Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 108, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

# SYMMETRY AND REGULARITY OF AN OPTIMIZATION PROBLEM RELATED TO A NONLINEAR BVP 

CLAUDIA ANEDDA, FABRIZIO CUCCU

## Abstract. We consider the functional

$$
f \mapsto \int_{\Omega}\left(\frac{q+1}{2}\left|D u_{f}\right|^{2}-u_{f}\left|u_{f}\right|^{q} f\right) d x
$$

where $u_{f}$ is the unique nontrivial weak solution of the boundary-value problem

$$
-\Delta u=f|u|^{q} \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0,
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded smooth domain. We prove a result of Steiner symmetry preservation and, if $n=2$, we show the regularity of the level sets of minimizers.

## 1. Introduction

Let $\Omega$ be a bounded domain $\Omega \subset \mathbb{R}^{n}$ with smooth boundary. We consider the Dirichlet problem

$$
\begin{gather*}
-\Delta u=f|u|^{q} \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \tag{1.1}
\end{gather*}
$$

where $0 \leq q<\min \{1,4 / n\}$ and $f$ is a nonnegative bounded function non identically zero. We consider nontrivial solutions of (1.1) in $H_{0}^{1}(\Omega)$. The equation (1.1) is the Euler-Lagrange equation of the integral functional

$$
v \mapsto \int_{\Omega}\left(\frac{q+1}{2}|D v|^{2}-v|v|^{q} f\right) d x, \quad v \in H_{0}^{1}(\Omega)
$$

By using a standard compactness argument, it can be proved that there exists a nontrivial minimizer of the above functional. This minimizer is a nontrivial solution of (1.1).

From the maximum principle, every nontrivial solution of $\sqrt{1.1}$ is positive. Then, by [5, Theorem 3.2] the uniqueness of problem (1.1) follows. To underscore the dependence on $f$ of the solution of (1.1), we denote it by $u_{f}$. Moreover, $u_{f} \in$ $W^{2,2}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$ for all $\alpha, 0<\alpha<1$ (see [8, 10]).

Let $f_{0}$ be a fixed bounded nonnegative function. We study the problem

$$
\begin{equation*}
\inf _{v \in H_{0}^{1}(\Omega), f \in \mathfrak{F}\left(f_{0}\right)} \int_{\Omega}\left(\frac{q+1}{2}|D v|^{2}-v|v|^{q} f\right) d x \tag{1.2}
\end{equation*}
$$

[^0]where, denoting by $|A|$ the Lebesgue measure of a set $A$,
\[

$$
\begin{equation*}
\mathfrak{F}\left(f_{0}\right)=\left\{f \in L^{\infty}(\Omega):|\{f \geq c\}|=\left|\left\{f_{0} \geq c\right\}\right| \forall c \in \mathbb{R}\right\} \tag{1.3}
\end{equation*}
$$

\]

here $\mathfrak{F}\left(f_{0}\right)$ is called class of rearrangements of $f_{0}$ (see [9]).
Problems of this kind are not new; see for example [1, 2, 3, 5]. From the results in [5] it follows that $\sqrt{1.2}$ ) has a minimum and a representation formula. Let

$$
\begin{equation*}
E(f)=\inf _{v \in H_{0}^{1}(\Omega)} \int_{\Omega}\left(\frac{q+1}{2}|D v|^{2}-v|v|^{q} f\right) d x \tag{1.4}
\end{equation*}
$$

Renaming $q^{\prime}$ the constant $q$ and putting $p=2$ and $q^{\prime}=q+1$ in [5] we have

$$
E(f)=\frac{q^{\prime}-2}{2} I(f)
$$

where

$$
I(f)=\sup _{H_{0}^{1}(\Omega)} \frac{q^{\prime}}{2-q^{\prime}} \int_{\Omega}\left(\frac{2}{q^{\prime}} f|v|^{q^{\prime}}-|D v|^{2}\right) d x
$$

is defined in the same paper. By [5] Theorem 2.2] it follows that there exist minimizers of $E(f)$ and that, if $\bar{f}$ is a minimizer, there exists an increasing function $\phi$ such that

$$
\begin{equation*}
\bar{f}=\phi\left(u_{\bar{f}}\right) \tag{1.5}
\end{equation*}
$$

We denote by $\operatorname{supp} f$ the support of $f$, and we call a level set of $f$ the set $\{x \in \Omega: f(x)>c\}$, for some constant $c$.

In Section 2, we consider a Steiner symmetric domain $\Omega$ and $f_{0}$ bounded and nonnegative, such that $\left|\operatorname{supp} f_{0}\right|<|\Omega|$. Under these assumptions, we prove that the level sets of the minimizer $\bar{f}$ are Steiner symmetric with respect to the same hyperplane of $\Omega$. As a consequence, we have exactly one optimizer when $\Omega$ is a ball.

Chanillo, Kenig and To [4] studied the regularity of the minimizers to the problem

$$
\lambda(\alpha, A)=\inf _{u \in H_{0}^{1}(\Omega),\|u\|_{2},|D|=A} \int_{\Omega}|D u|^{2} d x+\alpha \int_{D} u^{2} d x
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain, $0<A<|\Omega|$ and $\alpha>0$. In particular they prove that, if $D$ is a minimizer, then $\partial D$ is analytic.

In Section 3, following the ideas in [4], we give our main result. We restrict our attention to $\Omega \subset \mathbb{R}^{2}$. Let $b_{1}, \ldots, b_{m}>0$ and $0<a_{1}<\cdots<a_{m}<|\Omega|, m \geq 2$, be fixed. Consider $f_{0}=b_{1} \chi_{G_{1}}+\cdots+b_{m} \chi_{G_{m}}$, where $\left|G_{i}\right|=a_{i}$ for all $i, G_{i} \subset G_{i+1}$, $i=1, \ldots, m-1$.

We call $\eta$ the minimum in 1.2 ; i.e.,

$$
\eta=\int_{\Omega}\left(\frac{q+1}{2}\left|D u_{\bar{f}}\right|^{2}-u_{\bar{f}}\left|u_{\bar{f}}\right|^{q} \bar{f}\right) d x
$$

where $\bar{f}$ and $u_{\bar{f}}$ are, respectively, the minimizing function and the corresponding solution of (1.1).

In this case 1.5 becomes

$$
\bar{f}=\sum_{i=1}^{m} b_{i} \chi_{D_{i}}
$$

where

$$
D_{1}=\left\{u_{\bar{f}}>c_{1}\right\}, \quad D_{2}=\left\{u_{\bar{f}}>c_{2}\right\}, \quad \ldots, \quad D_{m}=\left\{u_{\bar{f}}>c_{m}\right\}
$$

for suitable constants $c_{1}>c_{2}>\cdots>c_{m}>0$.
We show regularity of $\partial D_{i}$ for each $i$ proving that $\left|D u_{\bar{f}}\right|>0$ in $\partial D_{i}$. Following the method used in [4], we consider

$$
\begin{equation*}
E(s, t)=\int_{\Omega}\left(\frac{q+1}{2}\left|D u_{\bar{f}}+s D v\right|^{2}-\left(u_{\bar{f}}+s v\right)\left|u_{\bar{f}}+s v\right|^{q} \bar{f}_{t}\right) d x-\eta \tag{1.6}
\end{equation*}
$$

where $v \in H_{0}^{1}(\Omega), \bar{f}_{t}$ is a family of functions such that $\bar{f}_{t} \in \mathfrak{F}\left(f_{0}\right)$ with $\bar{f}_{0}=\bar{f}$, and $s \in \mathbb{R}$. We have

$$
E(s, t) \geq E(0,0)=0 \quad \forall s, t
$$

Therefore, $(s, t)=(0,0)$ is a minimum point; it follows that

$$
\left|\begin{array}{ll}
\frac{\partial^{2} E}{\partial s^{2}}(0,0) & \frac{\partial^{2} E}{\partial s \partial t}(0,0)  \tag{1.7}\\
\frac{\partial^{2} E}{\partial t \partial s}(0,0) & \frac{\partial^{2} E}{\partial t^{2}}(0,0)
\end{array}\right| \geq 0
$$

Expanding (1.7) in detail and using some lemmas from [4] we prove that the boundaries of level sets of $\bar{f}$ are regular.

Theorem 1.1. Let $\Omega \subset \mathbb{R}^{2}, f_{0}=\sum_{i=1}^{m} b_{i} \chi_{G_{i}}$ with $m \geq 2$, and $\bar{f}=\sum_{i=1}^{m} b_{i} \chi_{D_{i}} a$ minimizer of 1.2 . Then $\left|D u_{\bar{f}}\right|>0$ on $\partial D_{i}, i=1, \ldots, m$.

## 2. Symmetry

In this section we consider Steiner symmetric domains. We prove that, under suitable conditions on $f_{0}$ in (1.3), minimizers inherit Steiner symmetry.

Definition 2.1. Let $P \subset \mathbb{R}^{n}$ be a hyperplane. We say that a set $A \subset \mathbb{R}^{n}$ is Steiner symmetric relative to the hyperplane $P$ if for every straight line $L$ perpendicular to $P$, the set $A \cap P$ is either empty or a symmetric segment with respect to $P$.

To prove the symmetry, we need [6, Theorem 3.6 and Corollary 3.9], that, for more convenience for the reader, we state here. These results are related to the classical paper [7].

Theorem 2.2. Let $\Omega \subset \mathbb{R}^{n}$ be bounded, connected and Steiner symmetric relative to the hyperplane $P$. Assume that $u: \bar{\Omega} \rightarrow \mathbb{R}$ has the following properties:

- $u \in C(\bar{\Omega}) \cap C^{1}(\Omega), u>0$ in $\Omega,\left.u\right|_{\partial \Omega}=0$;
- for all $\phi \in C_{0}^{\infty}(\Omega)$,

$$
\int_{\Omega} D u \cdot D \phi d x=\int_{\Omega} \phi F(u) d x
$$

where $F$ has a decomposition $F=F_{1}+F_{2}$ such that $F_{1}:[0, \infty) \rightarrow \mathbb{R}$ is locally Lipschitz continuous, while $F_{2}:[0, \infty) \rightarrow \mathbb{R}$ is non-decreasing and identically 0 on $[0, \epsilon]$ for some $\epsilon>0$.
Then $u$ is symmetric with respect to $P$ and $\frac{\partial u}{\partial \mathbf{v}}(x)<0$, where $\mathbf{v}$ is a unit vector orthogonal to $P$ and $x$ belongs to the part of $\Omega$ that lies in the halfspace (with origin in $P$ ) in which $\mathbf{v}$ points.

Theorem 2.3. Let $\Omega$ be Steiner symmetric and $f_{0}$ a bounded nonnegative function. If $\left|\operatorname{supp} f_{0}\right|<|\Omega|$ and $\bar{f} \in \mathfrak{F}\left(f_{0}\right)$ is a minimizer of 1.2 , then the level sets of $\bar{f}$ are Steiner symmetric with respect to the same hyperplane of $\Omega$.

Proof. Let $u=u_{\bar{f}}$ be the solution of 1.2 . Then $u \in C^{0}(\bar{\Omega}) \cap C^{1}(\Omega)$ and satisfies

$$
\int_{\Omega} D u \cdot D \psi d x=\int_{\Omega} \psi f u^{q} d x \quad \forall \psi \in C_{0}^{\infty}(\Omega)
$$

Since $u>0$ and since (from 1.5) $\bar{f}=\phi(u)$ with $\phi$ increasing function, it follows that $\phi(u) \equiv 0$ on $\{x \in \Omega: u(x)<d\}$ for some positive constant $d$. Then we have $u^{q} \bar{f}=F_{1}(u)+F_{2}(u)$ with $F_{1}(u) \equiv 0$ and $F_{2}(u)=\phi(u) u^{q}$. From Theorem 2.1 and $\bar{f}=\phi(u)$ we have the assertion.

Remark 2.4. By this theorem, if $\Omega$ is an open ball and $\left|\operatorname{supp} f_{0}\right|<|\Omega|$, then $\bar{f}$ is radially symmetric and decreasing.

## 3. Regularity of the free boundaries

In this section we prove the following result.
Theorem 3.1. Let $\Omega \subset \mathbb{R}^{2}, f_{0}=\sum_{i=1}^{m} b_{i} \chi_{G_{i}}$ with $m \geq 2$, and $\bar{f}=\sum_{i=1}^{m} b_{i} \chi_{D_{i}} a$ minimizer of 1.2 . Then $\left|D u_{\bar{f}}\right|>0$ on $\partial D_{i}, i=1, \ldots, m$.

We use the notation introduced in Section 1. Without loss of generality we can assume $m=3$; the general case easily follows. Let $\bar{f}=b_{1} \chi_{D_{1}}+b_{2} \chi_{D_{2}}+b_{3} \chi_{D_{3}}$. We will prove $\left|D u_{\bar{f}}\right|>0$ in $\partial D_{2}$; we omit the proof for $D_{1}$ and $D_{3}$ because it is similar. We define the family $\bar{f}_{t}$ by replacing only the set $D_{2}$ by a family of domains $D_{2}(t)$.

First of all, we explain how to define the family $D_{2}(t)$.
In the sequel we use the notation introduced in 4, reorganized according to our needs.

We call a curve $\gamma:[a, b] \rightarrow \mathbb{R},-\infty<a<b<\infty$, regular if:
(i) it is simple, that is: if $a \leq x<y \leq b$ and $x \neq a$ or $y \neq b$, then $\gamma(x) \neq \gamma(y)$;
(ii) $\|\gamma\|_{C^{2}(a, b)}$ is finite;
(iii) $\left|\gamma^{\prime}\right|$ is uniformly bounded away from zero.

If, in addiction, $\gamma(a)=\gamma(b)$, we say that the curve is closed and regular. If the domain of $\gamma$ is $(a, b)$ we say that $\gamma$ is regular (respectively, closed and regular) if the continuous extension of $\gamma$ to $[a, b]$ is regular (respectively, closed and regular).

Now, we introduce the notation

$$
\mathcal{F}:=\partial D_{2} ; \quad \mathcal{F}^{*}:=\mathcal{F} \cap\left\{\left|D u_{\bar{f}}\right|>0\right\} .
$$

Let $J=\cup_{k=1}^{p} J_{k}$ be a finite union of open bounded intervals $J_{k} \subset \mathbb{R}, \gamma=\left(\gamma_{1}, \gamma_{2}\right)$ : $J \rightarrow \mathcal{F}^{*}$ a simple curve which is regular on each interval $J_{k}$ and $\overline{\gamma(J)} \subset \mathcal{F}^{*}$. We suppose that dist $\left(\gamma\left(J_{k}\right), \gamma\left(J_{h}\right)\right)>0$ for $1 \leq h \neq k \leq p$. Assume also that $\left|\gamma^{\prime}\right| \geq \theta$ on $J$. For each $\xi \in J$, we denote by $\mathbf{N}(\xi)=\left(N_{1}(\xi), N_{2}(\xi)\right)$ the outward unit normal with respect to $D_{2}$ at $\gamma(\xi)$. We also define the tangent vector to $\gamma$ $\mathbf{N}^{\perp}(\xi)=\left(-N_{2}(\xi), N_{1}(\xi)\right)$, and $\mathbf{N}^{\prime}$ the first derivative of $\mathbf{N}$.

Reversing the direction of $\gamma$ if necessary, we will assume, without loss of generality, that $\gamma^{\prime}$ and $\mathbf{N}^{\perp}$ have the same direction; i.e., $\left.\angle \gamma^{\prime}, \mathbf{N}^{\perp}\right\rangle=\left|\gamma^{\prime}\right|$. We observe that, because $\gamma$ is $C^{2}$ and simple on $\overline{J_{k}}$, for each $k$ there exists $\beta_{k}>0$ such that the function

$$
\phi_{k}: J_{k} \times\left[-\beta_{k}, \beta_{k}\right] \rightarrow \mathbb{R}^{2},(\xi, \beta) \mapsto\left(x_{1}, x_{2}\right)=\phi_{k}(\xi, \beta)=\gamma(\xi)+\beta \mathbf{N}(\xi)
$$

is injective.

Because dist $\left(\gamma\left(J_{k}\right), \gamma\left(J_{h}\right)\right)>0$ for all $h \neq k$, we can find a number $\beta_{0}>0$ and we can paste together the functions $\phi_{k}$ to obtain a function $\phi$ injective on $J \times\left[-\beta_{0}, \beta_{0}\right]$. Choose $\beta_{0}$ such that dist $\left(\phi\left(J \times\left[-\beta_{0}, \beta_{0}\right]\right), \partial D_{1}\right)>0$ and $\operatorname{dist}(\phi(J \times$ $\left.\left.\left[-\beta_{0}, \beta_{0}\right]\right), \partial D_{3}\right)>0$.

Now, we define

$$
K=D_{2} \backslash \phi\left(J \times\left(-\beta_{0}, 0\right]\right)
$$

for $t \in\left(-t_{0}, t_{0}\right)$ we define

$$
\begin{equation*}
D_{2}(t)=K \cup\{\phi(\xi, \beta): \xi \in J, \beta<g(\xi, t)\} \tag{3.1}
\end{equation*}
$$

where $g: J \times\left(-t_{0}, t_{0}\right) \rightarrow \mathbb{R}, t_{0}>0$, is a function such that

$$
\begin{equation*}
g(\xi, t), g_{t}(\xi, t), g_{t t}(\xi, t) \in C(\bar{J}) \quad \forall t \in\left(-t_{0}, t_{0}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\xi, 0) \equiv 0 \quad \forall \xi \in J \tag{3.3}
\end{equation*}
$$

We observe that $D_{2}(0)=D_{2}$. Next we compute the measure of $D_{2}(t)$. Put $A(t)=$ $\left|D_{2}(t)\right|$ and $A=\left|D_{2}(0)\right|=\left|D_{2}\right|$; we have

$$
A(t)=\left|D_{2}\right|+\int_{J} \int_{0}^{g(\xi, t)} J(\xi, \beta) d \beta d \xi
$$

where

$$
\begin{aligned}
J(\xi, \beta) & =\frac{\partial\left(x_{1}, x_{2}\right)}{\partial(\xi, \beta)}=\left|\begin{array}{cc}
\gamma_{1}^{\prime}+\beta N_{1}^{\prime} & N_{1} \\
\gamma_{2}^{\prime}+\beta N_{2}^{\prime} & N_{2}
\end{array}\right| \\
& =\left|-\left\langle\gamma^{\prime}, \mathbf{N}^{\perp}\right\rangle-\beta\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right|=\left|\left|\gamma^{\prime}\right|+\beta\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right|
\end{aligned}
$$

We show that $\left|\gamma^{\prime}\right|+\beta\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle \geq 0$. Indeed, from the fact that $\|\gamma\|_{C^{2}(J)}<\infty$, we have $\left\|\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right\|_{L^{\infty}(J)}<\infty$. Substituting $t_{0}$ by a smaller positive number if necessary, we can assume that

$$
\|g\|_{L^{\infty}\left(J \times\left(-t_{0}, t_{0}\right)\right)}<\beta_{0}
$$

and

$$
\left\|\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right\|_{L^{\infty}(J)}\|g\|_{L^{\infty}\left(J \times\left(-t_{0}, t_{0}\right)\right)}<\theta
$$

Note that the first of these assumptions guarantees that $\partial D_{2}(t)$ has positive distance from $\partial D_{1}$ and $\partial D_{3}$. We have

$$
|\beta|\left|\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right| \leq\|g\|_{L^{\infty}\left(J \times\left(-t_{0}, t_{0}\right)\right)}\left\|\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right\|_{L^{\infty}(J)} \leq \theta \leq\left|\gamma^{\prime}\right|
$$

for all $\xi \in J$ and $|\beta| \leq\|g\|_{L^{\infty}\left(J \times\left(-t_{0}, t_{0}\right)\right)}$. Thus, $J(\xi, \beta)=\left|\gamma^{\prime}\right|+\beta\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle$. Substituting into the formula for $A(t)$ we have

$$
\begin{aligned}
A(t) & =A+\int_{J} \int_{0}^{g(\xi, t)}\left(\left|\gamma^{\prime}\right|+\beta\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right) d \beta d \xi \\
& =A+\int_{J}\left(g(\xi, t)\left|\gamma^{\prime}\right|+\frac{1}{2}(g(\xi, t))^{2}\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right) d \xi
\end{aligned}
$$

To obtain $\left|D_{2}(t)\right|=\left|D_{2}\right|$ for all $t \in\left(-t_{0}, t_{0}\right)$, we find the further constraint on $g$ :

$$
\begin{equation*}
\int_{J}\left(g(\xi, t)\left|\gamma^{\prime}\right|+\frac{1}{2}(g(\xi, t))^{2}\left\langle\mathbf{N}, \mathbf{N}^{\perp}\right\rangle\right) d \xi=0 \quad \forall t \in\left(-t_{0}, t_{0}\right) \tag{3.4}
\end{equation*}
$$

Moreover, we calculate the derivatives of $A(t)$, that we will use later.

$$
\begin{gather*}
A^{\prime}(t)=\int_{J}\left(g_{t}(\xi, t)\left|\gamma^{\prime}(\xi)\right|+g(\xi, t) g_{t}(\xi, t)\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right) d \xi=0 \\
A^{\prime \prime}(t)=\int_{J}\left(g_{t t}(\xi, t)\left|\gamma^{\prime}(\xi)\right|+\left(g(\xi, t) g_{t t}(\xi, t)+g_{t}^{2}(\xi, t)\right)\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right) d \xi=0 \tag{3.5}
\end{gather*}
$$

Once we have defined the family $D_{2}(t)$, we can go back to the functional (1.6). The following lemma describes 1.7) with $\bar{f}_{t}=b_{1} \chi_{D_{1}}+b_{2} \chi_{D_{2}(t)}+b_{3} \chi_{D_{3}}$. We find an inequality corresponding to [4, (2.3) of Lemma 2.1].

Lemma 3.2. Let $\bar{f}_{t}=b_{1} \chi_{D_{1}}+b_{2} \chi_{D_{2}(t)}+b_{3} \chi_{D_{3}}$, where the variation of domain $D_{2}(t)$ is described by (3.1) and $g: J \times\left(-t_{0}, t_{0}\right) \rightarrow \mathbb{R}$, $t_{0}>0$, satisfies (3.2), (3.3) and (3.4). Then, for all $v \in H_{0}^{1}(\Omega)$, the conditions (1.7) becomes

$$
\begin{align*}
& \int_{\Omega}\left(|D v|^{2}-q u_{\bar{f}} v^{2}\left|u_{\bar{f}}\right|^{q-2} \bar{f}\right) d x \cdot \int_{\gamma} g_{t}^{2}\left(\gamma^{-1}, 0\right)\left|D u_{\bar{f}}\right| d \sigma \\
& \geq b_{2} c_{2}^{q}\left(\int_{\gamma} g_{t}\left(\gamma^{-1}, 0\right) v d \sigma\right)^{2} . \tag{3.6}
\end{align*}
$$

Proof. We calculate the second derivative of the functional 1.6), with respect to $s$. We have

$$
\frac{\partial E}{\partial s}=(q+1) \int_{\Omega}\left(\left\langle D u_{\bar{f}}+s D v, D v\right\rangle-v\left|u_{\bar{f}}+s v\right|^{q} \bar{f}_{t}\right) d x
$$

and

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial s^{2}}(0,0)=(q+1) \int_{\Omega}\left(|D v|^{2}-q u_{\bar{f}} v^{2}\left|u_{\bar{f}}\right|^{q-2} \bar{f}\right) d x \tag{3.7}
\end{equation*}
$$

Before calculating the second derivative of $E$ with respect to $t$, we rewrite $\sqrt{1.6}$ in the form

$$
\begin{aligned}
E(s, t)= & \int_{\Omega} \frac{q+1}{2}\left|D u_{\bar{f}}+s D v\right|^{2} d x-b_{1} \int_{D_{1}}\left(u_{\bar{f}}+s v\right)\left|u_{\bar{f}}+s v\right|^{q} d x \\
& -b_{2} \int_{D_{2}(t)}\left(u_{\bar{f}}+s v\right)\left|u_{\bar{f}}+s v\right|^{q} d x-b_{3} \int_{D_{3}}\left(u_{\bar{f}}+s v\right)\left|u_{\bar{f}}+s v\right|^{q} d x-\eta .
\end{aligned}
$$

We observe that, if $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function, then

$$
\int_{D_{2}(t)} F-\int_{D_{2}} F=\int_{J} \int_{0}^{g(\xi, t)} F(\phi(\xi, g(\xi, \beta))) J(\xi, \beta) d \beta d \xi
$$

whence, from the Fundamental Theorem of Calculus,

$$
\frac{\partial}{\partial t} \int_{D_{2}(t)} F=\int_{J} g_{t}(\xi, t) F(\phi(\xi, g(\xi, t))) J(\xi, g(\xi, t)) d \xi
$$

Using the above relation with $F=(u+s v)|u+s v|^{q}$, we have

$$
\frac{\partial E}{\partial t}=-b_{2} \int_{J} g_{t}(\xi, t)\left(u_{\bar{f}}+s v\right)\left|u_{\bar{f}}+s v\right|^{q} J(\xi, g(\xi, t)) d \xi
$$

where, for simplicity of notation, we set $u_{\bar{f}}(\phi(\xi, g(\xi, t)))=u_{\bar{f}}$ and $v(\phi(\xi, g(\xi, t)))=$ v. Moreover

$$
\begin{aligned}
\frac{\partial^{2} E}{\partial t^{2}}= & -b_{2} \int_{J}\left|u_{\bar{f}}+s v\right|^{q}\left\{\left[g_{t t}(\xi, t)\left(u_{\bar{f}}+s v\right)+(q+1) g_{t}^{2}(\xi, t)\left\langle D u_{\bar{f}}+s D v, \mathbf{N}\right\rangle\right]\right. \\
& \left.\times J(\xi, g(\xi, t))+g_{t}^{2}(\xi, t)\left(u_{\bar{f}}+s v\right)\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right\} d \xi
\end{aligned}
$$

where we have used that

$$
\begin{gathered}
\frac{\partial}{\partial t} u_{\bar{f}}(\phi(\xi, g(\xi, t)))=\left\langle D u_{\bar{f}}(\phi(\xi, g(\xi, t))), \mathbf{N}\right\rangle g_{t}(\xi, t) \\
\frac{\partial}{\partial t} J(\xi, g(\xi, t))=g_{t}\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle
\end{gathered}
$$

We note that, when $t=0$,

$$
u_{\bar{f}}(\phi(\xi, g(\xi, t)))=u_{\bar{f}}(\gamma(\xi))=c_{2}
$$

$D u_{\bar{f}}(\phi(\xi, g(\xi, 0)))=-\left|D u_{\bar{f}}(\gamma(\xi))\right| \mathbf{N}(\xi)$ and $J(\xi, g(\xi, 0))=J(\xi, 0)=\left|\gamma^{\prime}(\xi)\right|$. Evaluating the above expression in $(0,0)$, we find

$$
\begin{aligned}
\frac{\partial^{2} E}{\partial t^{2}}(0,0)= & -b_{2} c_{2}^{q+1} \int_{J}\left[g_{t t}(\xi, 0)\left|\gamma^{\prime}(\xi)\right|+g_{t}^{2}(\xi, 0)\left\langle\mathbf{N}^{\prime}, \mathbf{N}^{\perp}\right\rangle\right] d \xi \\
& +b_{2} c_{2}^{q}(q+1) \int_{J} g_{t}^{2}(\xi, 0)\left|D u_{\bar{f}}(\gamma(\xi))\right|\left|\gamma^{\prime}(\xi)\right| d \xi
\end{aligned}
$$

By using (3.5) with $t=0$ we find

$$
\begin{align*}
\frac{\partial^{2} E}{\partial t^{2}}(0,0) & =b_{2} c_{2}^{q}(q+1) \int_{J} g_{t}^{2}(\xi, 0)\left|D u_{\bar{f}}(\gamma(\xi))\right|\left|\gamma^{\prime}(\xi)\right| d \xi \\
& =b_{2} c_{2}^{q}(q+1) \int_{\gamma} g_{t}^{2}\left(\gamma^{-1}, 0\right)\left|D u_{\bar{f}}\right| d \sigma \tag{3.8}
\end{align*}
$$

We also have

$$
\frac{\partial^{2} E}{\partial s \partial t}=-b_{2}(q+1) \int_{J} g_{t}(\xi, t) v\left|u_{\bar{f}}+s v\right|^{q} J(\xi, g(\xi, t)) d \xi
$$

that is,

$$
\begin{align*}
\frac{\partial^{2} E}{\partial s \partial t}(0,0) & =-b_{2} c_{2}^{q}(q+1) \int_{J} g_{t}(\xi, 0) v(\gamma(\xi))\left|\gamma^{\prime}(\xi)\right| d \xi  \tag{3.9}\\
& =-b_{2} c_{2}^{q}(q+1) \int_{\gamma} g_{t}\left(\gamma^{-1}, 0\right) v d \sigma
\end{align*}
$$

Using (1.7) in the form

$$
\frac{\partial^{2} E}{\partial s^{2}}(0,0) \frac{\partial^{2} E}{\partial t^{2}}(0,0) \geq\left(\frac{\partial^{2} E}{\partial s \partial t}(0,0)\right)^{2}
$$

and using (3.7), (3.8) and (3.9) in this inequality, we obtain (3.6).
Note that in inequality (3.6) only $g\left(\gamma^{-1}, 0\right)$ appears. Moreover, $g\left(\gamma^{-1}, 0\right)$ has null integral on $\gamma$. Indeed, differentiating (3.4) with respect to $t$ and putting $t=0$, we obtain

$$
\int_{J} g(\xi, 0)\left|\gamma^{\prime}\right| d \xi=0
$$

Now a natural question arises: does inequality (3.6) hold for any function $h$ with null integral on $\gamma$ ? The answer is contained in the following result.

Lemma 3.3. Let $J$ and $\gamma$ be the same as described. Let $h: \gamma \rightarrow \mathbb{R}$ bounded, continuous and such that $\int_{\gamma} h d \sigma=0$. Then, for all $v \in H_{0}^{1}(\Omega)$ and for all $a \in \mathbb{R}$ we have

$$
\begin{equation*}
\int_{\Omega}\left(|D v|^{2}-q u_{\bar{f}} v^{2}\left|u_{\bar{f}}\right|^{q-2} \bar{f}\right) d x \cdot \int_{\gamma} h^{2}\left|D u_{\bar{f}}\right| d \sigma \geq b_{2} c_{2}^{q}\left(\int_{\gamma} h(v-a) d \sigma\right)^{2} \tag{3.10}
\end{equation*}
$$

The proof of the above lemma is similar to that of 4. Lemma 2.2]; we omit it. The following lemma is an analogue to [4, Lemma 3.1].

Lemma 3.4. Let $P$ be a point on $\mathcal{F}=\partial\left\{u_{\bar{f}}>c_{2}\right\}$. Suppose that for all $k \in \mathbb{Z}^{+}$ there exist a positive number $r_{k}$, a bounded open interval $J_{k}$ and a regular curve $\gamma_{k}: J_{k} \rightarrow \mathcal{F}^{*}$ such that $r_{1}>r_{2}>\cdots \rightarrow 0, \overline{\gamma_{k}\left(J_{k}\right)} \subset \mathcal{F}^{*} \cap B_{r_{k}}(P) \backslash \overline{B_{r_{k+1}}(P)}$. Then we must have

$$
\sum_{k=1}^{\infty} \int_{\gamma\left(J_{k}\right)} \frac{1}{\left|D u_{\bar{f}}\right|} d \sigma<\infty
$$

Proof. Without loss of generality, we assume that $P$ is the origin. We suppose also that $J_{k} \cap J_{h}=\emptyset$ for all $k \neq h$, and denote all $\gamma_{k}$ with $\gamma$. We define

$$
J_{k, m}= \begin{cases}J_{k} \cup J_{k+1} \cup \cdots \cup J_{m} & \text { if } m \geq k \\ \emptyset & \text { otherwise }\end{cases}
$$

We suppose by contradiction that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{\gamma\left(J_{k}\right)} \frac{1}{\mid D u_{\bar{f} \mid}} d \sigma=\infty \tag{3.11}
\end{equation*}
$$

Let $V$ be a smooth radial function in $\mathbb{R}^{2}$, decreasing in $|x|$, defined by

$$
\begin{cases}V(x)=2, & |x|=0 \\ 1<V(x)<2, & 0<|x|<1 / 2 \\ 0<V(x)<1, & 1 / 2<|x|<1 \\ V(x)=0, & |x| \geq 1\end{cases}
$$

For all $k \in \mathbb{Z}^{+}$we define $v_{k}(x)=V\left(\frac{x}{r_{k}}\right)$. Consider $k$ large enough such that $\operatorname{supp} v_{k} \subset \Omega$. Now we fix $k$; we have

$$
\begin{cases}v_{k}(x)-1=1, & |x|=0 \\ 0<v_{k}(x)-1<1, & 0<|x|<r_{k} / 2 \\ -1<v_{k}(x)-1<0, & r_{k} / 2<|x|<r_{k} \\ v_{k}(x)-1=-1, & |x| \geq r_{k} .\end{cases}
$$

Since $J_{k}$ and $\left|\gamma^{\prime}\right|$ are bounded, $\gamma\left(J_{k}\right)$ is of finite length. Moreover, $\left|D u_{\bar{f}}\right|$ is uniformly bounded away from 0 on $\gamma\left(J_{k}\right)$ since $\overline{\gamma\left(J_{k}\right)} \subset \mathcal{F}^{*}$. Together with the fact that $\gamma\left(J_{1, k-1}\right) \subset\left(B_{r_{k}}\right)^{C}$, we have

$$
-\infty<\int_{\gamma\left(J_{1, k-1}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma=-\int_{\gamma\left(J_{1, k-1}\right)} \frac{1}{\mid D u_{\bar{f} \mid}} d \sigma<0 .
$$

Choose $m$ such that $r_{m}<r_{k} / 2$. From the facts that $v_{k}(x)-1>0$ in $B_{r_{m}}$, $\gamma\left(J_{l}\right) \subset B_{r_{m}}$ for all $l \geq m$ and $v_{k}(x)-1 \rightarrow 1$ as $x \rightarrow 0$ and (3.11), we have

$$
\int_{\gamma\left(J_{m, l}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma \rightarrow \infty \quad \text { for } l \rightarrow \infty
$$

Consequently, there must be a number $l \geq m$ such that

$$
\int_{\gamma\left(J_{m, l-1}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma \leq-\int_{\gamma\left(J_{1, k-1}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma<\int_{\gamma\left(J_{m, l}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma
$$

Choose a subinterval $J_{l}^{\prime} \subset J_{l}$ such that

$$
\int_{\gamma\left(J_{m, l-1}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma+\int_{\gamma\left(J_{l}^{\prime}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma=-\int_{\gamma\left(J_{1, k-1}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma
$$

Then we have

$$
\int_{\gamma\left(J^{k}\right)} \frac{v_{k}-1}{\left|D u_{\bar{f}}\right|} d \sigma=0
$$

where $J^{k}=J_{1, k-1} \cup J_{m, l-1} \cup J_{l}^{\prime}$.
Now we can apply Lemma 3.3 to $J^{k}, \gamma, v_{k}, a=1$ and $h=\frac{v_{k}-1}{\left|D u_{\bar{f}}\right|}$ and, after rearranging, obtain

$$
\int_{\Omega}\left(\left|D v_{k}\right|^{2}-q u_{\bar{f}} v_{k}^{2}\left|u_{\bar{f}}\right|^{q-2} \bar{f}\right) d x \geq b_{2} c_{2}^{q} \int_{\gamma\left(J^{k}\right)} \frac{\left(v_{k}-1\right)^{2}}{\left|D u_{\bar{f}}\right|} d \sigma .
$$

We find that

$$
\int_{\Omega}\left(\left|D v_{k}\right|^{2}-q u_{\bar{f}} v_{k}^{2}\left|u_{\bar{f}}\right|^{q-2} \bar{f}\right) d x \leq \int_{B_{1}(0)}|D V|^{2} d x
$$

By the above estimate, for a suitable constant $C$, we have

$$
\begin{aligned}
C \int_{B_{1}(0)}|D V|^{2} d x & \geq \int_{\gamma\left(J^{k}\right)} \frac{\left(v_{k}-1\right)^{2}}{\left|D u_{\bar{f}}\right|} d \sigma \\
& \geq \int_{\gamma\left(J_{1, k-1}\right)} \frac{\left(v_{k}-1\right)^{2}}{\left|D u_{\bar{f}}\right|} d \sigma \\
& =\sum_{h=1}^{k-1} \int_{\gamma\left(J_{h}\right)} \frac{\left(v_{k}-1\right)^{2}}{\left|D u_{\bar{f}}\right|} d \sigma
\end{aligned}
$$

Then, when $k \rightarrow \infty$, we have

$$
C \int_{B_{1}(0)}|D V|^{2} d x \geq \sum_{h=1}^{\infty} \int_{\gamma\left(J_{h}\right)} \frac{\left(v_{k}-1\right)^{2}}{\left|D u_{\bar{f}}\right|} d \sigma=+\infty
$$

which is a contradiction. So we must have

$$
\sum_{k=1}^{\infty} \int_{\gamma\left(J_{k}\right)} \frac{d \sigma}{\mid D u_{\bar{f} \mid}}<\infty
$$

as desired.
Lemma 3.5. Let $P$ be a point on $\mathcal{F}=\partial\left\{u_{\bar{f}}>c_{2}\right\}$. Suppose that there are numbers $K \in \mathbb{Z}$ and $\bar{\sigma}>0$ such that, for each $k \geq K$, there exists a regular curve $\gamma_{k}: J_{k} \rightarrow \mathcal{F}^{*}$ with the following two properties:

$$
\begin{gathered}
\overline{\gamma\left(J_{k}\right)} \subset \mathcal{F}^{*} \cap B_{2-k}(P) \backslash \overline{B_{2-(k+1)}(P)}, \\
\mathcal{H}^{1}\left(\gamma_{k}\left(J_{k}\right)\right)=\int_{J_{k}}\left|\gamma^{\prime}(\xi)\right| d \xi>\bar{\sigma} 2^{-k}
\end{gathered}
$$

Then $\left|D u_{\bar{f}}(P)\right|>0$.
For a proof of the above lemma, see [4, Lemma 3.2]. From an intuitive point of view, this lemma says that, if the set $\partial\left\{u_{\bar{f}}>c_{2}\right\} \cap\left\{\left|D u_{\bar{f}}\right|>0\right\}$ is big enough around a point of $\partial\left\{u_{\bar{f}}>c_{2}\right\}$, then $\left|D u_{\bar{f}}\right|>0$ at this point.

Now, we are able to prove our main theorem.

Proof of Theorem 3.1. By using the previous Lemmas and superharmonicity of $u_{\bar{f}}$ the Theorem follows from the results of sections 5 and 6 in [4].

Open problems. The method used in this paper to prove regularity does not work when the number of level sets of $\bar{f}$ is infinite. Therefore it remains to study the boundaries of level sets of $\bar{f}$ in the case of the rearrangement class $\mathfrak{F}\left(f_{0}\right)$ of a general function $f_{0}$.

We can obtain an analogous result to Lemma 3.4 for the $p$-Laplacian operator, but we cannot go further because we lack a suitable regularity theory for the $p$ Laplacian operator and its solutions. We think that it is reasonable to guess that a regularity result of the type that we have proven in this work will hold for the situation with the $p$-Laplacian when $p<2$.

Acknowledgments. The authors want to thank the anonymous referees for their valuable comments and suggestions.

## References

[1] A. Alvino, G. Trombetti and P. L. Lions; On optimization problems with prescribed rearrangements, Nonlinear Analysis, TMA 13 (1989), 185-220.
[2] S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi; Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Commun. Math. Phys. 214 (2000), 315-337.
[3] S. Chanillo, D. Grieser and K. Kurata; The free boundary problem in the optimization of composite membranes, Contemporary Math. 268 (1999), 61-81.
[4] S. Chanillo, C.E. Kenig and G. T. To; Regularity of the minimizers in the composite membrane problem in $\mathbb{R}^{2}$, Journal of Functional Analysis 255 (2008), 2299-2320.
[5] F. Cuccu, G. Porru and S. Sakaguchi; Optimization problems on general classes of rearrangements, Nonlinear Analysis 74 (2011), 5554-5565.
[6] L.E. Fraenkel; An Introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, Cambridge Univ. Press. (2000).
[7] B. Gidas, W. M. Ni and L. Nirenberg; Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68, N. 3 (1979), 209-243.
[8] D. Gilbarg, N. S. Trudinger; Elliptic partial differential equations of second order, Springer Verlag, Berlin, (1977).
[9] B. Kawohl; Rearrangements and convexity of level sets in PDE's, Lectures Notes in Mathematics, Springer 1150 (1985).
[10] P. Tolksdorff; Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations 51 (1984), 126-150.

Claudia Anedda
Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy

E-mail address: canedda@unica.it
Fabrizio Cuccu
Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy

E-mail address: fcuccu@unica.it


[^0]:    2000 Mathematics Subject Classification. 35J20, 35J60, 40K20.
    Key words and phrases. Laplacian; optimization problem; rearrangements; Steiner symmetry; regularity.
    (C) 2013 Texas State University - San Marcos.

    Submitted January 7, 2013. Published April 29, 2013.

