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SECOND-ORDER BOUNDARY ESTIMATES FOR SOLUTIONS
TO SINGULAR ELLIPTIC EQUATIONS IN BORDERLINE

CASES

CLAUDIA ANEDDA, GIOVANNI PORRU

Abstract. Let Ω ⊂ RN be a bounded smooth domain. We investigate the
effect of the mean curvature of the boundary ∂Ω on the behaviour of the
solution to the homogeneous Dirichlet boundary value problem for the equation
∆u + f(u) = 0. Under appropriate growth conditions on f(t) as t approaches
zero, we find asymptotic expansions up to the second order of the solution in
terms of the distance from x to the boundary ∂Ω.

1. Introduction

In this paper we study the Dirichlet problem

∆u+ f(u) = 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded smooth domain in RN , N ≥ 2, and f(t) is a decreasing and
positive smooth function in (0,∞), which approaches infinity as t → 0. Equation
(1.1) arises in problems of heat conduction and in fluid mechanics.

Problems of this kind are discussed in many papers; see, for instance, [5, 6, 8,
9, 11, 12] and references therein. For f(t) = t−γ , γ > 0, in [4] it is shown that
there exists a positive solution continuous up to the boundary ∂Ω. For f(t) = t−γ ,
γ > 1, in [3] it is shown that there exists a constant B > 0 such that∣∣u(x)− ( γ + 1√

2(γ − 1)
δ
) 2

1+γ ∣∣ < Bδ
2γ

γ+1 ,

where δ = δ(x) denotes the distance from x to the boundary ∂Ω. For f(t) = t−γ ,
γ > 3, in [2] it is proved that

u(x) =
( γ + 1√

2(γ − 1)
δ
) 2

1+γ
[
1 +

1
3− γ

Hδ + o(δ)
]
,

where H = H(x) is related with the mean curvature of ∂Ω at the nearest point to
x.
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In [1], more general nonlinearities are discussed. More precisely, let

F (t) =
∫ 1

t

f(τ)dτ, lim
t→0+

F (t) = ∞,
f ′(t)F (t)
(f(t))2

=
γ

1− γ
+O(1)tβ , (1.2)

where γ ≥ 3, β > 0 and O(1) denotes a bounded quantity as t → 0. In addition,
we suppose there is M finite such that for all θ ∈ (1/2, 2) and for t ∈ (0, 1) we have

|f ′′(θt)|t2

f(t)
≤M. (1.3)

An example which satisfies these conditions is f(t) = t−γ + t−ν with 0 < ν < γ;
here β = min[γ − ν, γ − 1].

Let φ(δ) be defined as ∫ φ(δ)

0

1
(2F (t))1/2

dt = δ. (1.4)

For 3 < γ <∞, in [1] it is proved that

u(x) = φ(δ)
[
1 +

1
3− γ

Hδ +O(1)δσ+1
]
, (1.5)

where σ is any number such that 0 < σ < min[γ−3
γ+1 ,

2β
γ+1 ]. Note that φ satisfies the

one dimensional problem

φ′′ + f(φ) = 0, φ(0) = 0.

The estimate (1.5) shows that the expansion of u(x) in terms of δ has the first part
which is independent of the geometry of the domain, and the second part which
depends on the mean curvature of the boundary as well as on γ.

In the present paper we investigate the borderline cases γ = 3 and γ = ∞. In
the case of γ = 3 we find the expansion

u(x) = φ(δ)
[
1 +

1
4
Hδ log δ +O(1)δ(− log δ)σ

]
, (1.6)

where 0 < σ < 1 and O(1) is bounded as δ → 0.
To discuss the case γ = ∞, we make the following assumption

f(t) > 0,
f ′(t)
f(t)

= − `

tβ+1

(
1 +O(1)tβ

)
, (1.7)

with ` > 0 and β > 0. Note that the above condition implies

F (t)
f(t)

=
tβ+1

`

(
1 +O(1)tβ

)
, F (t) =

∫ 1

t

f(τ)dτ. (1.8)

Furthermore, (1.7) together with (1.8) imply (1.2) with γ = ∞; that is,

f ′(t)F (t)
(f(t))2

= −1 +O(1)tβ . (1.9)

Instead of (1.3), now we suppose that for some m > 2 and some ε ∈ (0, 1), there
is M > 0 such that

|f ′′(θt)|t2

f(t)
≤M

1
t2β

(F (t))1/m, ∀t ∈ (0, 1/2), ∀θ ∈ (1− ε, 1 + ε). (1.10)

The function f(t) = e
`

βtβ satisfies all these conditions.
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Under assumptions (1.7) and (1.10), we find the estimate

u(x) = φ(δ)
[
1− 1

`
Hδ

(
φ(δ)

)β +O(1)δ
(
φ(δ)

)2β
]
,

where φ is defined as in (1.4).
Throughout this paper, the boundary ∂Ω is smooth in the sense that it belongs

to C4.

2. Preliminary results

Lemma 2.1. Let A(ρ,R) ⊂ RN , N ≥ 2, be the annulus with radii ρ and R cen-
tered at the origin. Let f(t) > 0 smooth, decreasing for t > 0, and such that∫ 1

t
(F (τ))1/2dτ → ∞ as t → 0+, where F (t) =

∫ 1

t
f(τ)dτ . We also suppose that

the function s 7→ (F (s))−1
∫ 1

s
(F (t))1/2dt is increasing for s close to 0. If u(x) is a

solution to problem (1.1) in Ω = A(ρ,R) and v(r) = u(x) for r = |x|, then

v(r) > φ(R− r)− C

∫ 1

v
(F (t))1/2dt

(F (v))1/2
(R− r), r̃ < r < R, (2.1)

and

v(r) < φ(r − ρ) + Cφ′(r − ρ)

∫ 1

v
(F (t))1/2dt

F (v)
(r − ρ), ρ < r < r, (2.2)

where φ is defined as in (1.4), ρ < r ≤ r̃ < R and C is a suitable positive constant.

Proof. If Ω = A(ρ,R), the corresponding solution u(x) to problem (1.1) is radially
symmetric (by uniqueness) and positive (by the maximum principle). With v(r) =
u(x) for r = |x| we have

v′′ +
N − 1
r

v′ + f(v) = 0, v(ρ) = v(R) = 0. (2.3)

The latter equation can be rewritten as(
rN−1v′

)′ + rN−1f(v) = 0.

Since v(ρ) = v(R), we must have v′(r0) = 0 for some r0 ∈ (ρ,R). Integrating over
(r0, r) we obtain

rN−1v′ +
∫ r

r0

tN−1f(v)dt = 0.

Hence, v(r) is increasing for ρ < r < r0 and decreasing for r0 < r < R. Multiplying
(2.3) by v′ and integrating over (r0, r) we find

(v′)2

2
+ (N − 1)

∫ r

r0

(v′)2

s
ds = F (v)− F (v0), v0 = v(r0). (2.4)

Since
∫ 1

t
(F (τ))1/2dτ → ∞ as t → 0, we have F (t) → ∞ as t → 0. Therefore,

F (v(r)) →∞ as r → R, and (2.4) implies

|v′| < 2(F (v))1/2, r ∈ (r1, R), r0 ≤ r1 < R. (2.5)

As a consequence, with v1 = v(r1) we have∫ r

r1

(v′)2

s
ds ≤ 2

r1

∫ r

r1

(F (v))1/2(−v′)ds =
2
r1

∫ v1

v

(F (t))1/2dt. (2.6)
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Since ∫ v1

v

(F (t))1/2dt ≤ (F (v))1/2v1,

using (2.6) we find

lim
r→R

∫ r

r1

(v′)2

s ds

F (v)
= lim

r→R

∫ v1

v
(F (t))1/2dt

F (v)
= 0. (2.7)

Now, by (2.4) we have

(v′)2

2F (v)
= 1−

(N − 1)
∫ r

r0

(v′)2

s ds+ F (v0)

F (v)
. (2.8)

Note that, if v0 > 1 then F (v0) < 0. We claim that

(N − 1)
∫ r

r0

(v′)2

s
ds+ F (v0) > 0

for r close to R. Indeed, by (2.7) and (2.8) it follows that |v′| > (F (v))1/2 for
r ∈ (r2, R). Hence,∫ r

r2

(v′)2

s
ds >

1
R

∫ r

r2

(F (v))1/2(−v′)ds =
1
R

∫ v(r2)

v(r)

(F (τ))1/2dτ.

By using the assumption
∫ 1

t
(F (τ))1/2dτ →∞ as t→ 0, the latter inequality implies

that
∫ r

r2

(v′)2

s ds→∞ as r → R, and the claim follows.
Equation (2.8) yields

−v′

(2F (v))1/2
= 1− Γ(r), (2.9)

where

Γ(r) = 1−
[
1−

(N − 1)
∫ r

r0

(v′)2

s ds+ F (v0)

F (v)

]1/2

.

Since
1− [1− ε]1/2 < ε, ∀ε ∈ (0, 1),

using (2.6) we find a constant M such that, for r close to R,

0 ≤ Γ(r) ≤
(N − 1)

∫ r

r0

(v′)2

s ds+ F (v0)

F (v)
≤M

∫ v0

v
(F (t))1/2dt

F (v)
. (2.10)

Note that, by (2.10) and (2.7) we have Γ(r) → 0 as r → R.
The inverse function of φ is

ψ(s) =
∫ s

0

1
(2F (t))1/2

dt.

Integration of (2.9) over (r,R) yields

ψ(v) = R− r −
∫ R

r

Γ(s)ds,

from which we find

v(r) = φ
(
R− r −

∫ R

r

Γ(s)ds
)
. (2.11)
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By (2.11), we have

v(r) = φ(R− r)− φ′(ω)
∫ R

r

Γ(s)ds, (2.12)

with

R− r −
∫ R

r

Γ(s)ds < ω < R− r.

Since φ′(ω) = (2F (φ(ω)))1/2, and since the function t → F (φ(t)) is decreasing we
have

φ′(ω) <
(
2F

(
φ(R− r −

∫ R

r

Γ(s)ds)
))1/2

= (2F (v))1/2,

where (2.11) has been used in the last step. Hence, by (2.12) we have

v(r) > φ(R− r)− (2F (v))1/2

∫ R

r

Γ(s)ds.

Using (2.10), we find

v(r) > φ(R− r)− (2F (v))1/2M

∫ R

r

∫ v0

v(s)
(F (τ))1/2dτ

F (v(s))
ds. (2.13)

Since (F (t))−1
∫ 1

t
(F (τ))1/2dτ is increasing and since v(s) is decreasing, for s close

to R the function

s 7→

∫ v0

v(s)
(F (τ))1/2dτ

F (v(s))
is decreasing. Using the monotonicity of this function, inequality (2.1) follows from
(2.13).

To prove (2.2), we observe that (2.4) also holds for ρ < r < r0. Let us write
equation (2.4) as

(v′)2

2
= F (v)− F (v0) + (N − 1)

∫ r0

r

(v′)2

s
ds, (2.14)

with ρ < r < r0. By (2.14), (v′(r))2 → ∞ as r → ρ. Moreover, since v′(r) > 0 for
r ∈ (ρ, r0), by (2.3) we have v′′(r) < 0. Hence, by [10, Lemma 2.1], we have

lim
r→ρ

∫ r0

r
(v′)2

t dt

(v′(r))2
= 0.

Using this result and (2.14) we find 0 < v′ < 2(F (v))1/2 for r ∈ (ρ, r3), r3 ≤ r0. As
a consequence we have, with v(r3) = v3,∫ r3

r

(v′)2

s
ds ≤ 2

ρ

∫ r3

r

(F (v))1/2v′ds =
2
ρ

∫ v3

v

(F (t))1/2dt. (2.15)

Since
∫ v3

v
(F (t))1/2dt ≤ (F (v))1/2v3, (2.15) implies

lim
r→ρ

∫ r0

r
(v′)2

s ds

F (v)
= 0. (2.16)

By (2.14), we find

(v′)2

2F (v)
= 1 +

(N − 1)
∫ r0

r
(v′)2

s ds− F (v0)
F (v)

. (2.17)
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Using (2.16) and (2.17) and arguing as in the previous case one finds that

(N − 1)
∫ r0

r

(v′)2

s
ds− F (v0) > 0

for r close to ρ. Equation (2.17) yields

v′

(2F (v))1/2
= 1 + Γ̃(r), (2.18)

where

Γ̃(r) =
[
1 +

(N − 1)
∫ r0

r
(v′)2

s ds− F (v0)
F (v)

]1/2

− 1.

Since
[1 + ε]1/2 − 1 < ε, ∀ε > 0,

using (2.15) one finds, for r close to ρ,

0 ≤ Γ̃(r) ≤
(N − 1)

∫ r0

r
(v′)2

s ds− F (v0)
F (v)

≤ M̃

∫ v0

v
(F (t))1/2dt

F (v)
. (2.19)

Integration of (2.18) over (ρ, r) yields

ψ(v) = r − ρ+
∫ r

ρ

Γ̃(s)ds,

from which we find

v(r) = φ(r − ρ) + φ′(ω1)
∫ r

ρ

Γ̃(s)ds, (2.20)

with

r − ρ < ω1 < r − ρ+
∫ r

ρ

Γ̃(s)ds.

Since φ′(s) is decreasing we have

φ′(ω1) < φ′(r − ρ).

The latter estimate, (2.20) and (2.19) imply

v(r) < φ(r − ρ) + φ′(r − ρ)
∫ r

ρ

M̃

∫ v0

v
(F (τ))1/2dτ

F (v)
ds. (2.21)

Since v(s) is increasing for s close to ρ, the function

s 7→

∫ v0

v(s)
(F (τ))1/2dτ

F (v(s))

is increasing. Hence, inequality (2.2) follows from (2.21). The lemma is proved. �

Corollary 2.2. Assume the same notation and assumptions as in Lemma 2.1.
Given ε > 0 there are rε and r̃ε such that

φ(R− r) > v(r) > (1− ε)φ(R− r), rε < r < R, (2.22)

φ(r − ρ) < v(r) < (1 + ε)φ(r − ρ), ρ < r < r̃ε. (2.23)
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Proof. By (2.9) we have
−v′

(2F (v))1/2
< 1.

Integrating over (r,R) we find ψ(v) < R−r, from which the left hand side of (2.22)
follows. By (2.1) we have

v(r) >
[
1− C

∫ 1

v
(F (t))1/2dt

(F (v))1/2

R− r

φ(R− r)

]
φ(R− r).

Since F (t) is decreasing we find∫ 1

v
(F (t))1/2dt

(F (v))1/2
≤ 1.

Moreover, putting R− r = ψ(s) we have

0 ≤ lim
r→R

R− r

φ(R− r)
= lim

s→0

ψ(s)
s

≤ lim
s→0

1
(2F (s))1/2

= 0.

The right hand side of (2.22) follows from these estimates.
By (2.18) we have

v′

(2F (v))1/2
> 1.

Integrating over (ρ, r), we find ψ(v) > r−ρ, from which the left hand side of (2.23)
follows. By (2.2) we have

v(r) <
[
1 + Cφ′(r − ρ)

∫ 1

v
(F (t))1/2dt

F (v)
r − ρ

φ(r − ρ)

]
φ(r − ρ).

We find

0 ≤ lim
r→ρ

∫ 1

v
(F (t))1/2dt

F (v)
≤ lim

r→ρ

1
(F (v))1/2

= 0.

Moreover, putting r − ρ = ψ(s), we have

(r − ρ)φ′(r − ρ)
φ(r − ρ)

=
ψ(s)(2F (s))1/2

s
≤ 1.

The right hand side of (2.23) follows from these estimates. The proof is complete.
�

3. The case γ = 3

Let f(t) be a smooth, decreasing and positive function in (0,∞). Assume (1.2)
with γ = 3; that is,

F (t) =
∫ 1

t

f(τ)dτ, lim
t→0+

F (t) = ∞,
f ′(t)F (t)
(f(t))2

= −3
2

+O(1)tβ , (3.1)

where β > 0 and O(1) denotes a bounded quantity as t→ 0. This condition implies,
for t small,

−f
′(t)
f(t)

=
(3

2
+O(1)tβ

) f(t)
F (t)

>
5
4
f(t)
F (t)

.

Integration over (t, t0), t0 small, yields

log
f(t)
f(t0)

>
5
4

log
F (t)
F (t0)

,
f(t)
F (t)

>
f(t0)

(F (t0))5/4
(F (t))1/4.
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It follows that

lim
t→0

F (t)
f(t)

= 0. (3.2)

Let us rewrite (3.1) as

(F (t))−1/2
( (F (t))3/2

f(t)

)′
= O(1)tβ . (3.3)

Integrating by parts over (0, t) and using (3.2) we find

F (t)
tf(t)

=
1
2

+O(1)tβ . (3.4)

Using the latter estimate and (3.1) again we find

tf ′(t)
f(t)

= −3 +O(1)tβ . (3.5)

Let us write (3.5) as
f ′(t)
f(t)

= −3
t

+O(1)tβ−1.

Integration over (t, 1) yields

log
f(1)
f(t)

= log t3 +O(1).

Therefore, we can find two positive constants C1, C2 such that

C1t
−3 < f(t) < C2t

−3, ∀t ∈ (0, 1). (3.6)

Since F (t) =
∫ 1

t
f(τ)dτ , using (3.6) we find two positive constants C3, C4 such that

C3t
−2 < F (t) < C4t

−2, ∀t ∈ (0, 1/2). (3.7)

Lemma 3.1. If (3.1) holds and if φ(δ) is defined as in (1.4) then we have

φ′(δ)
δf(φ(δ))

= 2 +O(1)(φ(δ))β , (3.8)

φ(δ)
δφ′(δ)

= 2 +O(1)(φ(δ))β , (3.9)

φ(δ)
δ2f(φ(δ))

= 4 +O(1)(φ(δ))β , (3.10)

φ(δ) = O(1)δ1/2. (3.11)

For a proof of the above lemma, see [1, Lemma 2.3].

Lemma 3.2. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain, and let f(t) > 0
be smooth, decreasing and satisfy (3.1) with β > 0. If u(x) is a solution to problem
(1.1) then

φ(δ)
[
1− Cδ(− log δ)] < u(x) < φ(δ)

[
1 + Cδ(− log δ)

]
, (3.12)

where φ is defined as in (1.4), δ denotes the distance from x to ∂Ω, and C is a
suitable constant.
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Proof. If P ∈ ∂Ω we can consider a suitable annulus of radii ρ and R contained
in Ω and such that its external boundary is tangent to ∂Ω in P . If v(x) is the
solution of problem (1.1) in this annulus, by using the comparison principle for
elliptic equations ([7], Theorem 10.1) we have u(x) ≥ v(x) for x belonging to the
annulus. Choose the origin in the center of the annulus and put v(x) = v(r) for
r = |x|.

We note that our assumptions imply those of Lemma 2.1. Indeed, the condition∫ 1

t
(F (τ))1/2dτ → ∞ as t → 0, follows from (3.7). Furthermore, using (3.7) again

and (3.6), for s close to 0 we have

d

ds

[
(F (s))−1

∫ 1

s

(F (t))1/2dt
]

= (F (s))−1/2
[f(s)

∫ 1

s
(F (τ))1/2dτ

(F (s))3/2
− 1

]
> 0.

Therefore, we can use Lemma 2.1 and Corollary 2.2. By (2.1), we have

v(r) > φ(R− r)− C1

∫ 1

v
(F (t))1/2dt

(F (v))1/2
(R− r), r̃ < r < R. (3.13)

By using (3.7) we find that

lim
r→R

∫ 1

v(r)

(F (t))1/2dt = ∞ = lim
r→R

v(r)
(
F (v(r))

)1/2 log(R− r)−1.

Using de l’Hôpital rule and (3.4) we find

lim
r→R

∫ 1

v
(F (t))1/2dt

v(F (v))1/2 log(R− r)−1

= lim
r→R

−(F (v))1/2v′

v′
(
(F (v))1/2 − vf(v)

2(F (v))1/2

)
log(R− r)−1 + v(F (v))1/2

R−r

= lim
r→R

1(
−1 + vf(v)

2F (v)

)
log(R− r)−1 − v

v′(R−r)

= lim
r→R

1
O(1)vβ log(R− r)−1 − v

v′(R−r)

.

By (2.22) we have v(r) < φ(R− r). Using this inequality and (3.11) with δ = R− r
we obtain

lim
r→R

vβ log(R− r)−1 = 0.

Moreover, using (2.9), de l’Hôpital rule and (3.4) we find

lim
r→R

v

−v′(R− r)
= lim

r→R

v(2F (v))−1/2

R− r

= lim
r→R

(−v′)
(
(2F (v))−1/2 + v(2F (v))−

3
2 f(v)

)
= lim

r→R

(
1 +

vf(v)
2F (v)

)
= 2.

Hence,

lim
r→R

∫ 1

v
(F (τ))1/2dτ

v(F (v))1/2 log(R− r)−1
=

1
2
. (3.14)
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From (3.13) and (3.14) we find

v(r) > φ(R− r)− C2v(r)(R− r) log(R− r)−1.

By (2.22), v(r) < φ(R− r), hence

v(r) > φ(R− r)
(
1− C2(R− r) log(R− r)−1

)
. (3.15)

For x near to P we have δ = R−r; therefore, (3.15) and the inequality u(x) ≥ v(x)
yield the left hand side of (3.12).

Consider a new annulus of radii ρ and R containing Ω and such that its internal
boundary is tangent to ∂Ω in P . If w(x) is the solution of problem (1.1) in this
annulus, by using the comparison principle for elliptic equations we have u(x) ≤
w(x) for x belonging to Ω. Choose the origin in the center of the annulus and put
w(x) = w(r) for r = |x|. By (2.2) of Lemma 2.1 (with w in place of v) we have

w(r) < φ(r − ρ) + C3(r − ρ)φ′(r − ρ)

∫ 1

w
(F (t)1/2dt

F (w)
, ρ < r < r. (3.16)

The same proof used to get (3.14) yields

lim
r→ρ

∫ 1

w
(F (t))1/2dt

w(F (w))1/2 log(r − ρ)−1
=

1
2
.

Hence, for r near ρ,∫ 1

w
(F (t))1/2dt

F (w)
≤ C4(F (w))−1/2w log(r − ρ)−1. (3.17)

Since φ′ = (2F (φ))1/2, (3.16) and (3.17) imply

w(r) < φ(r − ρ) + C5(r − ρ)
( F (φ)
F (w)

)1/2

w log(r − ρ)−1.

By (3.7) and (2.23) (with w instead of v) we have( F (φ)
F (w)

)1/2

w ≤ C6φ.

Hence,
w(r) < φ(r − ρ)

(
1 + C7(r − ρ) log(r − ρ)−1

)
.

For x near to P , this estimate and the inequality u(x) ≤ w(x) yield the right hand
side of (3.12). The lemma is proved. �

To state the next theorem, we define

H(x) =
N−1∑
i=1

−ki

1− kiδ
, (3.18)

where δ = δ(x) denotes the distance from x to ∂Ω, and ki = ki(x) denote the
principal curvatures of ∂Ω at x, the nearest point to x. We note that in several
papers, instead of H(x), the function 1

N−1H(x) is considered.

Theorem 3.3. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain, and let f(t) > 0
be smooth, decreasing and satisfy (3.1), as well as (1.3). If u(x) is a solution to
problem (1.1), then

φ(δ)
[
1 +

1
4
Hδ log δ − Cδ(− log δ)σ

]
< u(x) < φ(δ)

[
1 +

1
4
Hδ log δ + Cδ(− log δ)σ

]
,
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where φ is defined as in (1.4), H = H(x) is defined as in (3.18), 0 < σ < 1 and C
is a suitable constant.

Proof. We look for a super-solutions of the kind

w(x) = φ(δ)
[
1 +Aδ log δ + αδ(− log δ)σ

]
, A =

H

4
,

where α is a positive constant to be determined. We have

wxi
= φ′δxi

[
1 +Aδ log δ + αδ(− log δ)σ

]
+ φ

[
Axiδ log δ

+A log(eδ)δxi + αδxi(− log δ)σ − ασδxi(− log δ)σ−1
]
.

We know that (see for example [7, page 355])

N∑
i=1

δxi
δxi

= 1,
N∑

i=1

δxixi
= −H. (3.19)

Using (3.19) we find

∆w = φ′′
[
1 +Aδ log δ + αδ(− log δ)σ

]
− φ′H

[
1 +Aδ log δ + αδ(− log δ)σ

]
+ 2φ′

[
∇A · ∇δ δ log δ +A+A log δ + α(− log δ)σ − ασ(− log δ)σ−1

]
+ φ

[
∆A δ log δ + 2∇A · ∇δ log(eδ) +Aδ−1 −AH log(eδ)− αH(− log δ)σ

− ασ(− log δ)σ−1δ−1 + ασH(− log δ)σ−1 + ασ(σ − 1)(− log δ)σ−2δ−1
]
.

By using the equation φ′′ = −f(φ), as well as (3.8) and (3.10), we find

∆w = f(φ)
{
−1−Aδ log δ − αδ(− log δ)σ −

(
2 +O(1)φβ

)
δH

[
1 +Aδ log δ

+ αδ(− log δ)σ
]

+ 2
(
2 +O(1)φβ

)
δ
[
∇A · ∇δ δ log δ +A+A log δ

+ α(− log δ)σ − ασ(− log δ)σ−1
]

+
(
4 +O(1)φβ

)
δ2

[
∆A δ log δ +Aδ−1

+ 2∇A · ∇δ log(eδ)−AH log(eδ)− αH(− log δ)σ − ασ(− log δ)σ−1δ−1

+ ασH(− log δ)σ−1 + ασ(σ − 1)(− log δ)σ−2δ−1
]}
.

After some simplification,

∆w = f(φ)
{
−1 + 3Aδ log δ + 3αδ(− log δ)σ − 2Hδ +O(1)δ2 log δ +O(1)φβδ log δ

+ 8Aδ − 8ασδ(− log δ)σ−1 + αO(1)φβδ(− log δ)σ + αO(1)δ(− log δ)σ−2
}
.

Hence, since −2H + 8A = 0, for some positive constants C1, C2 and C3 we have

∆w < f(φ)
{
−1 + 3Aδ log δ + C1δ

2(− log δ) + C2φ
βδ(− log δ)

+ αδ(− log δ)σ
[
3− 8σ(− log δ)−1 + C3(− log δ)−2

]}
.

(3.20)

Note that (3.11) has been used to compare φβδ(− log δ)σ with δ(− log δ)σ−2.
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On the other hand, using Taylor’s expansion we have

f(w) = f(φ)
{

1 + φ
f ′(φ)
f(φ)

[
Aδ log δ + αδ(− log δ)σ

]
+ φ2 f

′′(φ)
2f(φ)

[
Aδ log δ + αδ(− log δ)σ

]2}
,

(3.21)

with φ between φ and φ
(
1 + Aδ log δ + αδ(− log δ)σ

)
. We consider points x ∈ Ω

such that
− 1

2
< Aδ log δ + αδ(− log δ)σ < 1. (3.22)

This means that 1/2 < 1+Aδ log δ+αδ(− log δ)σ < 2; therefore, the term φ which
appears in (3.21) satisfies φ = θφ, with 1/2 < θ < 2. Using the estimates (3.5) and
(1.3), by (3.21) we find

f(w) = f(φ)
{

1 +
(
−3 +O(1)φβ

)
Aδ log δ +O(1)(δ log δ)2

+ αδ(− log δ)σ
[
−3 +O(1)φβ +O(1)αδ(− log δ)σ

]}
.

(3.23)

By (3.23), we can take suitable positive constants C4, C5, C6 and C7 such that

f(w) < f(φ)
{

1− 3Aδ log δ + C4φ
βδ(− log δ) + C5(δ log δ)2

+ αδ(− log δ)σ
[
−3 + C6φ

β + C7αδ(− log δ)σ
]}
.

(3.24)

By (3.20) and (3.24) we have

∆w + f(w) < 0 (3.25)

whenever

C1δ
2(− log δ) + C2φ

βδ(− log δ) + αδ(− log δ)σ
[
−8σ(− log δ)−1 + C3(− log δ)−2

]
+ C4φ

βδ(− log δ) + C5(δ log δ)2 + αδ(− log δ)σ
[
C6φ

β + C7αδ(− log δ)σ
]
< 0.

Rearranging we find

C1δ(− log δ)2−σ + (C2 + C4)φβ(− log δ)2−σ + C5δ(− log δ)3−σ

< α
[
8σ − C3(− log δ)−1 − C6φ

β(− log δ)− C7αδ(− log δ)1+σ
]
.

(3.26)

Since, by (3.11), φβ ≤ Cδ
β
2 , and since σ > 0, (3.26) holds for α fixed and δ small

enough.
Using Lemma 3.2 we find

w(x)− u(x) ≥ φ(δ)
(
− log δ

)−1[−Aδ(log δ)2 + αδ(− log δ)1+σ − Cδ(log δ)2
]
.

If α and δ are such that (3.22) and (3.26) hold, define q = αδ(− log δ)1+σ and
decrease δ (increasing α) so that αδ(− log δ)1+σ = q until

−Aδ(log δ)2 + q − Cδ(log δ)2 > 0

for δ(x) = δ1. Then, applying the comparison principle to (3.25) and (1.1) we find

w(x) ≥ u(x), x ∈ Ω : δ(x) < δ1.

By a similar argument one finds a sub-solution of the kind

w(x) = φ(δ)
(
1 +Aδ log δ − αδ(− log δ)σ

)
,
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where A and σ are the same as before and α is a suitable positive constant. The
theorem follows. �

4. The case γ = ∞

Let f(t) be a smooth, decreasing and positive function in (0,∞). In this section
we assume conditions (1.7) and (1.10). By (1.7) one finds positive constants c1, c2,
`1 and `2 such that

c1e
`1/tβ

< f(t) < c2e
`2/tβ

, t > 0. (4.1)
Similarly, by (1.8) (which follows from (1.7)), one finds

c3e
`1/tβ

< F (t) < c4e
`2/tβ

, t ∈
(
0,

1
2
)
. (4.2)

By (4.2), for m > `22β+1/`1, we find

sup
0<t<1/2

(F (t))
2
m

F (2t)
<∞. (4.3)

Lemma 4.1. If (1.7) holds, we have

φ′(δ)
f(φ(δ))

= δ +O(1)δ(φ(δ))β , (4.4)

where φ(δ) is defined as in (1.4).

Proof. Recall that (1.7) implies (1.9). Using (1.9) and the relation

−1− 2
[
−1 +O(1)tβ

]
= 1 +O(1)tβ ,

we have
−1− 2F (t)f ′(t)(f(t))−2 = 1 +O(1)tβ .

Multiplying by (2F (t))−1/2 we find

−(2F (t))−1/2 − (2F (t))1/2f ′(t)(f(t))−2 = (2F (t))−1/2 +O(1)tβ(2F (t))−1/2,

and (
(2F (t))1/2(f(t))−1

)′ = (2F (t))−1/2 +O(1)tβ(2F (t))−1/2. (4.5)
By (1.8) we have

(F (t))1/2

f(t)
=

1
(F (t))1/2

F (t)
f(t)

=
1

(F (t))1/2

tβ+1

`

(
1 +O(1)tβ

)
.

The latter estimate yields

lim
t→0

(F (t))1/2(f(t))−1 = 0.

Hence, integrating (4.5) on (0, s) we obtain

(2F (s))1/2(f(s))−1 =
∫ s

0

(
2F (t)

)−1/2
dt+O(1)

∫ s

0

tβ(2F (t))−1/2dt. (4.6)

Since tβ is increasing we have

0 ≤
∫ s

0

tβ(2F (t))−1/2dt ≤ sβ

∫ s

0

(2F (t))−1/2dt,

and equation (4.6) implies

(2F (s))1/2

f(s)
=

∫ s

0

(
2F (t)

)−1/2
dt+O(1)sβ

∫ s

0

(2F (t))−1/2dt.
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Putting s = φ(δ) and recalling that φ′(δ) = (2F (φ(δ)))1/2, (4.4) follows and the
lemma is proved. �

Lemma 4.2. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain, let f(t) > 0 be
smooth, decreasing and satisfying (1.7).Ifu(x)isasolutiontoproblem(1.1) then

φ
[
1− Cδφβ

]
< u(x) < φ

[
1 + Cδ

( F (φ)
F (2φ)

)1/2

φβ
]
, (4.7)

where φ = φ(δ) is defined as in (1.4), C is a suitable constant and δ = δ(x) denotes
the distance from x to ∂Ω.

Proof. We proceed as in the proof of Lemma 3.2 using the same notation. We
prove first that our assumptions imply those of Lemma 2.1. Indeed, estimate (4.2)
implies

lim
t→0

∫ 1

t

(F (τ))1/2dτ = ∞.

To prove the monotonicity of the function s 7→ (F (s))−1
∫ 1

s
(F (t))1/2dt for s close

to 0, we claim that

d

ds

[
(F (s))−1

∫ 1

s

(F (t))1/2dt
]

= (F (s))−1/2
[ ∫ 1

s
(F (τ))1/2dτ

(F (s))3/2(f(s))−1
− 1

]
> 0.

Indeed, using (1.9), for s close to 0 we have

(F (s))3/2(f(s))−1 = −
∫ 1

s

(
(F (t))3/2(f(t))−1

)′
dt

=
∫ 1

s

(F (t))1/2
(3

2
+ F (t)f ′(t)(f(t))−2

)
dt

>
1
4

∫ 1

s

(F (t))1/2dt.

The above estimate and (4.2) yield

lim
s→0

(F (s))3/2(f(s))−1 = +∞.

Using de l’Hôpital rule and (1.9) we find

lim
s→0

∫ 1

s
(F (τ))1/2dτ

(F (s))3/2(f(s))−1
= lim

s→0

1
3
2 + F (s)(f(s))−2f ′(s)

= 2.

It follows that
d

ds

[
(F (s))−1

∫ 1

s

(F (t))1/2dt
]
> 0,

as claimed.
Now we can use Lemma 2.1 and its Corollary. By (2.1),

v(r) > φ(R− r)− C

∫ 1

v
(F (t))1/2dt

(F (v))1/2
(R− r), r̃ < r < R. (4.8)

By (4.2) we have
lim
t→0

tβ+1(F (t))1/2 = +∞.
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Using de l’Hôpital rule and (1.8) we find

lim
t→0

∫ 1

t
(F (τ))1/2dτ

tβ+1(F (t))1/2
= lim

t→0

1

−(β + 1)tβ + tβ+1f(t)
2F (t)

=
2
`
. (4.9)

Equations (4.8) and (4.9) imply

v(r) > φ(R− r)− C1(v(r))β+1(R− r).

By (2.22), v(r) < φ(R− r). Hence,

v(r) > φ(R− r)
[
1− C1(φ(R− r))β(R− r)

]
. (4.10)

Arguing as in the proof of Lemma 3.2, one proves that (4.10) implies the left hand
side of (4.7).

By (2.2) of Lemma 2.1 (with w in place of v) we have

w(r) < φ(r − ρ) + Cφ′(r − ρ)

∫ 1

w
(F (t))1/2dt

F (w)
(r − ρ), ρ < r < r̃. (4.11)

By (4.9) we can find a constant C2 such that∫ 1

w
(F (t))1/2dt

F (w)
≤ C2

1
(F (w))1/2

wβ+1.

By using this estimate and the equation φ′ = (2F (φ))1/2, from (4.11) we find

w(r) < φ+ C3(r − ρ)
( F (φ)
F (w)

)1/2

wβ+1. (4.12)

By (2.23) (with w in place of v and with ε = 1), for r close to ρ we have w(r) <
2φ(r − ρ). Hence, from (4.12) we find

w(r) < φ
[
1 + C4(r − ρ)

( F (φ)
F (2φ)

)1/2

φβ
]
.

Proceeding as in the proof of Lemma 3.2, we obtain the right hand side of (4.7).
The proof is complete. �

Theorem 4.3. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain, let f(t) be
smooth, decreasing and satisfying (1.7) and (1.10). If u(x) is a solution to problem
(1.1) then

φ
[
1− 1

`
Hδφβ − Cδφ2β

]
≤ u(x) ≤ φ

[
1− 1

`
Hδφβ + Cδφ2β

]
,

where φ = φ(δ) is defined as in (1.4), H = H(x) is defined as in (3.18), and C is
a suitable positive constant.

Proof. We look for a super-solution of the form

w(x) = φ(δ)−Aδφβ+1 + αδφ2β+1, A =
1
`
H,

where α is a positive constant to be determined. We have

wxi = φ′δxi−Axiδφ
β+1−A

[
φβ+1+(β+1)δφβφ′

]
δxi +α

[
φ2β+1+(2β+1)δφ2βφ′

]
δxi .
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Recalling (3.19) we find

∆w = φ′′ − φ′H −∆Aδφβ+1 − 2∇A · ∇δ
(
φβ+1 + (β + 1)δφβφ′

)
−A

[
2(β + 1)φβφ′ + (β + 1)βδφβ−1(φ′)2 + (β + 1)δφβφ′′

]
+AH

[
φβ+1 + (β + 1)δφβφ′

]
+ α

[
2(2β + 1)φ2βφ′ + (2β + 1)2βδ

− φ2β−1(φ′)2 + (2β + 1)δφ2βφ′′ −
(
φ2β+1 + (2β + 1)δφ2βφ′

)
H

]
.

(4.13)

Equation (4.4) yields
φ′ =

[
1 +O(1)φβ

]
δf(φ). (4.14)

Since φ′′ = −f(φ), by (4.13) and (4.14) we find

∆w = f(φ)
[
−1−Hδ +O(1)δφβ +O(1)

φβ+1

f(φ)
+O(1)δ3φβ−1f(φ)

+ αO(1)δφ2β + αO(1)
φ2β+1

f(φ)
+ αO(1)δ3φ2β−1f(φ)

]
.

(4.15)

We claim that, for δ small,
φβ+1

f(φ)
≤ δφβ . (4.16)

Rewrite (4.16) as
φ

δf(φ)
≤ 1.

The latter inequality follows by the statement

lim
δ→0

φ

δf(φ)
= lim

t→0

t(f(t))−1

ψ(t)
= lim

t→0

(f(t))−1 − t(f(t))−2f ′(t)
(2F (t))−1/2

= lim
t→0

[(2F (t)
f(t)

)1/2 1
(f(t))1/2

− t

(2F (t))1/2

2F (t)f ′(t)
(f(t))2

]
= 0.

In the last step we have used (1.8), (1.9), (4.1) and (4.2).
Now we claim that, for δ small,

δ3φβ−1f(φ) ≤ δφβ . (4.17)

Rewrite (4.17) as
δ2f(φ)
φ

≤ 1.

The latter inequality follows by the statement

lim
δ→0

δ

φ1/2(f(φ))−1/2
= lim

t→0

ψ(t)
t1/2(f(t))−1/2

= lim
t→0

2(2F (t))−1/2

(tf(t))−1/2 − t1/2(f(t))−
3
2 f ′(t)

= lim
t→0

√
2
(

F (t)
tf(t)

)1/2

F (t)
tf(t) −

F (t)f ′(t)
(f(t))2

= 0,

where (1.8) and (1.9) have been used.
Let us consider now the terms containing α. By (4.16), for δ small we have

φ2β+1

f(φ)
≤ δφ2β . (4.18)



EJDE-2011/51 SECOND-ORDER BOUNDARY ESTIMATES 17

Finally, by (4.17) we find

δ3φ2β−1f(φ) ≤ δφ2β . (4.19)

Therefore, by (4.15) and estimates (4.16)-(4.19), we find suitable positive constants
M1, M2, such that

∆w < f(φ)
[
−1−Hδ +M1δφ

β + αM2δφ
2β

]
. (4.20)

On the other hand, by Taylor’s formula we have

f(t+ ωt) = f(t)
[
1 +

tf ′(t)
f(t)

ω +
1
2
t2f ′′(θt)
f(t)

ω2
]
, (4.21)

where θ is between 1 and 1 + ω. If −ε < ω < ε we can use (1.10); using also (1.7),
from (4.21) we find

f(t+ ωt) = f(t)
[
1− `

tβ
(
1 +O(1)tβ

)
ω +O(1)

1
t2β

(F (t))1/mω2
]
.

Here m is so large that (1.10) and (4.3) hold. Let

ω = −Aδφβ + αδφ2β ,

and take α and δ0 so that, for {x ∈ Ω : δ(x) < δ0}

− ε < −Aδφβ + αδφ2β < ε. (4.22)

With t = φ(δ) we have t+ tω = w, and

f(w) = f(φ)
[
1− `

(
1 +O(1)φβ

)(
−Aδ + αδφβ

)
+O(1)

(
−Aδ + αδφβ

)2

(F (φ))1/m
]

= f(φ)
[
1 + `Aδ − α`δφβ +O(1)δφβ + αO(1)δφ2β +O(1)δ2(F (φ))1/m

+ α2O(1)δ2φ2β(F (φ))1/m
]
.

Note that, using (1.8), (4.2), and recalling that m > 2 we find

0 ≤ lim
δ→0

δ2(F (φ))1/m

δφβ
= lim

δ→0

δ

φβ(F (φ))−1/m
= lim

t→0

ψ(t)
tβ(F (t))−1/m

= lim
t→0

(2F (t))−1/2

βtβ−1(F (t))−1/m + 1
m t

β(F (t))−
1
m−1f(t)

≤ m√
2

lim
t→0

F (t)
f(t)

1
tβ(F (t))

1
2−

1
m

= 0.

Hence, we can find positive constants M3, M4, M5 such that

f(w) < f(φ)
[
1 + `Aδ − α`δφβ +M3δφ

β + αM4δφ
2β + α2M5δ

2φ2β(F (φ))1/m
]
.

Recalling that H = `A, by (4.20) and the latter inequality we have

∆w + f(w) < 0 (4.23)

provided

M1δφ
β + αM2δφ

2β − α`δφβ +M3δφ
β + αM4δφ

2β + α2M5δ
2φ2β(F (φ))1/m < 0.

Rearranging we find

M1 +M3 < α
[
`− (M2 +M4)φβ − αM5δφ

β(F (φ))1/m
]
. (4.24)
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Since
lim
δ→0

δ(F (φ))1/m = lim
t→0

ψ(t)(F (t))1/m ≤ lim
t→0

t(F (t))
1
m− 1

2 = 0,

it follows that (4.24) holds for δ small and α large.
Using the right hand side of (4.7) we have

w − u > φβ+1(F (φ))−1/m
[
−Aδ(F (φ))1/m + αδφβ(F (φ))1/m − Cδ

(F (φ))
1
2+ 1

m

(F (2φ))1/2

]
.

Take α1 large and δ1 small so that (4.22) and (4.24) hold for {x ∈ Ω : δ(x) < δ1},
and define

q = α1δ1φ
β(F (φ))1/m.

Let us show that we can decrease δ increasing α according to αδφβ(F (φ))1/m = q
until

−Aδ(F (φ))1/m + q − Cδ
(F (φ))

1
2+ 1

m

(F (2φ))1/2
> 0 (4.25)

for {x ∈ Ω : δ(x) = δ2}. Indeed, we have

0 ≤ lim
δ→0

δ(F (φ))1/m = lim
t→0

ψ(t)(F (t))1/m ≤ lim
t→0

(F (t))−
1
2+ 1

m = 0.

Furthermore, using (4.3) we find

0 ≤ lim
δ→0

δ
(F (φ))

1
2+ 1

m

(F (2φ))1/2
= lim

t→0

ψ(t)(F (t))
1
2+ 1

m

(F (2t))1/2
≤ lim

t→0

t(F (t))1/m

(F (2t))1/2
= 0.

If (4.25) holds, then w − u > 0 for δ(x) = δ2. Since w − u = 0 on ∂Ω, by (4.23)
and (1.1) we have w − u ≥ 0 on {x ∈ Ω : δ(x) < δ2}. We have proved that, for C
large,

u(x) < φ
[
1− 1

`
Hδφβ + Cδφ2β

]
.

In a very similar manner, using the left hand side of (4.7), one finds that

v = φ− 1
`
Hδφβ+1 − αδφ2β+1,

satisfies v − u ≤ 0 in a neighborhood of ∂Ω provided α is large enough. The proof
is complete. �
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