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a b s t r a c t

We analyse the elastic properties of a class of cylindrical cloaks deduced from linear
geometric transforms x → x′ in the framework of the Milton–Briane–Willis cloaking
theory [New Journal of Physics 8, 248, 2006]. More precisely, we assume that the
mapping between displacement fields u(x) → u′(x′) is such that u′(x′) = A−tu(x), where
A is either the transformation gradient Fij = ∂x′

i/∂xj or the second order identity tensor
I. The nature of the cloaks under review can be three-fold: some of them are neutral
for a source located a couple of wavelengths away; others lead to either a mirage effect
or a field confinement when the source is located inside the concealment region or
within their coated region (some act as elastic concentrators squeezing the wavelength
of a pressure or shear polarized incident plane wave in their core); the last category of
cloaks is classified as an elastic counterpart of electromagnetic perfect cylindrical lenses.
The former two categories require either rank-4 elastic tensor and rank-2 density tensor
and additional rank-3 and 2 positive definite tensors (A = F) or a rank-4 elasticity tensor
and a scalar density (A = I) with spatially varying positive values. However, the latter
example further requires that all rank-4, 3 and 2 tensors be negative definite (A = F)
or that the elasticity tensor be negative definite (and non fully symmetric) as well as a
negative scalar density (A = I). We provide some illustrative numerical examples with
the Finite Element package Comsol Multiphysics when A is the identity.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There has been a growing interest over the past years in the analysis of elastic waves in thin plates in the metamaterial
ommunity with the theoretical proposal [1,2], and its subsequent experimental validation [3,4] of a broadband cloak
or flexural waves. Square [5] and diamond [6] cloaks are based on an improved transformed plate model, while
orm-invariance of the transformed equations in the framework of pre-stressed anisotropic plates is analized in [7–9].

There is currently a keen activity in transformation optics, whereby transformation based solutions to the Maxwell
quations expressed in curvilinear coordinate systems travel along geodesics rather than in straight lines [10]. The fact
hat light follows shortest trajectories, the physical principle behind transformation optics, was formulated by de Fermat
ack in 1662. This minimization principle is applicable to ray optics, when the wavelength is much smaller than the
ize of the diffraction object. Leonhardt has shown in 2006 [11] that this allows for instance the design of invisibility
loaks using conformal mappings. Pendry, Schurig and Smith simultaneously reported that the same principle applies to
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lectromagnetic waves, i.e. when the wavelength is in resonance with the scattering object, by creating a hole in the curved
pace [12]. Interestingly, the mathematicians Greenleaf, Lassas and Uhlmann proposed an earlier route to invisibility using
n inverse problem approach in 2003 [13], and together with Kurylev have been able since then to bridge the cloaking
heory with Einstein theory of relativity, thereby suggesting possible avenues towards electromagnetic wormholes [14,15].
eonhardt and Philbin have further proposed an optical fibre experiment [16] for an analogue of Hawking’s famous event
orizon in his theory of black holes [17]. It seems therefore fair to say that transformation optics offers a unique laboratory
or thought experiments, leading to a plethora of electromagnetic paradigms. However, this would remain some academic
uriosity without the practical side effect since the advent of so-called metamaterials, first introduced by Pendry in 1999
o obtain artificial magnetism in locally resonant periodic structures [18].

The first realization of an electromagnetic invisibility cloak [19] is a metamaterial consisting of concentric arrays of
plit-ring resonators. This structured material effectively maps a concealment region into a surrounding shell thanks
o its strongly anisotropic effective permittivity and permeability which further fulfil some impedance matching with
he surrounding vacuum. The cloak thus neither scatter waves nor induces a shadow in the transmitted field. Split ring
esonators enable to meet among others the prerequisite artificial magnetism property, otherwise unobtainable with
aterials at hand [18]. This locally resonant micro-structured cloak was shown to conceal a copper cylinder around
.5 GHz, as predicted by numerical simulations [19].
The effectiveness of the transformation based invisibility cloak was demonstrated theoretically by Leonhardt [11]

olving the Helmholtz equation. Note that this equation is not only valid to compute ray trajectories (geodesics) in
he geometrical optic limit, but also for matter waves in the quantum theory framework thanks to some mathematical
orrespondences between the Helmholtz and Schrödinger equations. Zhang et al. used this analogy to propose a quantum
loak based upon ultracold atoms within an optical lattice [20]. Greenleaf et al. subsequently discussed resonances (so-
alled trapped modes) occurring at a countable set of discrete frequencies inside the quantum cloak, using a spectral
heory approach [21].

Using analogies between the Helmholtz and the Maxwell’s equations, Cummer and Schurig demonstrated that pressure
coustic waves propagating in a fluid also undergo the same geometric transform in 2D [22]. Chen and Chan further
xtended this model to 3D acoustic cloaks [23], followed by an independent derivation of the acoustic cloak parameters
n [24,25]. Such meta-fluids require an effective anisotropic mass density as in the model of Torrent and Sanchez-Dehesa
26]. However, an acoustic cloak for linear surface water waves studied experimentally and theoretically in [27], only
nvolves an effective anisotropic shear viscosity.

Nevertheless, transformation based invisibility cloaks cannot be applied in general to elastodynamic waves in structural
echanics as there is a lack of one-to-one correspondence between the equations of elasticity and the Maxwell’s equations

28]. Bigoni et al. actually studied such neutral inclusions in the elastostatic context using asymptotic and computational
ethods in the case of anti-plane shear and in-plane coupled pressure and shear polarizations [29], but when one moves

o the area of elastodynamics, geometrical transforms become less tractable and neutrality breaks down: there are no
onformal maps available in that case, and one has to solve inherently coupled tensor equations.
More precisely, Milton, Briane and Willis have actually shown that there is no symmetric rank-4 elasticity tensor

escribing the heterogeneous anisotropic medium required for an elastodynamic cloak in the context of Cauchy elasticity
28]. However, so-called Willis’s equations, discovered by the British applied mathematician John Willis in the early
0’s [30,31], offer a new paradigm for elastodynamic cloaking, as they allow for introduction of additional rank-3 and
ank-2 tensors in the equations of motion that make cloaking possible.

Nevertheless, Brun, Guenneau and Movchan have shown [32] that it is possible to design an elastic cloak without
nvoking Willis’s equations for in-plane coupled shear and pressure waves with a metamaterial described by a rank-
elasticity tensor preserving the main symmetries, as well as a scalar density. Importantly, both elasticity tensor and
ensity are inhomogeneous, and, at the inner boundary of the cloak, Cθθθθ is singular while density ρ ′ vanishes [32].
ome designs based on a homogenization approach for polar lattices has been proposed by Nassar, Chen and Huang [33]
nd Garau et al. [34]. Achaoui et al. have proposed an alternative design making use of elastic swiss-rolls [35]. Diatta
nd Guenneau [36] have shown that a spherical elastodynamic cloak can be designed using the same route as in [32],
ut the corresponding metamaterial design remains an open problem. There is an alternative, pre-stress, route to elastic
loaking proposed by Norris and Parnell that greatly relaxes constraints on material properties compared to the previous
outes [37–39].

In the present article, we further investigate cylindrical cloaks for in-plane elastic waves using a radially symmetric
inear geometric transform which depends upon a parameter. Depending upon the value of the parameter, the transform is
pplied to the design of neutral (invisibility) cloaks, elastic concentrators or cylindrical lenses. We discuss their underlying
echanism using a finite element approach which is adequate to solve the Navier equations in anisotropic heterogeneous
edia.

. Governing equations and elastic properties of cloaks

.1. The equations of motion

The propagation of in-plane elastic waves is governed by the Navier equations. Assuming time harmonic exp(−iωt)
dependence, with ω as the wave frequency, allows us to work directly in the spectral domain. Such dependence is assumed
2
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enceforth and suppressed, leading to

∇ · C : ∇u + ρ ω2u + b = 0 , (1)

where, considering cylindrical coordinates (r, θ ), u = (ur , uθ ) is the in-plane displacement, ρ the density and Cijkl
i, j, k, l = r, θ ) the fourth-order elasticity tensor of the (possibly heterogeneous anisotropic) elastic medium. In Eq. (1) b
s the body force.

.2. The transformed equations of motion

Let us now consider the radial linear geometric transform (r, θ ) → (r ′, θ ′), with θ ′
= θ , shown in Fig. 1

r ′
=

⎧⎪⎨⎪⎩
[(1+α)r1−αr0] r

r0
for r ′

≤ r ′

0 (domain A),

(1+α)r1−αr for r ′

0 ≤ r ′
≤ r ′

1 (domain B),
r for r ′

≥ r ′

1 (domain C),
(2)

where α = −(r ′

1 − r ′

0)/(r1 − r0) is a real parameter and r ′

0 = (1 + α)r1 − α r0, r ′

1 = r1. The transformation gradient is
= (dr ′/dr)Ir + (r ′/r)I⊥ where Ir = er ⊗ er is the second-order projection tensor along the radial direction identified
y the unit vector er , and I⊥ = I − Ir , with I second-order identity tensor. Furthermore, J = det F is the Jacobian of the
ransformation.

Design of in-plane transformation-based elastic cloaks was discussed in [32] when α = −1 + r ′

0/r
′

1 (r0 = 0): in that
ase, (2) simplifies into the geometric transform for an invisibility cloak r ′

= r ′

0 +
r ′1−r ′0
r ′1

r in the domain (B) [12,13], where
r ′

0 and r ′

1, respectively, denote the inner and outer radii of the circular cloak. However, other values of the parameter α

lead to equally interesting cloaks, such as neutral concentrators, first studied in the context of electromagnetism [40], and
we would like to discuss these in the sequel.

We now need to consider two cases for the transformed equations of motion.

2.2.1. Gauge transform u′(r ′, θ ′) = u(r, θ )
By application of transformation (2) with the Gauge u′(r ′, θ ′) = u(r, θ ) the Navier Eqs. (1) are mapped into the

equations

∇
′
· C′

: ∇
′u′

+ ρ ′ω2u′
+ b′

= 0 , (3)

where u′(r ′, θ ′) and b′(r ′, θ ′) are the transformed displacement and body force, respectively, and ∇
′
= Ft∇ the gradient

operator in the transformed coordinates. In particular, we stress that we assume an identity gauge transformation [32,41],
i.e. u′(r ′, θ ′) = u(r, θ ). The stretched density is the scalar field

ρ ′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
(1+α)r ′

1 − r ′

0

αr ′

0

]2

ρ in A,

r ′
− (1+α)r ′

1

α2r ′
ρ in B,

ρ in C,

(4)

homogeneous in A and C. The transformed linear elasticity tensor has components

C ′

ijkl = J−1CmnopFimFkoδjnδlp , (5)

where (i, j, k, l = r ′, θ ′), (m, n, o, p = r, θ ), δjn is the Kronecker delta and the usual summation convention over
repeated indices is used. In particular, if before transformation the material is isotropic, i.e. Cijkl = λδijδkl + µ(δikδjl +

δilδjk) (i, j, k, l = r, θ ), with λ and µ the Lamé moduli, the transformed elasticity tensor C′ has non-zero cylindrical
components

C ′

r ′r ′r ′r ′=
r ′−(1+α)r1

r ′ (λ+2µ), C ′

θ ′θ ′θ ′θ ′ =
r ′

r ′−(1+α)r1
(λ+2µ),

C ′

r ′r ′θ ′θ ′ = C ′

θ ′θ ′r ′r ′ = λ, C ′

r ′θ ′θ ′r ′ = C ′

θ ′r ′r ′θ ′ = µ,

C ′

r ′θ ′r ′θ ′ =
r ′−(1+α)r1

r ′ µ, C ′

θ ′r ′θ ′r ′ =
r ′

r ′−(1+α)r1
µ ,

(6)

in B and C′
= C in A and C.

The transformation and the corresponding transformed density ρ ′ and elasticity tensor C′ are broadband, they do not
epend on the applied frequency ω.
3
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T

Fig. 1. Geometric transform of Eq. (2). (a) Representation of the transform r → r ′ for different values of the parameter α. The domains A (r ′
≤ r ′

0),
B (r ′

0 ≤ r ′
≤ r ′

1) and C (r ′
≥ r ′

1) are indicated. (b) Transformation of the geometry for α > 0, α < −1 and α = −1 + r ′

0/r
′

1 (perfect cloak).

2.2.2. Gauge transform u′(r ′, θ ′) = F−tu(r, θ )
As noted in [28], by application of transformation (2) with the Gauge u′(r ′, θ ′) = F−tu(r, θ ), where F is the

transformation gradient, the Navier Eqs. (1) are mapped into the equations

∇
′
·

(
C′′

: ∇
′u′

+ D′
· u′

)
+ S′

: ∇
′u′

+ ω2ρ ′u′
+ b′

= 0. (7)

The transformed rank-4 elasticity tensor C′′ has components

C ′′

ijkl = J−1FimFjnCmnopFkoFlp , (8)

where (i, j, k, l = r ′, θ ′), (m, n, o, p = r, θ ).
We note that C′′ in (8) has all the symmetries, unlike C′ in (6), which has the major but not the minor symmetries.
The rank-3 tensors D′ and S′ in (8) have elements

D′

ijk = J−1FimFjnCmnop
∂2x′

k

∂xo∂xp
= D′

jik , (9)

and

S ′

ijk = J−1 ∂2x′

i

∂xm∂xn
CmnopFjoFkp = S ′

jik. (10)

Finally, the transformed density ρ ′ in (8) is matrix valued

ρ ′

ij = J−1ρFimFjm + J−1 ∂2x′

i

∂xm∂xn
Cmnop

∂2x′

j

∂xo∂xp
= ρ ′

ji. (11)

hese expressions were first derived in [28].
4
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Now, if before transformation the material is isotropic, then the transformed elasticity tensor C′′ has non-zero
ylindrical components

C ′′

r ′r ′r ′r ′=
r ′−(1+α)r1
r ′(r1−r0)2

(λ+2µ),

C ′′

θ ′θ ′θ ′θ ′ =
r ′3

(r1−r0)2(r ′−(1+α)r1)3
(λ+2µ),

C ′′

r ′r ′θ ′θ ′ = C ′′

θ ′θ ′r ′r ′ =
r ′

(r1−r0)2(r ′−(1+α)r1)
λ,

C ′′

r ′θ ′θ ′r ′ = C ′

θ ′r ′r ′θ ′ = C ′′

r ′θ ′r ′θ ′ = C ′′

θ ′r ′θ ′r ′ =
r ′

(r1−r0)2(r ′−(1+α)r1)
µ ,

(12)

n B and C′′
= C in A and C.

On the other hand, the rank-3 tensors D′ and S′ have non-zero cylindrical components

D′

r ′r ′r ′=
1

(r1−r0)2(r ′−(1+α)r1)(r ′+r1r0/(r1−r0))
λ = −S ′

r ′r ′r ′

D′

r ′θ ′θ ′ = D′

θ ′r ′θ ′ = 2 1
(r1−r0)2(r ′−(1+α)r1)2

µ = −S ′

θ ′θ ′r ′ = −S ′

θ ′r ′θ ′

D′

θ ′θ ′r ′ =
r ′+r1r0/(r1−r0)

(r1−r0)2(r ′−(1+α)r1)3
(2µ + λ) = −S ′

r ′θ ′θ ′.

(13)

Similar expressions can be derived for the transformed density. Expressions in (12) and (13) are more intricate than
those in (6); thus, in the sequel, we focus on the transformed equations of motion (3).

2.3. Interface conditions for gauge u′(r ′, θ ′) = u(r, θ )

Perfect cloaking and perfect concentrator require additional conditions on displacements and tractions at the interfaces
between the domains with different material properties introduced by the transformation (2). In the transformed problem
(3) there are two interfaces, between domains A and B, at r ′

= r ′

0 and r = r0, and at the cloak’s outer boundary, between
omains B and C, at r ′

= r = r1. Transformed equations (3) together with the assumption u′(r ′, θ ′) = u(r, θ ) assure that
displacements and tractions in the inhomogeneous transformed domain at a point (r ′, θ ′) coincide with displacements
and tractions at the corresponding point (r, θ ) in the original homogeneous problem (1) where no interfaces between
different materials are present. In particular, if we introduce the Cauchy stress tensors σ ′

= C′
: ∇

′u′ and σ = C : ∇u for
the transformed and original problem, respectively, it is verified the following equality between tractions

σ ′
· e′

r = σ · er , (14)

t r ′
= r ′

0, r = r0 and at r ′
= r = r1. Equality (14) can be easily demonstrated by using Nanson’s formula [42] e′

r = JF−ter
for the radial unit vectors.

Note that the matching is independent on the particular value assumed by α.

2.4. Perfect cloak. Singularity at the inner interface

We note that for the perfect cloak [32], i.e. r0 = 0 and α = −1+ r ′

0/r
′

1, a point at r = 0 is mapped into a disc of radius
′

0. This is a singular transformation and, at the cloak inner boundary, r ′
− (1 + α)r1 → 0. Therefore, at r ′

= r ′

0, from (4)
nd (6) one can see that ρ ′

→ 0, C ′

r ′r ′r ′r ′ , C ′

r ′θ ′r ′θ ′ → 0, while C ′

θ ′θ ′θ ′θ ′ , C ′

θ ′r ′θ ′r ′ → ∞.
Similarly, at r ′

= r ′

0, from (12) and (13) one can see that C ′′

r ′r ′r ′r ′ → 0, while C ′′

θ ′θ ′θ ′θ ′ , C ′′

r ′r ′θ ′θ ′ = C ′′

θ ′θ ′r ′r ′ , C
′′

r ′θ ′θ ′r ′ = C ′

θ ′r ′r ′θ ′ =

C ′′

r ′θ ′r ′θ ′ = C ′′

θ ′r ′θ ′r ′ → ∞. Moreover, one notes that the rate of divergence is faster for C′′ than C′, and thus anisotropy is even
more extreme in the neighbourhood of the inner boundary for C′′. All expressions in (13) diverge when r ′

−(1+α)r1 → 0.
The required extreme anisotropy physically means that pressure and shear waves propagate with an infinite velocity

in the azimuthal θ ′-direction and zero velocity in the radial r ′-direction along the inner boundary, which results in a
vanishing phase shift between a wave propagating in a homogeneous elastic space and another one propagating around
the coated region.

Clearly the presence of unbounded physical properties poses limitations on possible realizations and numerical im-
plementation of the model; regularization techniques have been proposed introducing the concept of near cloak [43–45],
but the realization of such elastodynamic cloaks remains a challenge.

2.5. General transformation

We now wish to extend first the proposal of Rahm et al. [40] of an omni-directional electromagnetic concentrator
to the elastic setting and second to consider a more general transformation including folded transformed geometries,
as proposed for quasi-static equations of electromagnetism by Milton et al. [46]. We recall that the transformation (2)
compresses/expands a disc with radius r0 at the expense of an expansion/compression of the annulus between r0 and
r1. The inner disc is expanded for −1 < α < −1 + r ′

0/r
′

1 with the limiting cases α = −1 corresponding to an identity
(r ′

0 = r0) and α = −1 + r ′

0/r
′

1 to perfect cloaking. On the contrary the disc is compressed, namely r ′

0 > r0, for α < −1

and α > 0. Additionally, when α > 0, r0 > r1 and a folding of the original geometry is obtained.

5



M. Brun and S. Guenneau Wave Motion 119 (2023) 103124

p

t

Fig. 2. Elastic field generated by an horizontal unit force applied in the external homogeneous region; α = −1 + r ′

0/r
′

1 = −0.5, ωd/cs = 40, source

osition x0 = (−0.42, 0)d. Magnitude u =

√
u2
1 + u2

2 of the displacement field in the system with (a) inclusion and cloaking and (b) in a homogeneous
system. (c) Comparison between the displacement magnitude u computed in Comsol for a cloaked inclusion (black line) and the analytical Green’s
function in an infinite homogeneous linear elastic and isotropic material (grey line), see Eq. (17).

The material remains homogeneous and isotropic in the inner disc A where only the density is changed. In the annulus
region B the material is heterogeneous and elastically anisotropic. Consistently with Brun et al. [32] and differently
from Milton et al. [28] the density remains a scalar field (see also [41]). We stress that the heterogeneity is smoothly
distributed and the material is functionally graded with the absence of any jump in the material properties leading to
possible scattering effects. As detailed above, the interface conditions are automatically satisfied and do not introduce any
scattering.

It is important to note that, excluding the perfect cloaking case, for bounded values of α all the elastic rigidities and
he density are bounded leading to possible physical and numerical implementation of the metamaterial structure.
6
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c
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Fig. 3. Elastic field generated by a vertical unit force applied in the external homogeneous region. α = −1 + r ′

0/r
′

1 = −0.5, ωd/cs = 40, source
0 = (−0.42d, 0). (a) Magnitude u of the displacement field; (b) Comparison between the displacement magnitude u computed in Comsol for a
loaked inclusion (black line) and the analytical Green’s function in an infinite homogeneous linear elastic and isotropic material (grey line).

.6. The radial field concentrator. Unbounded α

The limiting cases α → ±∞, where r0 = r1, correspond asymptotically to the radial transformation

r ′
=

⎧⎨⎩
r
r1

in A,

r1 in B,

r in C.

(15)

In such a case in the annulus region B C ′

θ ′θ ′θ ′θ ′ , C ′

θ ′r ′θ ′r ′ → ∞, ρ ′
→ ∞ and all the other elastic rigidities components are

nchanged. In such material, independently on the external field impinging the metamaterial region r ′
≤ r ′

1, the elastic
ields in B are radially independent and depend only on the azimuthal coordinate θ ′. However, the harmonic behaviour
annot be reached in a finite time after the transient regime since the density ρ ′ is unbounded.

. Numerical results and discussion

In this section, we report the finite element computations performed in the COMSOL multiphysics package. Normalized
aterial parameters are used. A cloak of density ρ ′ (Eq. (4)) and elasticity tensor C′ (Eqs. (5) and (6)) is embedded in an

nfinite isotropic elastic material with normalized Lamé moduli λ = 2.3 (GPa) and µ = 1 (GPa), that corresponds to a
oisson ratio ν = 0.3485 and a Young’s to shear modulus ratio E/µ = 2.6966, and mass density ρ = 1 kg/m3. The
loak has inner and outer radii r ′

0 = 0.2 (m) and r ′

1 = 0.4 (m), respectively. The disc inside the cloak consists of the
ame elastic material as the outer medium but different density. We further consider a harmonic unit concentrated force
pplied either in the direction x1 or x2 which vibrates with a normalized angular wave frequency ωd/cs = 40, where cs

is the shear wavespeed (m/s) and d is a unit length (m). This force is sometimes located outside the cloak (cf. Figs. 2–4),
sometimes inside the coating (cf. Fig. 5) or within the central disc (cf. Fig. 6), depending upon whether we are looking for
some neutrality feature, lensing/mirage effect or some localization.

Before we start looking at the cloak’s features depending upon the ranges of values of the parameter α, we briefly
discuss the implementation of elastic perfectly matched layers (PMLs), in the framework of transformation elasticity.
7
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x

h

f
n

3

Fig. 4. Elastic deformation fields generated by a unit force applied in the external homogeneous region. α = −1+ r ′

0/r
′

1 = −0.5, ωd/cs = 40, source
0 = (−0.42, 0)d. (a), (c), (e) Force applied in the horizontal direction x1 . (b), (d), (f) Force applied in the vertical direction x2 . (a), (b) Component

ε11 =
∂u1
∂x1

; (c), (d) Component ε22 =
∂u2
∂x2

; (e), (f) Component ε12 = ε21 =
1
2 (

∂u1
∂x2

+
∂u2
∂x1

).

3.1. Implementation of elastic cylindrical PMLs

A perfectly matched layer has been implemented in order to model the infinite elastic medium surrounding the cloak
(cf. outer ring in Figs. 2–6); this has been obtained by application of the geometric transform [47],

x′′

i = (1 + a)x̂i − axi, i = 1, 2, (16)

for |xi| > |x̂i|, where a is now a complex number whose imaginary part accounts for the decay of the elastic waves and
x̂i = ±1 in Figs. 2–6. The corresponding (complex) density ρ ′′′ and elasticity tensor C′′′ are still given by (4) and (6).
The accuracy of the PMLs has been numerically validated when a = i − 1, by comparison with the Green’s function in
omogeneous elastic space (cf. Eq. (17) and Fig. 2b, c).
We can therefore confidently carry out computations with these PMLs. We start by the study of an invisibility cloak

or in-plane elastic waves, whereby the point source considered in [32] now lies in the close vicinity of the cloak (intense
ear field limit when the acoustic ray picture breaks down).

.2. Neutrality for a point source outside the cloak

We report in Figs. 2 and 3 the computations for a point force applied at a distance r = 0.42d away from the centre of
the cloak and close to the cloak itself of outer radius r ′

= 0.4d. The force is applied in the horizontal direction in Fig. 2 and
1

8
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Fig. 5. Elastic field generated by a vertical unit force applied in the cloaking region. α = −1+ r ′

0/r
′

1 = −0.5, ωd/cs = 40, source x0 = (−0.3, 0)d. (a)
agnitude u of the displacement field; (b) Comparison between the displacement magnitude u computed in Comsol for a cloaked inclusion (black

ine) and the analytical Green’s function in an infinite homogeneous linear elastic and isotropic material (grey line), corresponding to a force applied
o a shifted source point x0 = (−0.2, 0)d.

in the vertical direction in Fig. 3. In both upper panels (a), we clearly see that both the wave patterns of the magnitude of
the displacement field are smoothly bent around the central region within the cloak (where the magnitude is uniform).

The comparative analyses between panels (a) and (b) of Fig. 2 shows that the wave patterns in the external homo-
geneous domain are not perturbed by the presence of the inclusion and cloaking interface. This is verified quantitatively
in Fig. 2 panel (c) and in Fig. 3 panel (b) where the numerically computed wave pattern is compared with the Green’s
function in the homogeneous elastic space

G(x)=
i

4µ

{
H (1)

0 (ksr)I−
Q
ω2 ∇∇

[
H (1)

0 (ksr)−H (1)
0 (kpr)

]}
, (17)

ith H (1)
0 the Hankel function, I the second order identity tensor, ∇ the gradient operator, kp = ω/cp, ks = ω/cs,

= (1/c2p + 1/c2s )
−1(λ + µ)/(λ + 2µ), cp =

√
(λ + 2µ)/ρ, cs =

√
µ/ρ. The plots are reported along the horizontal line

2 = 0 passing from the point of application of the force. The absence of forward or backward scattering is demonstrated
y the excellent agreement between the two fields in the external homogeneous domain r > 0.4. Clearly, the profile is
uch different when the coating is removed and the inner disc is clamped or freely vibrating. We also see that the field

n the cloaking region has the same amplitude as the one in homogeneous case, but shifted following the transformation
′(r); in the inner disc the field is homogeneous. Finally the effectiveness of the PML domains can also be appreciated.
In Fig. 4 the deformation fields are also reported for both cases, where the force is applied in horizontal (first column)

nd vertical (second column) direction. In the upper (a, b) and central (c, d) panels the skew-symmetric nature of the
omponents ε11 and ε22 of the deformation tensor reveals the tensor nature of the problem. The component ε12 leads to
non-intuitive pattern whereby fully-coupled shear and pressure components create the optical illusion of interferences.
gain, the effect of the cloaking is shown and also for deformation fields waves are bent around the cloaking region
ithout backward and forward scattering.

.3. Mirage effect for a point source in the coating

In this section, we look at the case of a point force located inside the coating. In a way similar to what was observed
or an electromagnetic circular cylindrical cloak [48], we observe in Fig. 5 a mirage effect: the point force seems to radiate
9
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Fig. 6. Elastic field generated by a vertical unit force applied in the internal inclusion. α = −1 + r ′

0/r
′

1 = −0.5, ωd/cs = 40, x0 = (−0.17, 0)d. (a)
Magnitude u of the displacement field; (b) Comparison between the displacement magnitude u computed in Comsol for a cloaked inclusion (black
line) and the analytical Green’s function in an infinite homogeneous linear elastic and isotropic material (grey line). The sources are located at
x0 = (−0.17, 0)d for the cloaked inclusion and at x0 = (0, 0)d for the homogeneous system.

from a location shifted towards the inner boundary (further away from an observer) as given by

r =
(1 + α)r1 − r ′

α
, θ = θ ′ , (18)

s also shown in panel (b).
Importantly, the profile of the shifted point source in homogeneous elastic space is superimposed with that of the point

ource located inside the coating, but only outside the cloak. In the invisibility region i.e. the disc at the centre of the cloak,
he field is constant and this suggests that the central region behaves as a cavity. We study this cavity phenomenon in
he next section.

The example in Fig. 5 reveals that any object located inside the coating would appear as a different elastic material
ith a different shape to an observer.

.4. Confinement for a point source in the central region

We now consider a point force inside the invisibility region. Interestingly, a point source located in the invisibility zone
lways radiates outside the cloak as if it was located at the origin and this is quite natural as the central disc is simply the
mage of the origin via the geometric transform (18), as shown in Fig. 6. The fact that the central disc behaves as a closed
avity is also intuitive, as the elasticity tensor C′ is singular on the boundary of the disc. We refer the reader to [21] for
a discussion of almost-trapped eigenstates in a similar configuration for matter waves.

3.5. Squeezing the wavelength with an elastic concentrator

We report the effects associated to an increase in the magnitude of the parameter α describing the linear transforma-
ion (2). In Fig. 7 the effect of the cylindrical coating on the inclusion is given for a pressure plane wave u = (A exp(ikpt), 0)
propagating in the horizontal direction x1. A decrease of α from α = −1 + r ′

0/r
′

1 = −0.5 introduces wave propagation
within the inclusion with progressive shorter wavelengths while the amplitude of the wave remains unchanged. From
Fig. 7 panel (d) it is evident that, when α < −1, the interface acts as an energy concentrator within the inclusion increasing
10
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Fig. 7. Elastic field generated by a pressure plane wave u = (A exp(ikpt), 0) with ωd/cs = 60. Left column: magnitude u of the displacement field.
Right column: comparison between the displacement magnitude u computed in Comsol for a cloaked inclusion (black line) and the pressure plane
wave in an infinite homogeneous linear elastic and isotropic material (grey line), results are plotted along an horizontal line passing from the centre
of the inclusion. (a) α = −0.5, (b) α = −0.6, (c) α = −1, (d) α = −5.

he energy flux. The energy crossing the inclusion region r ≤ r ′

0 = 0.2d equals the energy crossing the larger region r ≤ r0,
n a homogeneous material. In the interval −1 > α > −∞, r ′

0 < r0 < r ′

1.
We also note that, when α ̸= −0.5 the transformation is regular and material parameters remain bounded indicating

dditional advantages in technological and numerical implementations of the model. Last but not least, the field in the
xternal domain remains unchanged.

.6. Folding transformation. Superconcentration of an elastic wave with a cylindrical lens

We finally report in Fig. 8 an enhanced energy concentration effect obtained from a folding transformation (α > 0).
n such a case all the energy crossing a circular region larger than the region delimited by the cloaking interface is
oncentrated into the core. In Fig. 8, α = 0.94 and the radius of the circular region in the homogeneous space is 3.06 times
he radius of the inner inclusion. Again, such an effect is obtained by an increase in the energy flux, due to the shrinking
f the wavelength, leaving unperturbed both the wave amplitude and the fields in the external region. At the interfaces
etween the core and the shell and between the shell and the matrix, we also note perturbations of the displacement
ield, associated to the anomalous resonance induced by the negative definite constitutive tensor C′ in the shell [46,49,50].
11
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Fig. 8. Elastic field generated by a pressure plane wave u = (A exp(ikpt), 0) with ωd/cs = 60 and α = 0.94. (a) Magnitude u of the displacement
ield. (b) Displacement magnitude u computed in Comsol for a cloaked inclusion plotted along an horizontal line passing from the centre of the
nclusion.

nterestingly, space folding allows for a whole range of physical effects, such as superlensing effect [51–56] and external
loaking in conjunction with anomalous resonances [46,49,57–60].

. Conclusion

We have proposed to use stretched coordinates in order to design an elastic cloak bending the trajectory of in-plane
oupled shear and pressure waves around an obstacle, concentrating them in its core, or focussing them. We investigated
he transformed equations of motion for the Milton–Briane–Willis transformation gauge u′(r ′, θ ′) = F−tu(r, θ ) and the
run–Guenneau–Movchan gauge u′(r ′, θ ′) = u(r, θ ) (see [41]). The former leads to Willis’s equations with more extreme
nisotropic parameters in the cloak than for the latter. However, the latter requires a transformed elasticity tensor without
he minor symmetries, which is another hurdle for a metamaterial design.

We have studied various limiting cases for the value of a parameter in the considered radially symmetric linear
eometric transforms. These transforms are applied to the design of neutral (invisibility) cloaks, elastic concentrators
r cylindrical lenses.
We have numerically explored all the above for the gauge u′(r ′, θ ′) = u(r, θ ) leading to a non-fully symmetric

ransformed elasticity tensor, and have notably shown that a source located inside the anisotropic heterogeneous elastic
oating seems to radiate from a shifted location, and can also lead to anamorphism.
We believe that our space folding based design of elastic cylindrical lenses can lead to an in-plane counterpart of the

xternal cylindrical cloak for anti-plane shear waves introduced in [60] and applied periodically in [50].
We hope our results might open new vistas in cloaking devices for elastodynamic waves. Whereas their governing

quations do not generally retain their form under geometric transforms, unlike for electromagnetic and acoustic waves,
ne can choose specific gauges that can make the transformed equations of motions easier to handle.
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