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Unscaled Bayes factors for
multiple hypothesis testing
in microarray experiments

F Bertolino,1 S Cabras,1 ME Castellanos2 and
W Racugno1

Abstract

Multiple hypothesis testing collects a series of techniques usually based on p-values as a summary of the

available evidence from many statistical tests. In hypothesis testing, under a Bayesian perspective, the

evidence for a specified hypothesis against an alternative, conditionally on data, is given by the Bayes factor.

In this study, we approach multiple hypothesis testing based on both Bayes factor and p-values, regarding

multiple hypothesis testing as a multiple model selection problem. To obtain the Bayes factor we assume

default priors that are typically improper. In this case, the Bayes factor is usually undetermined due to the

ratio of prior pseudo-constants. We show that ignoring prior pseudo-constants leads to unscaled Bayes

factor which do not invalidate the inferential procedure in multiple hypothesis testing, because they are

used within a comparative scheme. In fact, using partial information from the p-values, we are able to

approximate the sampling null distribution of the unscaled Bayes factor and use it within Efron’s multiple

testing procedure. The simulation study suggests that under normal sampling model and even with small

sample sizes, our approach provides false positive and false negative proportions that are less than other

common multiple hypothesis testing approaches based only on p-values. The proposed procedure is

illustrated in two simulation studies, and the advantages of its use are showed in the analysis of two

microarray experiments.
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1 Introduction

The analysis of microarray experiments is a typical statistical problem that involves multiple
hypotheses testing (MHT). We perform a large number, say m, of gene expression comparisons
across two biological populations by testing a corresponding number of statistical hypothesis using a
sample size much smaller than m.
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Most of the current methods, used in MHT literature, evaluate the joint evidence against m null
hypotheses with the objective of guaranteeing an upper bound on the number of false positives (false
null rejections or false discoveries) while maintaining also a low number of false negatives (missed
null rejections or false non-rejections). Essentially, these procedures guarantee an upper bound to
several type I error rates (per comparison, per family, family wise and false discovery rates) along
with a reasonable power.

The most commonly known and used MHT methods are based on the evidence provided by
suitable test statistics through the corresponding p-values. It is well known that when the null
hypothesis is simple or when the test statistic is ancillary, the theoretical sampling null distribution
of the p-value is the uniform distribution U(0, 1). This could be a reason why p-values are so popular
in MHT. However, outside of the situations where the U(0, 1) can be used, the use of p-values is
problematic as shown in Cabras.1 To this purpose, Efron2,3 proposed an MHT procedure that
estimates the unknown theoretical sampling null distribution of the p-values which differs from
U(0, 1). This procedure, later referred as Efron’s procedure, plays an important rule in this study.

A broad review of MHT literature is beyond the scope of this study and we invite the reader to
look at Dudoit et al.4 and Farcomeni,5 with the references therein, for specific problematics related
to microarray experiments.

The approach to MHT proposed here jointly uses two sources of evidence for each test as done in
Perelman et al.,6 where t-statistics and their corresponding pooled standard deviations are jointly
used to detect genes that are differentially expressed (DE). Our study is also located among those
that explicitly measure the evidence of the null and the alternative hypothesis as done, for instance,
in Moerkerke and Goetghebeur.7

Specifically, we look at the MHT as a multiple model selection problem that can be handled with
m Bayes factors (BFs in the sequel). These are regarded as a measure of evidence for the model
choice that is considered in each test. We concentrate on the use of BF in a default Bayesian setting
where the two prior distributions, one for each model under comparison, come from formal rules.
Such priors are typically improper and so the BF, for single hypothesis testing, is undetermined due
to the ratio among prior pseudo-constants c1/c0 (c0 for the null model, H0, and c1 for the alternative,
H1). In order to eliminate the arbitrariness on c1/c0, several approaches are considered in literature,
such as those in Moreno et al.,8 Bertolino et al.,9 Berger and Pericchi10 and O’Hagan and Forster.11

Unfortunately, these methods require large samples and their application would be extremely
problematic in the analysis of microarray experiments. In fact, m approximations of the full BFs
would be computationally infeasible according to the procedures described in Berger and Pericchi10

and O’Hagan and Forster.11 It is important to note here that, in the absence of strong prior
information for each test, as the case of microarray data analysis, the use of proper ‘vague priors’
can be problematic because of the well-known Lindley’s paradox. Therefore, even the full and well-
defined BFs are essentially useless in MHT.

In this article, we ignore c1/c0 leading to what we call unscaled BFs and we argue that they can be
used in MHT with a partial calibration by the corresponding m p-values. Such calibration is only
needed in order to approximate their sampling null distribution. The use of the sampling distribution
of BFs is not new in literature; recently, it has been used for estimating clusters12 and Carota13 uses
the sampling distribution of BFs in the context of robustness, while in Pauler et al.,14 the sampling
behaviour of BFs is compared with other frequentist measures. Finally, Sellke et al.15 analyses the
sampling distribution of p-values in connection with BFs in hypothesis testing. Even under simple
parametric set-ups, we do not know the sampling null distribution of the unscaled BFs. We estimate
it using a data dependent parametric bootstrap resampling scheme, where the parametric model

2 Statistical Methods in Medical Research 0(0)
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corresponds to the null model H0. The partial calibration we propose is needed in order to perform
the parametric bootstrap because we estimate the nuisance parameters of the null model using the
observations from all tests whose p-values are above a suitable thresholdep. We use p-values only as a
starting point of our MHT procedure which is mainly based on unscaled BFs. In fact, we cannot
appreciate how many of the observed BFs are likely to come from the null model. However, if ep is
sufficiently high, we can reasonably assume that the corresponding p-values come from the null
model. We fix ep in such a way that, whatever MHT procedure one is willing to use, he/she would
never reject hypotheses for which p4ep.

The estimation of BF’s null distribution can be considered accurate enough because a large
number of observed BFs under the null hypothesis is available. We then compare observed BFs
with those expected under its approximated sampling null distribution by means of Efron’s
procedure. With such procedure, it is possible to estimate the set of true null hypotheses. In
particular, the Efron’s procedure uses a test statistic Z that quantifies evidence against H0. It
assumes that z1, . . . , zm come from the mixture distribution

hðzÞ ¼
m0

m
h0ðzÞ þ

m�m0

m
h1ðzÞ

where h0(z) and h1(z) are densities of Z underH0 andH1, respectively. In order to set a cut-off on the
Z values, the quantity to be controlled is the local false discovery rate

lfdrðzÞ � PrfH0jZ ¼ zg ¼
m0

m

h0ðzÞ

hðzÞ
�

h0ðzÞ

hðzÞ

In this article, we assume h0(z)¼�(z) (the standard normal density) when z1,. . ., zm are obtained
using the parametric bootstrap described in Section 3 and equation (6). Density h(z) is estimated
according to the method discussed in Efron2 (Section 3, equations (3.3) to (3.6)). As in Efron,2 we
assume m0/m� 0.9, where m0 is the unknown number of true nulls. Such assumption on the
proportion of DE genes is usual in microarray data analysis.

The lfdr is related to the false discovery rate (FDR) controlled by the Benjamini and Hochberg16

procedure. Efron’s2 procedure also reports an estimation of the expected FDR, Efdr, which is a
measure of the power of the method, that is, the smaller the Efdr the more confident we are in the
estimated sets of null and nonnull hypotheses.

The article is organized as follows: in Section 2, we introduce the unscaled BF and illustrate its
calculus for a toy example (Section 2.1). We also consider the more realistic problem of assessing the
equality of means of two independent heteroscedastic normal populations17 (Section 2.2). The
heteroscedasticity assumption is more realistic than the homoscedasticity in microarray data
analysis, because the variance of gene expression levels is often related with their means as
argued in Chen et al.,18 Newton et al.19 and Perelman et al.6 Section 3 explains the MHT
procedure based on BF and provides the estimated BF’s null distribution. Section 4 contains two
simulation studies where we illustrate, within the Efron’s procedure, the advantages of the use of BF
over p-value. Section 5 presents an application to two microarray experiments. Finally, Section 6
contains remarks and a discussion of the benefits that an MHT procedure would have if it were
based on the joint combination of the information borne by p-values and BFs. However, this last
approach is beyond the scope of this article.

Bertolino et al. 3
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2 Default improper priors and unscaled BFs

Let x¼ (x1,. . ., xm) be a realization of experiments each with m different features, i.e. m gene
expressions. The vector xi contains ni replications corresponding to the ith experimental feature,
for i¼ 1, . . . , m. For the sake of simplicity in the notation, we assume ni¼ n with n<<m. In fact,
different sample sizes neither modify the definition of the BF nor complicate calculations. Different
sample sizes could be of interest in applications with missing data in one or more arrays, but this
would just lead to a complication in the adopted notation. The joint sampling distribution of all m
features is assumed to be unknown and cannot be accurately estimated from the observed x.

We regard the MHT problem as a multiple model selection problem formalized as follows

Mi0 : fi0ðxi j �i0Þ, �i0ð�i0Þ, �i0 2 �i0

Mi1 : fi1ðxi j �i1Þ, �i1ð�i1Þ, �i1 2 �i1

i ¼ 1, . . . ,m

�
where �i0(�i0) and �i1(�i1) are default prior distributions and {�i0, �i1} a partition of �i�R

K, K� 1.
We propose to use default and improper priors derived from the same formal rule applied to each
fik(� | �), k¼ 0, 1. For the sake of simplicity, we assume that fi0(� | �) and fi1(� | �) are members of the
same parametric family for each hypothesis i, namely f0(� | �) and f1(� | �), respectively. In this case, we
have

�i0ð�i0Þ ¼ �0ð�0Þ / c0g0ð�0Þ

�i1ð�i1Þ ¼ �1ð�1Þ / c1g1ð�1Þ

�
ð1Þ

where c0 and c1 are the normalizing pseudo-constants and g0(�0), g1(�1) the non-integrable functions.
The use of default priors avoids the very difficult task of elicitation on all parameters for all tests.

Prior predictive distributions for null and alternative hypotheses are

mikðxiÞ ¼

Z
�k2�k

fkðxi j �kÞ�kð�kÞd�k, for k ¼ 0, 1, i ¼ 1, . . . ,m

The BF ofMi1 againstMi0 is

eBFi ¼
mi1ðxiÞ

mi0ðxiÞ
¼

c1
c0
�

R
�12�1

g1ð�1Þ f1ðxi j �1Þd�1R
�02�0

g0ð�0Þ f0ðxi j �0Þd�0
ð2Þ

which is unscaled because of the arbitrary ratio c1/c0, see for instance O’Hagan and Forster,11 (para.
7.54). There are several proposals to avoid the arbitrariness of the ratio c1/c0 in equation (2), as the
fractional and intrinsic BFs.11 Unfortunately, in our problem, these proposals are unfeasible because
of the small sample size. We define the unscaled BF as

BFi ¼

R
�12�1

g1ð�1Þ f1ðxi j �1Þd�1R
�02�0

g0ð�0Þ f0ðxi j �0Þd�0
ð3Þ

Even if BFi has no interpretation in a single test, it can be used in a comparative approach; in fact,
suppose to have two tests, i and i0, if

c1
c0
BFi

c1
c0
BFi0
¼

BFi

BFi0
4 1, 8i, i0

4 Statistical Methods in Medical Research 0(0)
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the evidence in favour of Mi1 versus Mi0 is larger than that of Mi01 versus Mi00 whatever the
ratio c1/c0> 0. For numerical convenience we use, instead of the BFi, the well-known weight of
evidence

Wi ¼ logðBFiÞ

where distances among observed W, w ¼ fwig
m
i¼1, are invariant with respect to log(c1/c0). This is

because log(c1/c0) is the same for each hypothesis. This statement is true in general when prior
distributions in equation (1) are the same along all m experiments. A proof of this is reported in the
Appendix for Example 1 (next section), indicating also how it could be generalized.

2.1 Example 1: testing zero normal means with unknown variance

We illustrate the proposed method using the following toy example. Let Xi � Nð�i, �
2
i Þ, i¼ 1, . . . , m,

be m independent normal populations with unknown variance �2i . Suppose to test

fH0i : �i ¼ 0 versus H1i : �i 6¼ 0, 8�2i 4 0g, i ¼ 1, . . . ,m

Sufficient statistics are Xi ¼ 1=n
Pn

j¼1 Xij and S2
i ¼ 1=n

Pn
j¼1ðXij � XiÞ

2, whose observed values are
denoted by xi and s2i , respectively.

We assume the usual default and improper priors

�0ð�i, �
2
i Þ ¼ c0�

�2
i � 1f0g	R

þð�i, �
2
i Þ

�1ð�i, �
2
i Þ ¼ c1�

�2
i � 1R	R

þð�i, �
2
i Þ

where 1A(x) is an indicator function for the event x2A. The full BF is eBFi¼ c1/c0BFi, where

BFi ¼
�ðn�12 Þ

�ðn2Þ

ffiffiffiffiffiffiffiffi
�S2

i

q
1þ

X
2

i

S2
i

 !n=2

ð4Þ

is the unscaled BF.

2.2 Example 2: testing the equality of normal means

Different from the above example, we consider a parametric test which is more realistic in
applications to microarray data. Suppose the usual two-group study, with m features and denote
with xm	nx the outcome in group X with nx replications and ym	ny the outcome in group Y with ny
replications. Let Xi � Nð�Xi

, �2Xi
Þ and Yi � Nð�Yi

, �2Yi
Þ for i¼ 1, 2,. . ., m. The set of hypotheses, for

�2Xi
4 0, �2Yi

4 0 unknown, is as follows.

fH0i : �Xi
¼ �Yi

¼ �i versus H1i : �Xi
6¼ �Yi

, 8�2Xi
4 0, 8�2Yi

4 0g, i ¼ 1, . . . ,m:

With the usual default priors

�0ð�i, �
2
Xi
, �2Yi
Þ / ��2Xi

��2Yi
� 1

R	R
þ	R

þð�i, �
2
Xi
, �2Yi
Þ

�1ð�Xi
,�Yi

, �2Xi
, �2Yi
Þ / ��2Xi

��2Yi
� 1R	R	R

þ	R
þð�Xi

,�Yi
, �2Xi

, �2Yi
Þ

Bertolino et al. 5
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the unscaled BF for H1i against H0i is

BFi ¼
Bðnx�12 , 1

2ÞBð
ny�1

2 , 1
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
Xi
S2
Yi

q
R
�i2R

1þ ðXi � �iÞ
2=S2

Xi

� ��1
2nx

1þ ðYi � �iÞ
2=S2

Yi

� ��1
2ny
d�i

ð5Þ

where B(a, b) is the beta function evaluated in a, b and Xi,Yi,S
2
Xi
,S2

Yi
the sample means and

variances for group X and Y, respectively.

3 The empirical null distribution of the unscaled BF

In this section, we describe the procedure to approximate the empirical null distribution of the unscaled
BF. This distribution is employed to obtain values z1, . . . , zm to be used in the Efron’s procedure. First,
we associate to each test i the observed wi and the p-value, pi. Then, for a fixed thresholdep, we consider
the set I0 � fi : pi 4epg of hypotheses that are assumed to come from the corresponding H0i and
that they would have never been rejected from an MHT procedure when m is of the order of
thousands. For this reason, in our applications we considerep to be between 0.1 and 0.2. For all i2I0
we resample b times the unscaled BF according to the parametric null models M0i, as specified in
Sections 3.1 and 3.2. Let em0 be the cardinality of I0, under the assumption that em0 5m0; we then
have a total of B ¼ b � em0 bootstrap draws of unscaled BFs under the null hypothesis. Therefore, the
corresponding vector ew ¼ few1,ew2, . . . ,ewBg is assumed to be generated under the null model. The
unknown null distribution of W, say Q0(w), is approximated by the empirical distribution of the
bootstrap sample ew and denoted by eQ0. Finally, in order to apply Efron’s procedure, we need to
transform the observed w, into realizations from a normal distribution

zi ¼ ��1 eQ0ðwiÞ

� �
, i ¼ 1, 2, . . . ,m ð6Þ

where �(x) is the cumulative distribution function of the standard normal distribution at point x. In
this way, the null distribution of zi values is supposed to be the standard normal distribution if all
hypotheses were true null hypotheses. On the observed zi, we apply Efron’s procedure obtaining the
set of null hypotheses that are supposed to be false along with an estimation of Efdr over the set of
all rejected null hypotheses.

Note that the transformation rule in equation (6) is invariant under location of w and ew; so, the
choice of c1/c0¼ 1, is not critical and it does not affect the final result. In this way, the unscaled BFs
are useful in MHT under Efron’s procedure. For the sake of comparison, we also apply Efron’s
procedure to the p-values. In particular, we use the usual transformation rule of pi, i¼ 1,. . ., m, to a
normal random variable by means of ��1(pi). Note that, unlike the unscaled BF, the transformation
��1(pi) is strictly related to the assumption of uniformity of the p-values under the null model. This
assumption is true for Example 1 because the test statistic is ancillary, while for Example 2 it is true
only asymptotically.

3.1 Example 1 (continued)

The approximation of the sampling null distribution for the BFi in equation (4), is obtained by
drawing samples, of size n, of Xi � N

�
0, n

n�1 s
2
i

�
for each i2I0. In each draw, we calculate the BF in

equation (4) and the corresponding ewi.
The p-value for this test is the usual p-value from the Student t-test.

6 Statistical Methods in Medical Research 0(0)
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Suppose m¼ 5000, n¼ 5, m0/m¼ 0.9, �i¼ 1 and �i¼ 1 as an alternative. Figure 1 shows that the
bootstrap approximations of the null distribution of W are fairly robust toep. This result also applies
to all parametric set-ups and examples treated in this article. The behaviour of eQ0 jep� �

is due to the
fact that the proportion m0/m& 1 in simulated data and also in many real situations.

3.2 Example 2 (continued)

In order to obtain the null sampling distribution for BFi in equation (5), we consider the parametric
bootstrap resampling scheme under the ith null hypothesis for each i2I0. This consists of a draw of
size nx of Xi � Nð ~�i,

nx
nx�1

s2xi Þ and a draw of size ny of Yi � Nð ~�i,
ny

ny�1
s2yiÞ, where ~�i ¼

nxxiþnyyi
nxþny

is the
common mean. For each draw of Xi and Yi, we calculate the BF in equation (5) and the
corresponding ew.

In this case, we use p-values from the Student t-tests with the Welch correction for �2Xi
6¼ �2Yi

. Such
correction, however, guarantees only asymptotic uniformity of the p-values under the null model.

4 Simulation study

We describe in this section two simulation studies: the first for the toy example in Section 2.1 and the
second for the more general case discussed in Section 2.2. Results cast evidence on the fact that
Efron’s procedure works better with BFs than p-values alone.

In the simulation study, we consider various scenarios given by the following combinations of
sample sizes: n¼ 5, 10; thresholds ~p ¼ 0:1, 0:2; proportions of true nulls: 95% and 99%; means and
variances under the alternative hypotheses: (a) �¼ 2, �¼ 1, (b) �¼ 3, �¼ 1 and (c) �¼ �¼ 4. Note

0.1 0.15 0.2 0.25 0.3

−
2

0
2

4
6

8
10

Robustness with respect to p

p

w

Figure 1. For a simulated dataset corresponding to the toy example, with m¼ 5000, m0/m¼ 0.9, �i¼ 1 and �i¼ 1 |

H1i box plots represent the resampling distribution ew for different values ofep.
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that combination (3) corresponds to a very weak signal as the variation coefficient equals 1. We
compare the use ofW against the p-value in 250 simulations each of m¼ 5000 tests, by looking at the
the amount of FDR, false non-rejection rate (FNR) and the total error given by FDR+FNR. In all
simulations, the local false discovery rate, lfdr, used as threshold in Efron’s procedure is 0.2.2 This
means that each rejected null hypothesis has a probability less than 20% to be a false discovery. In
this sense, this error rate is local to each test, while the expected error, for the whole set of rejected
hypotheses, is estimated by the Efdr.

Our first finding was that results are robust with respect to the choice of ep and the proportion
of true null hypotheses. Therefore, Figure 2 shows only a subset of results that are representative of
the whole simulation study. Each box plot represents the empirical distribution of FDR, FNR
and Tot in 250 simulations under the three scenarios and two sample sizes where 95% of
m¼ 5000 null hypothesis are true null and ~p ¼ 0:1. The amount of experimental signal is smaller
in the first row (n¼ 5) than in the second one (n¼ 10). By columns, the amount of signal is larger in
the second column than in the first one. Finally, the signal is very weak in the last column where the
variation coefficient is 1. This last situation is relevant in microarray data where the signal grows
with noise.
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Figure 2. Simulation results for comparison between the weight of evidence (w) and the p-value (p) within Efron’s

procedure. The comparison is made in terms of FDR, FNR and total error, Tot.

FDR: false discovery rate; FNR: false non-rejection rate.
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In particular, Figure 2 shows that error rates are significantly smaller when using W instead of
p-value. This result is persistent in all considered scenarios, even when the error rates are large, as
scenario (c).

We propose the above study for the case of two populations, X and Y, with different variances.
We assume Yi � N(0, 1) for all i and �Xi

¼ 0 and �Xi
¼ 2 for population X under the null. We

consider three scenarios under the alternative: (a) �Xi
¼ 4, �Xi

¼ 2, (b) �Xi
¼ 3, �Xi

¼ 2 and (c)
�Xi
¼ 4, �Xi

¼ 4. The rest of the parameters are identical to those used in the above simulation
study. Figure 3 provides the simulated error rates in a layout similar to that of Figure 2. Error
rates with w are generally smaller than those with p, and thus, the conclusions are compatible to
those obtained with the toy example.

5 Application to real datasets

In this section, we consider the application of the proposed procedure to two microarray
experiments. The first is a calibration experiment where the true DE genes are known, while
the second is a larger study also analysed, with different approaches, in Singh et al.20 and
Efron.2
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Figure 3. For the case of two populations with different variances, we compare results between the weight of

evidence (w) and the p-value (p) within Efron’s procedure.

FDR: false discovery rate; FNR: false non-rejection rate.
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5.1 Microarray-controlled experiment

We compare the results obtained using unscaled BF and p-values when analysing gene expression levels
of Affymetrix HGU95A Latin square dataset (http://www.affymetrix.com). Here, m¼ 12,626, and
16 genes have been spiked at controlled levels ranging from 0 to 1024pM, as presented in Table 1.

The number of replications for X and Y are nx¼ ny¼ 5. In this case, genes 1597_at and 38734_at

are the less DE, while gene 684_at is the most DE because it is absent from population Y and it has
the highest concentration in population X. We analyse expression level data obtained from
summaries of probe level pairs in the log2 scale according to the procedure in Irizarry.21

Figure 4 (top) shows the results of the analysis with the procedure here proposed, while the
bottom the results using the p-values alone in Efron and Benjamini and Hochberg16 procedures.
Histograms refer to observed w (top) and observed P (bottom), while continuous density is eQ0

approximated with b¼ 5 and ~p ¼ 0:2. As expected, this density fits quite well with most of the
observed w.

The main discrepancy between results obtained with W and P is that genes of Table 1 are mostly
separated in the set w rather than in that of the p-values. This may be ascribed to the fact that we are
evaluating the evidence of the null model and the alternative model. In fact, the p-values do not
provide an evaluation of the evidence for an alternative model.

This larger separation improves the power of Efron’s procedure. In fact, using W, we have 12
discoveries of which 3 are false, while using P, we have 3 discoveries and none of them are false.
Using the Benjamini and Hochberg procedure, we have eight discoveries with two of them false.
Looking at the number of false negatives, we may see that with W it decreases to 7 against 13 for
Efron’s procedure based on p-values and 10 for the Benjamini and Hochberg procedure. Finally, the
reported estimate of Efdr is 20% for W against 28% for P, leading the analyst to be more confident
in the set of genes discovered with the proposed procedure.

5.2 Prostate data

We compare unscaled BFs with p-values in the analysis of gene expression levels for prostate cancer
data.20 In this study, m¼ 6033 genes with nx¼ 50 healthy males are compared with ny¼ 52 prostate
cancer cases. Results are shown in Figure 5. The larger sample size reduces differences between W
and P with Efron’s procedure as also suggested by the simulation study. In fact, at lfdr¼ 0.2, we
have 57 and 53 discoveries with W and P, respectively, with all the 53 discoveries included into the
57 ones. Using the Benjamini and Hochberg procedure at the same level of 20%, we obtain 103
discoveries. Despite the fact that the results of Efron’s procedure almost agree usingW or P, we may

Table 1. pM concentrations of 16 spiked-in genes in X and Y populations used in this study.

Gene X (pM) Y (pM) Gene X (pM) Y (pM)

37777_at 512.00 1024.00 36202_at 8.00 16.00

684_at 1024.00 0.00 36085_at 16.00 32.00

1597_at 0.00 0.25 40322_at 32.00 64.00

38734_at 0.25 0.50 407_at 512.00 1024.00

39058_at 0.50 1.00 1091_at 128.00 256.00

36311_at 1.00 2.00 1708_at 256.00 512.00

36889_at 2.00 4.00 33818_at 64.00 128.00

1024_at 4.00 8.00 546_at 8.00 16.00
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still see that the observed w declared as discoveries are further away from the bulk of the null density
than the corresponding observed P points. This is also reflected in the reported estimation of Efdr
because we have 61% forW against 63% for P. We are then slightly more confident in using Efron’s
procedure with unscaled BFs rather than the same procedure with p-values.

6 Conclusions

‘Simulation study’ and applications to real datasets suggest that unscaled BF in MHT is a valuable
tool. Under the considered normal sampling models, the weight of evidence, W, is in general more
powerful than P, and the simulation study shows that W produces less false discoveries than the
p-value. This result is particularly emphasized in small samples, provided a correct specification of the
sampling model is given. In fact, the null distribution of the BFs relies on correct model specification.
In particular, the calculus of z1,. . ., zm is made under independent parametric bootstrap resampling.
The missed inclusion of correlation between genes and the presence of random effects could lead to a
null distribution, h0(z), which may differ from the standard normal used here (see Efron2 and Chapter
6 of Efron22). When independence and precise null effects cannot be assumed, it is possible to make use
of the empirical null distribution proposed in Efron.2

However, we found that the combined use of W and P would improve MHT procedures. To
support this statement, we showed, in Figure 6, the joint values of W and the logit of P for the toy
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example 1 with n¼ 5, m¼ 1000 tests in which m0¼ 950 are true nulls, X � N(0, 1), while 50 comes
from the alternative X � N(4, 3). We may see that in this bivariate space, the cloud of points coming
from the alternative hypotheses may clearly be isolated using both dimensions rather than only one.
A similar approach is not new in literature,23 but the combination of such well-known measures of
evidence tailed for hypothesis testing has never been considered. The main difficulty for this
approach is finding the joint null distribution of W and P. Such null distribution could be
embedded in an extension of Efron’s procedure applied to the bivariate space induced by W and
P as that proposed in Ploner et al.23
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Appendix

In this section, we justify that the ratio of pseudo-constants c1/c0 in equation (4) does not depend on
data. For any hypothesis i, we consider the following priors
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2
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i � 1DM
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where DM¼ (M�1, M) and AM¼ (�M, M). For instance, the ratio of the two constants is
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it is trivial to obtain the following result for the eBFM
i defined using priors in equation (7):
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is the unscaled BF.
It is very important to note that for any M2R

+ and for every i, i0 ¼ 1, 2, . . . , m, we have that
�iðMÞ=�i0 ðMÞ ¼ 1. That is, the undetermined constant c1/c0 does not depend on test index. Note that
this proof is generalizable to cases in which normalizing constants cM0 and cM1 do not depend on test
index i, which is true if priors in equations (7) and (8) have the same functional form and support for
all tests.
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