 200 and considering the entire network

(blue asterisks) is of about 66.6%.

Fig. 10. β estimation results with multi-branch approach applied to a portion
and to the entire network using different methods and configurations.

Fig. 11 shows the RMSE results for all the line parameters

obtained on the entire network using only Cbest for the

WLS (top figure) and µsqrt-method (bottom figure). It is

important to underline that in the tests all the branches are

analyzed and thus also branches that can be modeled using

line reactance only or neglecting shunt susceptance are taken

into account (some parameters are thus not present in the

figure). A significantly better estimation can be achieved with

the proposed regularization method. In fact, γk, βk and ρk
estimations have an average improvement of 16%, 23.9% and

44.4%, respectively.

Finally, even though an all-embracing comparison with

other algorithms from the literature is not possible, an ex-

Fig. 11. IEEE 14 - entire network: estimation results for all the line
parameters.

ample of the RMSE results achievable with different methods

using the same measurements is reported in Table III. Two

methods have been compared with the proposed one, which

is summarized in Fig. 6. In particular, the first method is a

direct estimation method (Method A) for the line parameters

based on the equations in [5] (the same equations can be found

in [6]). For a fair comparison, the estimates obtained for a

single case have been averaged and repeated measurements

are considered as in the proposed method. The second one

is the method presented in [17, Sec. IV] (Method B), which

is intended to estimate the parameters of a line and the

compensation factors for the ITs at the arrival node. Two

C values have been used: C = 10 is the base value while

C = 200 corresponds to previous tests in this section. Branch 1

of the network is chosen for the comparison, but similar results

can be found on the other branches. Table III reports the RMSE

results for the resistance and reactance and for the systematic

errors of the measurements of the end node. Method A does

not allow estimating the systematic errors and Method B does

not allow computing the systematic errors at the start node of

the branch (thus, the corresponding RMSEs are not reported

for the proposed method either). To test also the robustness

of the method, PMU accuracy has been changed with respect

to previous tests. In particular, a maximum amplitude error

and a maximum phase-angle error of 0.2% and 0.2 crad,

respectively, have been also tested.

The results in Table III show that the proposed method is

significantly more accurate than the others in every considered

condition and configuration. Method A is always worse than

prior values for γ1, since systematic errors strongly affect

its estimates. It is interesting to notice that its RMSEs vary

only slightly with C and PMU accuracy, because systematic

errors are the main source of estimation errors. Method B

takes advantage of the number of used cases to reduce the

line parameter errors but RMSEs of systematic errors on

voltage and current measurements are always equal to or

larger than prior values. In addition, the proposed method is

more robust than Method B when PMU uncertainty increases,
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as it is highlighted by the case with PMU accuracy (0.2%,

0.2 crad) and C = 10. These and other results have shown

that considering all the uncertainty sources and using a multi-

branch approach is key to improve performance.

TABLE III
IEEE 14 - BRANCH 1: COMPARISON BETWEEN DIFFERENT METHODS

Method C
PMU RMSE

accuracy γ1 β1 ξ2 α2 η21 ψ21

| · |[%],"[crad] [%] [%] [%] [crad] [%] [crad]

Proposed

Method

10
0.1, 0.1 2.53 0.88 0.10 0.10 0.20 0.37
0.2, 0.2 3.73 1.53 0.11 0.14 0.21 0.38

200
0.1, 0.1 1.38 0.38 0.10 0.09 0.20 0.36
0.2, 0.2 2.08 0.76 0.11 0.11 0.20 0.37

Method A

[5]

10
0.1, 0.1 13.15 5.16 - - - -
0.2, 0.2 13.16 5.16 - - - -

200
0.1, 0.1 13.08 5.10 - - - -
0.2, 0.2 13.08 5.10 - - - -

Method B

[17, Sec. IV]

10
0.1, 0.1 7.34 2.48 0.37 0.42 0.36 0.56
0.2, 0.2 14.99 5.71 0.55 0.65 0.53 0.68

200
0.1, 0.1 2.55 0.97 0.29 0.36 0.29 0.53
0.2, 0.2 4.84 3.05 0.31 0.46 0.30 0.53

V. CONCLUSIONS

The paper has presented a multiple branches method to

estimate simultaneously the line parameters in the transmis-

sion lines and the systematic errors in synchronized phasor

measurements, which is enhanced in the presence of multiple

measurement sets obtained from a wide area measurement

system and corresponding to multiple timestamps. The pro-

posed method improves the information needed for an ef-

fective management of the transmission network based on

a comprehensive definition of the uncertainty model. The

adopted model allows taking into account the different error

contributions in a realistic measurement chain and prior infor-

mation on the accuracy of ITs and PMUs, e.g. that achievable

from instrument datasheets and characterization procedures,

can also be successfully exploited. The method has been de-

signed within the framework of Tikhonov regularization, thus

allowing an optimization of the algorithm and the definition

of a configuration criterion for the specific problem. This

generalization allows exploiting the potentialities of PMUs,

that is high accuracy and reporting rate, to improve the

estimation of line parameters and to refine the compensation

of systematic measurement errors when multiple measure-

ment sets are available. Simulation tests performed using the

standard IEEE 14 bus system have confirmed the validity of

the proposed approach and have highlighted the benefits of

estimating all the unknowns together in the proposed multiple

branches approach.

APPENDIX A

DERIVATION OF THE MEASUREMENT MATRIX AND OF THE

UNCERTAINTY REPRESENTATION

Assuming that the absolute values of all the errors are low,

much lower than one (i.e. |ξ|, |α|, |η|, |ψ| j 1), which is

realistic for typical transducer and PMU accuracies, equations

in (1) can be rewritten so that vRh and iRij are expressed as

functions of measured synchrophasors vh and iij as follows:

vRh ≃
(

1− ξsysh − ξrndh

)

(V rh + jV xh )

·
(

1− jαsysh − jαrndh

)

iRij ≃
(

1− ηsysij − ηrndij

) (

Irij + jIxij
)

·
(

1− jψsysij − jψrndij

)

(A.27)

where, using the approximation (1 + x)−1 ≃ 1 − x for

x ≃ 0, the amplitude errors that would be at the denominator

on the right side are brought at the numerator. Using the

approximation e−jx ≃ 1 − jx, the exponential functions in

(1) can be first conjugated and then linearized to find (A.27).

Using (1) and (4) in (2) and (3), neglecting second order

terms and splitting real and imaginary parts of the equations,

equations (A.28)-(A.31) (on the top of the next page) are

obtained. In each equation, the first term depends on known

quantities (measured and nominal values) and the second term

is a linear combination of systematic and random errors, where

the coefficients are given again by measured and nominal

values.

APPENDIX B

DISCREPANCY PRINCIPLE APPLICATION

The square residual norm term in (17) can be rewritten as:

∥bw −Aŷµ∥22 =
∥

∥bw −A(A⊺A+ µIn)
−1A⊺bw

∥

∥

2

2

=
∥

∥(Im −Σ(Σ⊺Σ+ µIn)
−1Σ⊺)U⊺bw

∥

∥

2

2

=
∑

σj>0

((

1−
σ2
j

σ2
j + µ

)

u
⊺

jbw

)2

=
∑

σj>0

(

u
⊺

jbw

χσ2
j + 1

)2

(B.32)

where χ ≜ 1
µ

. Then, considering that

Ψ(χ) =
∑

σj>0

(

u
⊺

jbw

χσ2
j + 1

)2

− τ2 ∥ϵw∥22 (B.33)

is a monotone decreasing function that changes sign (starting

positive for χ = 0 and for reasonable values of the error vector

norm and becoming negative as χ increases), a zero crossing

point exists and can be found by the Newton method [28].
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