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A B S T R A C T   

Confronting the challenge of intermittent renewables, current unit commitment practices falter, urging the 
development of novel short-term generation scheduling techniques for enhanced microgrid stability. This study 
presents an adaptive robust unit commitment approach using machine learning techniques for renewable power 
systems, computing the Calinski-Harabasz index to identify prediction inaccuracies related to intermittent 
sources. The uncertainties are subsequently grouped together using the spatial clustering tool, and the average 
density of the K-means distribution is calculated. The clustering of points in space, considering noise, discrete 
uncertainty in renewable energy sources, and outliers within the comprehensive uncertainty set, is addressed via 
a nonparametric algorithm. The implementation of established methodologies and frameworks, in conjunction 
with density-based spatial clustering of applications with noise, introduces an innovative method for vulnera-
bility clustering. This methodology guarantees that every cluster aligns with data pertaining to vulnerabilities of 
renewable energy sources. The performance of the suggested method is showcased by conducting experiments on 
modified IEEE 39-bus and 118-bus test systems that use intermittent wind power. The results demonstrate that 
the proposed framework may lower the cost of robustness by 8–48% compared to traditional robust optimization 
techniques. The results of stochastic programming showed that the optimized system with a stable economic 
organization would have 75 % faster calculations.   

1. Introduction 

Power system dependability and security can only be ensured by 
reserving enough dispatchable generating and transmission capabilities. 
Research is now being conducted to enhance the system’s operational 
performance by optimizing schedules and taking unpredictability into 
account [1]. To achieve optimal operation, least-cost dispatching must 
reduce total operating costs while meeting electrical demand and other 
technical, environmental, and operational limitations. The Unit 
Commitment (UC) task in electrical power production is a large family of 
mathematical optimization problems where the production of a set of 
electrical generators is coordinated in order to achieve some common 
targets, usually either matching the energy demand at minimum cost or 

maximizing revenue from electricity production with a nonlinear solu-
tion space [2]. The intermittent nature of renewable energy sources 
poses new challenges to the classic UC [3,4]. One of the main issues is 
the unpredictability of these sources, which causes uncertainty in their 
fixed production capacity. Different models and programs are used to 
solve the uncertainty problem. These models help to ensure the stability 
of power systems to increase economic profit and reduce construction 
costs [5]. The uncertainty can be modeled by using Stochastic Pro-
gramming (SP) [6]. Additionally, three main approaches to tackle un-
certainty in the optimization of the UC problem when dealing with 
renewable energy generation uncertainty are incorporating modeling of 
failure and reliability, like Chance-Constrained Programming (CCP) [7], 
utilizing optimization techniques to handle uncertainty while 
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optimizing for particular objective functions, and employing methods 
such as robust optimization [8]. The CCP method, on the other hand, 
allows for the inclusion of constraints and increases the probability 
value. In addition, single-stage and two-stage methods are used in en-
ergy system optimization. In [9], a two-stage Adaptive Robust Optimi-
zation (ARO) model has been used to demonstrate the Robust Unit 
Commitment (RUC), where the first stage is related to binary on/off 
decisions and integrating model scenarios [10]. The ARO method con-
siders the economic basis in the minimum critical situation [11], and the 
solution is flexible [12] and based on the reliability of the system [13] in 
obtaining predictions and uncertainties [14]. The utilization of consid-
erable data in conjunction with uncertainty in Renewable Energy Sys-
tems (RES) increases the stability and dependability of the optimized 
cycle [15]. In this manner, various possible distributions with innova-
tive methods developed optimization chains of the RES uncertainty are 
more efficient than SP and CCP techniques in application and technical 
and economic calculations [16]. Box and budget uncertainty is a set of 
uncertainties that are used for RUC [17]. In [18], the Distributed Robust 
Optimization (DRO) method was developed. An intermediate combi-
nation of the SP method and the ARO method was used to solve a single 
committed optimization problem [19]. In addition, the prediction and 
uncertainty have hardened renewable energy sources modeling. [20]. 
Despite the models that operate in the form of RES forecasts, the 
Gaussian mixture models have a more significant geographical corre-
lation [21]. Forecast error in renewable energy resources is usually 
complex and disjointed [22]. This data increases the prediction error 
and reduces the calculation speed and therefore a more general distri-
bution and even Gaussian mixture prediction models are used due to the 
simplicity of their calculation [23]. An RUC model that uses input data 
prediction in discontinuous clustering creates a committed random unit 
and can significantly reduce the scheduling of energy forecasting sys-
tems and increase the commitment of power and flexibility systems 
[26]. Research related to the flexible scheduling of energy systems in the 
state of uncertainty of renewable energy sources has been reviewed in 
[27]. 

Machine learning (ML) techniques introduce a proportional 
ensemble for individual uncertainty applications rather than more 
comprehensive uncertainty clusters. This method may not be able to 
absorb the data of renewable energy sources in the uncertainty space 
with good flexibility and accuracy. Still, it can provide manual division 
of subsets. So far, no operational methods have been introduced to 
handle discrete Uncertainty Bulk Data (UBD) [24]. The solution to the 
design of the stable power operational optimizer system using ML is less 
conservative and provides an approach that has more capabilities than 
the conventional case of separation uncertainty in renewable energy 
power systems [25]. The use of ML in renewable energy mass disjoint 
data, especially wind energy, has uncertainty in planning the commit-

ment of a sustainable unit in sub-clusters and worst-case scenario con-
ditions and was not found in the research literature review. In contrast, 
the multistage ARO model-based clustering and vulnerability analysis 
method for ML clustering and robust optimization uses the inherent 
periodicity of renewable energy sources. It makes the model efficient 
and the solution easier and faster. To address this, there have been other 
approaches, such as kernel density estimation (KDE), the Gaussian 
approach to support vector domain description (SVDD), and support 
vector clustering (SVC), which are similar to previous conventional and 
established techniques. As discussed in the literature, the main problems 

of the traditional UC in the renewable power system are dealing with the 
intermittency and variability of renewable energy, uncertain fore-
casting, grid integration and stability, and economic dispatch chal-
lenges. To cope with these problems, researchers have developed some 
methods. The main drawbacks of those methods are high computational 
cost, technological complexity, integration challenges, scalability, and 
adaptability with large power systems. 

To enhance the efficacy of UC results, this paper proposes an ML- 
based adaptive robust optimization method to solve the UC problem 
in the power system connected to wind power generation. The ML 
techniques are first used to calculate the Calinski-Harabasz index, 
leading to the separation of forecasting errors of intermittent renewable 
energy sources. Then, the uncertainties are grouped using the spatial 
clustering tool and the average density of the K-means distribution. The 
nonparametric algorithm for clustering points in space and incorpo-
rating noise, the discrete uncertainty in renewable energy sources, and 
the outliers in the comprehensive uncertainty set are taken into account 
accordingly. Improving and combining a few strategies and frameworks 
and utilizing Density-Based Spatial Clustering of Applications with 
Commotion (DBSCAN) presents an unused fashion of vulnerability 
clustering so that each cluster compares to the RES vulnerability infor-
mation. A Principal Component Analysis (PCA) set uses these normal 
boxes as a nonparametric method of estimating Dirichlet density and 
analyzing different dimensions of large datasets. Finally, by imple-
menting the proposed model in the widely used power system based on 
renewable energy sources, IEEE 39-bus and 118-bus systems, the solu-
tion process is changed, and the proposed technique is analyzed and 
compared, considering the uncertainty of the clusters in each subset of 
ML. 

The rest part of this paper is arranged as follows: the problem 
formulation is defined in Section II. Section III presents the proposed 
method. Test results and discussion are provided in Section IV. Finally, 
the work conclusions are described in Section V. 

2. Problem formulation 

The UC task involves solving diverse mathematical optimization 
problems. These problems revolve around the strategic coordination of 
multiple electrical generators to achieve common objectives. The pri-
mary goals typically involve meeting energy demand efficiently at the 
lowest possible cost or maximizing the revenue generated from elec-
tricity production considering the power losses. This intricate process 
entails navigating a solution space characterized by its nonlinear nature. 
This means that traditional linear optimization techniques may not 
suffice, and more sophisticated approaches are required to find the most 
effective strategies for deploying and operating the generators. The (1) 
shows the objective function for minimizing UC costs.  

where i is the generator parameters index, t shows the time parameters, 
G
i xi.t indicates the parameters for determining commitment status, C is 
the commitment parameter and the Calinski-Harabasz index, S

i ui.t rep-
resents the current operational status of unit i at time t, represented in 
binary format, D

i vi.t is the binary shutdown status of unit i during period 
t, D

i Pi.t shows the total power demand at time t, Pi.t is the power 
generated by unit i at a given time t, C+ indicates the penalty parameters 
are utilized to enforce compliance with energy balance constraints, q+

t 
represents the inclusion of slack variables in power balance constraints, 
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(1)   
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C− shows the penalty parameters associated with the violation of energy 
balance constraints, q−

t represents the inclusion of slack variables in 
power balance constraints, K is the index sets for transmission lines, and 
CL

i qL
k.t represents the line losses in transmission line k at time t, where CL

i 
is the penalty parameter associated with line losses for generator i, and 
qL

k.t is the slack variable for line losses in transmission line k at time t. 
The goal of optimization using the two-step “min-max-min” method 

in this research is to minimize UC costs under the most severe conditions 
of fluctuating power generation. The two-step “min-max-min” has arisen 
due to sequential decision-making and the unpredictability of outputs 
from variable RES. In the first step, which consists of (2) to (6), 24 h 
before the realization of uncertainty, generators’ UC for the day-ahead 
market consists of their “here-and-now” choices [28]. The first “min” 
in the “min-max-min” represents the UC cost, the goal of the initial 
decisions. Based on the generator commitment decisions obtained in the 
first stage, which reflect the Economic Dispatch (ED) process. In the 
second phase, which includes relation (7)-(16) and a “max-min” prob-
lem to minimize cost, which is shown in relation (17) [29]: 

s • t • ui.t − vi.t = xi.t − xi.t− 1; {∀i ∈ I.t ∈ T − {t0} } (2)  

ui.t + vi.t ≤ 1; {∀i ∈ I.t ∈ T − {t0} } (3)  

∑t

τ=t− UTi+1
ui.τ ≤ xi.t ; {∀i ∈ I.t ≥ UTi} (4)  

∑t

τ=t− Ψi+1
vi.τ ≤ 1 − xi.t ; {∀i ∈ I.t ≥ Ψi} (5)  

xi.t .ui.t .vi.t ∈ {0.1}; {∀i ∈ I.t ∈ T − t0} (6)  

where s shows the logical relationships among generators, ui.t indicates 
the current operational status of unit i during period t as a startup, vi.t 
represents the operational status of unit i during period t, specifically 
referring to its shutdown status, T is the time, τ shows the collection of 
time, UTi is combined uncertainty sets of multiple basic uncertainty sets 
to determine the minimum uptime-downtime of generators, Ψi indicates 
logical relationships among generators: 

Pi.t ≥ Pmin
i • xi.t ; {∀i ∈ I.t ∈ T − t0} (7)  

Pi.t ≤ Pmax
i • xi.t ; {∀i ∈ I.t ∈ T − t0} (8)  

Pi.t− 1 − Pi.t ≤ R•Di • xi.t + S • Di.vi.t ; {∀i ∈ I.t ∈ T − t0} (9)  

Pi.t − Pi.t− 1 ≤ R•Ui • xi.t− 1 + S • Ui.ui.t ; {∀i ∈ I.t ∈ T − t0} (10)  

∑

i=I
Pi.t +

∑

b∈B
wb.t + q+

t − q−
t =

∑

b∈B
Db.t +

∑

k∈K

(CL
i q

L
k.t); {∀i ∈ I.t

∈ T − t0} (11)  

∑

b∈B
S • Fb.k

{
∑

i∈I
∅L

i • pi.t +
∑

j∈J
WFb.j • wj.t − Db.t

}

+ qL
k.t ≤ δk; {∀k.t}

(12)  

∑

b∈B
S • Fb.k

{
∑

i∈I
∅L

i • pi.t +
∑

j∈J
WFb.j • wj.t − Db.t

}

− qL
k.t

≥ − CAPk; {∀k.t} (13)  

wj.t ≤ ωj.t +ωj.t ;
{
∀j ∈ J.t ∈ T − t0.ωj.t∊U

}
(14)  

Pi.t=t0 = μi; {∀i ∈ I.t ∈ T − t0} (15)  

xi.t=t0 = σi; {∀i ∈ I.t ∈ T − t0} (16)  

where Pmin
i represents the minimum power output of generator i, Pmax

i is 
the Maximum power output of generator i, R shows the rates at which 
generator i increases or decreases its power output, Di and Ui are the 
rates at which generator i is shut down or started up, ui.t indicates the 
binary decision variable represents the startup status of unit i during 
period t, b ∈ B represents the variation between clusters (inter-cluster), 
Db.t shows the load demand for bus b at time t refers to the amount of 
power or energy required by bus b at a specific point in time, wb.t in-
dicates the power generated by wind farm j at a given time t, q+

t and q−
t 

are inclusion of slack variables in power balance constraints is a com-
mon practice in power systems analysis, Fb.k represents the power 
transfer distribution factor refers to a metric used in power systems 
analysis to determine the distribution of power flow among different 
transmission lines or branches, ∅L

i shows the indicator for the presence 
of line losses for generator i, qL

k.t is the slack variable for line losses in 
transmission line k at time t, CAPk is the transmission line k’s capacity 
refers to its ability to carry and transmit electrical power or signals 
efficiently and effectively,Pi.t=t0 shows the continuous decision variable 
represents the power output from unit i at a specific time t, μi and σi are 
the initial power output and online status of generator i, xi.t=t0 represents 
the current level of dedication or loyalty exhibited by unit i during 
period t. Examples of second-stage “wait and see” decisions include 
generator output, wind farm power dispatch, and slack variables for 
balancing constraints. The “min” in the “max-min” denotes the choice to 
reduce costs in the worst-case scenario. However, in the second stage of 
the “max-min” dilemma, “max” represents the worst-case scenario since 
it represents the realization of uncertainty that might result in the 
highest UC cost. As a result, the second-stage ED choices are made with 
the uncertainty of intermittent renewable power outputs in mind. 

As a result, “here and now” and “wait and see” judgments can’t be 
optimized since the uncertainty realization information isn’t accessible 
when the first-stage decisions are being made. The logical relationships 
between generators are shown in (2) and (3). The on or off times of the 
generators are controlled by (4) and (5), respectively. Limits on a de-
vice’s power output are shown in (7) and (8). Rate ramping restrictions 
are (9) and (10). As shown in (11), the system’s energy balance is 
maintained, while the transmission line capacity limits are shown in 
(12) and (13). The (14) restricts wind farms’ renewable power outputs 
to the greater of (a) the projected wind power outputs or (b) the sum of 
the predicted wind power outputs and their standard deviations. It’s 
essential to keep in mind that (14) is valid for all imaginable realizations 
of the UC, guaranteeing the stability of the solutions and the viability of 
the system’s operations. The model’s major components are in line with 
previous studies [30–33], the disjunctive structures and uncertainty set 
in renewable power projections have been taken into consideration, and 
the (14) has been adjusted accordingly. Initial information on generator 
commitment status and power outputs is presented in (15) and (16). To 
clarify, (6) implies that the “here and now” choice variables are binary, 
whereas the “wait and see” variables are non-negative. Wind power 
output uncertainties are shown in (14), and these variations have a 
direct bearing on both the objective, which is shown in relation (1) and 
the (11) and (13). The variable U in (14) stands for the machine- 
learning-generated DDU sets based on data. Evidence-based ap-
proaches, including K-means, Dirichlet Process Mixture Model (DPMM), 
PCA, KDE, and SVC are used to generate uncertainty sets. 

3. Proposed method 

The functioning of sustainable and reliable power systems may 
depend on identifying and managing the uncertainties of renewable 
energy. This paper proposes a two-stage ARO system with Data-Driven 
Techniques (DDT) and Disjunctive Data Uncertainty (DDU) for renew-
able energy UC with uncertain forecast errors. Fig. 1 depicts the pro-
posed framework’s realistic implementation process. 

The Calinski-Harabasz index is utilized to determine an appropriate 
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cluster size for data affected by uncertainty stemming from renewable 
energy sources. Using ML methods, the error data from renewable en-
ergy sources are grouped into the most appropriate number of cate-
gories. When ML is applied to uncertainty data and clustering results, it 
produces DDU sets. The associated ARO issue might be solved repeat-
edly using a targeted DBSCAN technique. The math behind the adaptive 
robust unit commitment (ARUC) model for running sustainable power 
grids while dealing with unpredictability in renewable energy sources is 
laid out here. In traditional ARUC, a single UC set is built to represent the 
whole UC space. However, several different basic UC sets make up the 
disjunctive uncertainty sets. The disjunctive UC space is equivalent to 
the union of the fundamental UC sets, as shown as follows: 

U =
⋃

l
Ul; {∀l ∈ L − t0} (18)  

where, U represents the proposed DDT set built using ML techniques and 
L − t0 are time dependents of U. Fig. 1′s first column is a visual depiction 
of the “one-size-fits-all” uncertainty sets, while the second and third 
columns are visual representations of the proposed disjunctive UC. 
Clustering techniques, when used in conjunction with data-driven un-
certainty set construction, all while lowering the risk of mistakes in wind 
power predictions. ML techniques are used to group DDU samples, and 
disjunctive UC is derived from the union of several basic UC sets 
generated by more conventional or data-driven techniques. 

The K-means and DBSCAN are used for uncertainty data related to 
errors in renewable energy projections and are clustered using ML 
techniques. Clustering data using a centroid is called k-means [34]. Each 
data sample is then independently aligned with the cluster center with 
the shortest Euclidean distance and is carried out iteratively throughout 
the process. In other words, the procedure terminates when no more 
data samples switch clusters or when there is no longer any movement of 
the centroids between iterations. It has been introduced as an advantage 
in research from DBSCAN [35]. Each data sample must be located inside 
a neighborhood with more data samples than the minimum required by 
this approach. The main difference between DBSCAN and K-means is 

that the former can identify outliers while the latter is susceptible to 
noise. To determine the optimal number of clusters the Calinski- 
Harabasz indices are utilized. Therefore, the proposed issues have 
three basic parameters: multi-level structure, semi-infinite constraints, 
and non-convex objective functions. The maximizing over the whole 
DDU set U can only be accomplished on the extrema of basic UC and 
DDU sets. This optimization strategy, known as decomposition, involves 
repeatedly solving the main problem and smaller problems over a period 
of time. The optimality of UC choices is maximized by solving the master 
problem under a variety of optimality cuts that correspond to the ex-
tremes of the basic UC, some of which are partially enumerated [37]. 
Therefore, the two-stage ARO takes advantage of discrete uncertainty by 
respecting the main optimization objective and considering a lower 
bound for minimization. After the implementation of the model, when 
the basic optimization solution is found, the economic dispatch scenario 
is applied, and the sub-problems of the first stage are decided, and 
appropriate scenarios are obtained. Since each Ul in the basic UC set 
represents a unique subproblem, we construct a set of subproblems for 
the DDU sets. A possible simplification of the ARO’s “min-max-min” 
structure is a “max-min” structure in the subproblem. The basic problem 
is being solved in a package while the subproblem is rewritten and 
immediately evaluated by off-the-shelf solvers as well, and the big − M 
extended is used. The accuracy of the calculations and the lengthening of 
the calculation process is an issue that is involved based on the scenario 
of the ARO problem, which is involved in the goal of optimizing the 
larger component and introduced in the entire set of uncertainty “sets 
l.”, together with a schedule is applicable under the specified first-stage 
judgments for the worst-case scenario after the collection of sub-
problems has been solved. The master issue is then reworked based on 
what was learned from the realization of uncertainty in the worst-case 
scenario, and the process repeats. Finally, the number of iterations is 
limited when the relative optimal gap is smaller than the value intro-
duced as the tolerance threshold. Further, the suggested technique re-
duces the need to recreate the whole master and subproblems by 
building them just once while updating a subset of the variables, hence 
improving computing efficiency. The enhancements in computational 

Fig. 1. Proposed method with separate uncertainty sets.  

M. Esmaeili Shayan et al.                                                                                                                                                                                                                     



International Journal of Electrical Power and Energy Systems 160 (2024) 110087

5

efficacy are highlighted through the use of case studies. In summary, the 
algorithm performs a partial enumeration over the extrema of DDU sets; 
more specifically, the extrema of all UBC, and new extrema may be 
established through every iterative process. The developed technique is 
certain to lead to the optimum solution due to the presence of finite 
extrema in disjunctive uncertainty sets. 

4. Test results and discussion 

A modified IEEE-39 bus system with wind power generation is 
investigated in depth. Fig. 2 shows the IEEE-39 bus tested system that 
there are a total of 46 lines, ten generators, and 39 buses in the system. 
You may find details on the 39-bus network in [38]. In this research, our 
primary objective is to optimize the computation time of the model. We 
focus on applying the Calinski-Harabasz index using machine learning 
techniques to identify prediction inaccuracies originating from inter-
mittent sources. Each wind farm with a wind penetration (%) of 10 % 
generates 252 MW, 162 MW, and 209 MW of power, respectively. If 
wind penetration hits 24 %, wind farms will provide an average of 485 
MW of electricity. The synchronous generators on buses 30, 32, and 38 
will be replaced with wind turbines with the same capacity as the 
original machines, accounting for 40.4 % of the total power. The 
Gaussian mixture model is utilized to generate 800 samples of uncer-
tainty data for wind forecast error [39], and the renewable energy 
prediction data are downscaled based on previous research [40]. Python 
and Pyomo were used to create the code for the two-stage RUC chal-
lenge, which was run on a last-generation PC with an Intel processor and 
more than 32 GB of RAM. Gurobi 9.1 software solves complex re-
lationships with high capability and limited error and completes the 
technology development strategy. The solved problems will finally be 
displayed in the latest version of the Windows operating system. 

To compare the number of optimal clusters in research article 
development, some well-known techniques are employed, as shown in 
Fig. 3. These methods have proven to be reliable in determining the ideal 
number of clusters by considering the within-cluster variance and inter- 
cluster separation. Additionally, the Calinski-Harabasz index is utilized 
as a criterion to assess the clustering performance. The elbow method, 
DBI, and Calinski-Harabasz index serve as valuable tools in determining 

the optimal number of clusters for organizing research findings. The 
findings elbow method and Davies Bouldin Index, which perform the 
confirmed clustering, criteria values have been used to evaluate the 
number of optimal clusters (Calinski-Harabasz index). Then, the 

Fig. 2. IEEE 39-bus test system.  

Fig. 3. Calculation of the optimal number of clusters using various methods.  
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DBSCAN is used for optimizing the number of clusters algorithm in 
reducing the number of outliers in the nonparametric set of Density- 
Based (DB) clustering using the Calinski-Harabasz index. 

In the data clustering phase, two methods can be utilized: K-means 
for clustering all objects and DBSCAN for filtering objects based on 
noise, density, and outliers. K-means has limitations with spherical 
clusters, while DBSCAN does not follow Euclidean density tradition. The 
uncertainty of the clustering set can produce accurate results in 
modeling research. Decision-makers can balance risk and robustness by 
selecting DDT and DDU sets with the same level of conservatism, which 
is 90 % in this investigation. The disjunctive uncertainty sets proposed 
here may be more effective than standard methods in capturing varying 
uncertainty spaces between data samples. Combinatorial optimization 
operation using a decomposition-solution algorithm improves the 
handling of more than 700 integer variables, 7000 continuous variables, 
and 13,000 constraints in the main problems. Subproblems allow a 
maximum of 6514 integer variables, 7581 continuous variables, and 
26,921 constraints. 

Fig. 4 shows a particular convergence with variable uncertainties 
with horizontal dashed lines and the upper and lower Bound (UB and 
LB) of the convergence points. Upper band and lower band optimization 
are done with the Gurobi library under Python programming language 
in the range of 6–10. Therefore, it can be confirmed that the relative 
error for convergence points and other points in Fig. 4 is equal to and less 
than 0.0001 %. 

For a problem involving DDU sets, the solution technique using 
DBSCAN and DPMM entails a total of five iterations. The values outside 
the dashed horizontal lines indicate a positive deviation from the values. 
Depending on the specifics of the case study, the approach may converge 
in as little as eight iterations using the supplied framework. ARO, DDU 
unit commitment (DDARUC), and the standard “one-size-fits-all” 
approach (CA) are all acronyms for the same thing. Data-driven uncer-
tainty sets produced using principal component analysis and K are 
referred to as principal component analysis and K-means (PCA & KDE) 
and K-means with principal component analysis and principal compo-
nent analysis (DBSCAN), respectively. The acronyms in Fig. 4 are split 
into two portions to indicate the different kinds of problems and UBD. 
There will be tests of both traditional ARUC and data driven ARUC 
(DDARUC). Suggestions for DDU sets using K-means and DBSCAN are 
denoted by KM and DB, whereas basic uncertainty set types are 
represented. 

The optimal target values are the lowest possible operating costs for 
all possible realizations of RES included in the UBD. More stringent 
solutions are indicated by larger values. With no unknowns, the deter-
ministic scenario has a minimum cost of 426,443 USD. The price of 
robustness measures the extent to which robust optimization scenarios 

incur more expense than deterministic ones [59] and is therefore used to 
evaluate the effectiveness of the strategy. The use of the proposed DDU 
sets decreases the price of robust optimization by 28–38 % for issues 
involving box, budget, DPMM, PCA coupled with KDE, and SVC un-
certainty sets, and by 21–22 % for problems using SVC UBD. This will 
save significantly on the cost of uncertainty based on disagreeing data 
and increase optimization convergence. It also enhances DBSCAN and K- 
MEANS-based optimization by controlling the distinct points and noise 
of uncertainty data. The time required to find a solution is shown in 
Fig. 5 for both the traditional approach of developed the whole model 
and the recommended technique. In this work, instead of updating the 
whole model during iterative solution, certain constraints of a previ-
ously created model are updated depending on new input parameters 
using bespoke Python methods. As a result, each of the proposed DDU 
sets has a significantly reduced solution time of roughly 70 % to the 
proposed method. Using the proposed method, the time required to 
solve a problem involving the proposed disjunctive uncertainty sets is 
between 60 and 85 s, while the same time using a standard uncertainty 
set without clustering is between 46 and 182 s. Unclustering-free stan-
dard SVC-based uncertainty sets make issue solving substantially more 
time-consuming compared with more traditional uncertainty set kinds. 
The optimization of the proposed method can cover a greater range of 
uncertainty while reducing computational and operational costs and 
considering more vectors, which will be more efficient than conven-
tional uncertainty sets. 

The optimum and sustainable operations of the challenges involving 
uncertainty are shown in Fig. 6 via the commitment choices made by 
each of the ten generators. The optimal on/off settings for G6 and G8 
when using ARUC depend on the nature of the problems being solved. 
For ARUC problems involving either conventional or DDU sets, the op-
timum on–off options are the same. This suggests that variations in their 
optimum costs are a direct result of variations in ED choices. Under the 
ideal solutions for the disjunctive Dirichlet Process Mixture Model 
(DPMM), the G4 would be online for 7–8 h. In contrast, generator G5 
would be online at the same time under the best solution for the con-
ventional DPMM. These times represent the best possible outcomes for 
DDARUC under the DPMM uncertainty conditions. Similarly, the best 
on–off choices for certain DDARUC issues with DDU or traditional SVC 
and the optimal operations schedules for the same problems when 
employing PCA paired with KDE vary. Table 1 displays the stochastic 
programming variables for at least three optimization scenarios, ordered 
by costs for stable operation within the uncertainty range. This table 
shows the economic effects of each economic activity in the power 
system with the RES assuming the worst case scenario. It is an optimal 
method that can include the lowest cost is less than 1 % of the total costs. 
In most cases, the fixed operating expenses will account for around 15 % 
of the total cost of the system. The discrepancies between the initial 
investment and the continuing fixed expenditures are directly related to 

Fig. 4. The optimization method based on decomposition converges when 
applied to situations including a mix of disjoint and traditional uncer-
tainty factors. 

Fig. 5. The time required to find a solution when updating the complete model 
versus utilizing a other disscussed approaches. 
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the optimum operational schedules. Moreover, variable operating costs 
are greater than the startup and fixed operating costs of generators, and 
the bulk of changes in total costs as shown in Fig. 6 are due to operating 
costs for solutions that correspond to DDU. 

To compare the efficiency of different models, we simulate the 
operational costs of RES under the optimum solutions obtained from 
ARO models and the more traditional two-stage stochastic UC models. 
Because it relies on probabilistic assumptions, the CCP is not employed 
as a benchmark in the suggested data-driven robust optimization strat-
egy. This is done so that the suggested method may be compared to the 
optimum solutions found. Solving SP-30 and SP-100 problems, for 
example, uses 342 and 1194 CPUs, respectively, and takes over three 
times as long as solving the problem, as shown in Fig. 7. This is because 

Fig. 6. The best on/off choices made by the generators by the proposed method.  

Table 1 
Specifics of the revised model of optimization for solving SP issues include a 
variety of various numbers of scenarios.  

Variable 800 scenarios 100 scenarios 30 scenarios 

Constraints 2,622,509 328,609 99,219 
Variables 1,182,331 148,431 45,041 
Continuous Variable 1,181,601 147,701 44,311 
Integer Variable 730 730 730  

Fig. 7. UC cost with the proposed method.  
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SP problems typically have a higher level of computational difficulty. 
A compromise may be reached between computing economy and 

solution quality or accuracy by scenario reduction [35,36,37,41]. It 
follows that this method has the potential to drastically reduce the time 
required to resolve a stochastic UC issue [42]. Scenario reduction isn’t 
employed since it lowers the quality of the results achieved by using SP- 
based scheduling, which is why it isn’t used in this case study. The so-
lution’s precision was deemed crucial for evaluating it against alterna-
tives. Hence, this choice was selected. Additionally, the solver cannot 
offer lower and upper bounds of $427,677 and $429,768 after one hour, 
based on the DDU. Sustainable operating costs are shown in Fig. 7, 
which is based on simulation results using optimum solutions in ARO 
and SP in 100 out-of-sample scenarios. As a result, the out-of-sample 
results in ARO and SP are consistent with the cost simulations, sug-
gesting that the former may be more suited to practical applications. The 
graph shows that the SP-30 technique is unsuccessful for dealing with 
system contingencies in two situations when the UC costs more than 
$500,000. UC costs for the SP-30 solution are generally similar to those 
of the SP-100, therefore the SP-30 solution’s particularly high costs 
under system contingencies cause its average simulated cost to be 
higher. The average cost of the solution to the ARO problem in Fig. 7 is 
less than that of the SP-30 solution because of the standard box uncer-
tainty set’s superior ability to hedge against the uncertainties. While 
both solutions, ARUC-CA-Box and the one equivalent to the K-means- 
based DDU box sets are conservative, the former has a much lower 
average simulated cost. By comparison, the proposed method in solu-
tions for UCs that are both resilient and accurate to within 0.001 % of the 
SP-100 solution. Importantly, the proposed ARO approach uses DDT 
sets, which take just a fraction of the time to compute as the SP-100 
solution. Further, for all scenarios obtained from uncertainty data, 
scheduling costs are modeled. It is possible to compare the operation 
costs in different scenarios. The operation scenario of the SP-30 solution 
cannot adequately plan and develop the unforeseen conditions of the SP- 

100 solution scenario. The average cost simulated with the horizontal 
guidelines shown and the SP-30 is 0.1 % more than the costs of the SP- 
100 solution and SP-30 solution. The vertical column of Fig. 7 is partially 
broken, because the SP-30 solution is located far away from the averages 
in some places and requires convergence. 

The highest simulated cost in all scenarios is 46 % higher than the 
cost in the SP-100 solution. Fig. 7 uses abbreviations to show the 
development of solutions and Unit Commitment data. SP-30 refers to a 
stochastic UC with 30 random situations; SP-100 refers to a stochastic 
generation unit with 100 random scenarios; ARUC refers to an adaptive 
robust UC; DDARUC refers to a DDT and RUC; UC renewable energy data 
could be clustered using DPMM. 

A huge case scenario is also considered and tested using the IEEE 
118-bus system. The system is comprised of 91 loads, 54 thermal units, 
118 buses, and 186 lines. There are ten wind farms in the areas served by 
bus lines 4, 6, 8, 10, 12, 15, 18, 36, 69, and 77. The master problems may 
include as many as 20,267 constraints, 3942 integer variables, and 8372 
continuous variables, so you can get a notion of how extensive the 
reformed concerns are. There are a total of 49,153 constraints and 7926 
integer variables among the subproblems, in addition to 8485 contin-
uous variables. The optimal cost of the traditional “one-set-fits-all” with 
DPMM is $779,414, according to the results of large-scale optimization, 
but it drops to $751,116 when using the presented the DDU sets con-
structed with DBSCAN and DPMM. The price tag for using deterministic 
planning is $720,122. In light of this, it becomes clear that this method 
leads to a 48 % more substantial decrease in the PoR than the conven-
tional approach. It takes 965 CPUs to solve the large-scale resilience 
optimization issue using the proposed method. Between rounds, this 
approach revises some of the variables and constraints governing the 
master and subproblems. The optimally sustainable activities planned to 
use deterministic planning and the proposed framework are shown in 
Fig. 8. 

It is worth noting that the ARO scenario and the deterministic 

Fig. 8. The power outputs of the generators for both the deterministic planning scenario and the proposed robust optimization case.  
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planning scenario have a lot of similarities in terms of the elements that 
make up their respective optimal commitment schedules. Generators 
G4, G14, and G43 are run for a longer period of time in the evening if the 
ARO solution is implemented. As opposed to the ideal choices that 
would be created by deterministic planning, this is what happens. In 
contrast, the recommended framework’s optimal solution would have 
the morning’s most of the power coming from generators G24, G36, and 
G45. The ARO scenario necessitates more generators to be running in the 
morning and evening due to inaccurate wind power forecasts. This is 
mainly because of the potential for lower wind power outputs, which 
would need for a bigger number of capabilities from thermal units to 
make up for the shortfall. More thermal units need to come online to 
make up for the uncertainty in the wind output forecast. Therefore, in 
the ARO example, boosting the outputs of active units is a direct solution 
to the possible energy supply deficit caused by inaccuracies in wind 
power predictions during these hours. Power generators are controlled 
by different models through data-driven disjunctive uncertainty. The 
outcomes of this simulation are shown in Fig. 9. The average simulated 
costs of the given method were much lower than those obtained using 
the more conventional ARO and SP methods. Scheduling choices based 
on SP-30 and SP-100 approaches have very high costs related to systems 
contingencies, reaching over 1,000,000 USD in out-of-sample situations, 
while optimum judgments using the suggested framework are able to 
successfully buffer against the systems contingencies. Investigating 
random scenarios with additional commitment, for example, for SP-30 
= stochastic UC with 30 random scenarios, and the same amount has 
been used to upgrade the scenarios, then SP-100 = stochastic UC in 
accordance with 100 scenarios. 

5. Conclusions 

This paper aimed to provide a robust UC solution considering 
renewable energy generation uncertainties within a novel ML-based 
two-stage ARO framework. This framework includes DDT and DDU 
sets to manage RES generation penetration, aiming to mitigate un-
certainties arising during the operation of sustainable and reliable 
power systems due to the proliferation of RES. To this end, an ML 
strategy with a two-stage adaptive and resilient UC model was proposed 
to represent the uncertainty region of disjunctive structures in wind 
power prediction errors, enhancing flexibility and accuracy. This model 
proved to be both flexible and reliable. Subsequently, the number of 
clusters was determined using a valid index, and uncertainty data 
clustering was performed using two well-known criteria: K-means and 
DBSCAN. Lastly, a DDU set was utilized to streamline computational 
operations and address base uncertainties. These fundamental uncer-
tainty sets encompass recognized Box and Budget UBD sets alongside 
DDU sets created using DPMM, PCA combined with KDE, and SVC. 

The proposed utility-based framework was demonstrated through 
two case studies, illustrating its effectiveness in achieving sustainability 
amid uncertainties posed by renewable energy. The modified IEEE 39- 
bus and IEEE 118-bus systems served as the foundations for these case 
studies. Comparison with the standard ’one-size-fits-all’ adaptive robust 
UC strategy revealed that the suggested framework reduces the cost of 
robustness by 8–48 %, signifying significant economic benefits. For 
robust UC, we adopted a ’one-size-fits-all’ strategy. In terms of economic 
performance for renewable electricity system operations, the proposed 
framework can yield equivalent or superior results to SP, all while 
reducing computation time by around 75 %. Some certain limitations 
still exist within the proposed method. While the primary focus of this 
research was on ensuring reliable energy system operations using 
renewable energy sources, the suggested approach holds the potential 
for exploring various forms of energy system uncertainties in the future. 
Uncertainties often abound in power grids with renewable and non- 
renewable energy sources, stemming from factors like fuel availability, 
grid and equipment failures, and unforeseen repairs and demands. The 
proposed framework exhibits high adaptability, accommodating various 

clustering techniques. In this study, we employed the K-means and 
DBSCAN clustering algorithms. Researchers can use these algorithms or 
other models, adapting the research methodology to different clustering 
scenarios, hierarchical clustering, conservative clustering, or alternative 
uncertainty sets to construct networks grounded in renewable and clean 
energy. 
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