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SYMMETRY AND REGULARITY OF AN OPTIMIZATION
PROBLEM RELATED TO A NONLINEAR BVP

CLAUDIA ANEDDA, FABRIZIO CUCCU

ABSTRACT. We consider the functional
£ [ (DU P = uglugfif) o,

where u ¢ is the unique nontrivial weak solution of the boundary-value problem

—Au = flu|? in Q, u}ag

where 2 C R” is a bounded smooth domain. We prove a result of Steiner
symmetry preservation and, if n = 2, we show the regularity of the level sets
of minimizers.

=0,

1. INTRODUCTION

Let ©2 be a bounded domain 2 C R™ with smooth boundary. We consider the
Dirichlet problem
—Au= flu/? in Q,
ulgo =0,
where 0 < ¢ < min{1,4/n} and f is a nonnegative bounded function non identically
zero. We consider nontrivial solutions of in H3(Q). The equation is the
Euler-Lagrange equation of the integral functional
v / (%|Dv|2 - v|v|qf)alac7 v € HYHR).
Q
By using a standard compactness argument, it can be proved that there exists a
nontrivial minimizer of the above functional. This minimizer is a nontrivial solution
of .

From the maximum principle, every nontrivial solution of is positive. Then,
by [5, Theorem 3.2] the uniqueness of problem follows. To underscore the
dependence on f of the solution of , we denote it by uy. Moreover, uy €
W22(Q)NCH(Q) for all o, 0 < o < 1 (see [, [10]).

Let fy be a fixed bounded nonnegative function. We study the problem

1
int /(&wvﬁwwf)dx, (1.2)
vEHE(Q), FEF(fo) Jo N 2

(1.1)
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where, denoting by |A| the Lebesgue measure of a set A,

S(fo) ={f € L=(Q) : {f = ¢}| = {fo = ¢}[ Ve e R}; (1.3)

here F(fo) is called class of rearrangements of f (see [9]).
Problems of this kind are not new; see for example [I} 2, 3, [5]. From the results
in [5] it follows that (1.2)) has a minimum and a representation formula. Let

. qg+1 9
E(f)= inf (— Dvl* —v|v|? )dx. 1.4
(1= ot | (iD= olol's (1.4
Renaming ¢’ the constant ¢ and putting p =2 and ¢’ = ¢+ 1 in [5] we have
q¢ -2
B(f) = L=10p),

where

/
q 2 ’
1) = swp 30— [ (Z 7ol = |Dof?)do
HY(Q) 4~ Ja N\

is defined in the same paper. By [B, Theorem 2.2] it follows that there exist mini-
mizers of E(f) and that, if f is a minimizer, there exists an increasing function ¢
such that

f=olugp). (1.5)

We denote by supp f the support of f, and we call a level set of f the set
{x € Q: f(z) > c}, for some constant c.

In Section 2, we consider a Steiner symmetric domain ) and f; bounded and
nonnegative, such that |supp fo| < [2|. Under these assumptions, we prove that
the level sets of the minimizer f are Steiner symmetric with respect to the same
hyperplane of ). As a consequence, we have exactly one optimizer when 2 is a
ball.

Chanillo, Kenig and To [4] studied the regularity of the minimizers to the problem

Ma, A) = inf /\Du\zdm—&—a/ u? dr,
u€Hg (), ull2:|DI=A Jo D

where 0 C R? is a bounded domain, 0 < A < |Q| and o > 0. In particular they
prove that, if D is a minimizer, then 0D is analytic.

In Section 3, following the ideas in [4], we give our main result. We restrict our
attention to Q C R2. Let by,...,b,, >0and 0 < a; < -+ < a,, < |Q], m > 2, be
fixed. Consider fo = bixg, + - + bmXa,,, where |G;| = a; for all i, G; C Giy1,
i=1,....,m—1.

We call 5 the minimum in (L.2)); i.e.,

g+1 -
772/9(72 |DU7\2—Uf|U7\qf)d$,

where f and u+ are, respectively, the minimizing function and the corresponding
solution of (|1.1)).
In this case (|1.5)) becomes

? = Z biXDm
i=1

where

D1 :{u7>01}, DQ :{u?>02}, ceey Dm:{uf>cm}7
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for suitable constants ¢; > co > -+- > ¢, > 0.

We show regularity of 9D, for each ¢ proving that \Duﬂ > 0 in 0D;. Following
the method used in [4], we consider

E(s,t) = <&1|Duf—|—st\2 - (u7+sv)|u7+sv|q?)dx— (1.6)
) - o 2 f f f t 777 .
where v € H}(Q), f, is a family of functions such that f, € §(fo) with f, = f, and
s € R. We have
E(s,t) > E(0,0) =0 Vs,t.

Therefore, (s,t) = (0,0) is a minimum point; it follows that

2 2
%sg (0’ 0) gsé)Et (0’ 0)

> 0. (1.7)

2 2
o9F(0,0) 2£(0,0)

Expanding (1.7) in detail and using some lemmas from [4] we prove that the bound-
aries of level sets of f are regular.

Theorem 1.1. Let Q@ C R?, fo =" bixg, withm >2, and f =" bixp, a
minimizer of (L.2). Then |[Duz| >0 on 9D;, i=1,...,m.

2. SYMMETRY

In this section we consider Steiner symmetric domains. We prove that, under
suitable conditions on fy in ([L.3]), minimizers inherit Steiner symmetry.

Definition 2.1. Let P C R" be a hyperplane. We say that a set A C R" is Steiner
symmetric relative to the hyperplane P if for every straight line L perpendicular
to P, the set AN P is either empty or a symmetric segment with respect to P.

To prove the symmetry, we need [6, Theorem 3.6 and Corollary 3.9], that, for
more convenience for the reader, we state here. These results are related to the
classical paper [7].

Theorem 2.2. Let 2 C R" be bounded, connected and Steiner symmetric relative
to the hyperplane P. Assume that u: ) — R has the following properties:

e uc C(NCHNY), u>0inQ, ulgg = 0;

o for all ¢ € C§°(Q),

/QDu~D¢dx = /chSF(u) dzx,

where F has a decomposition F = Fy + Fy such that Fy : [0,00) — R is
locally Lipschitz continuous, while Fy : [0,00) — R is non-decreasing and
identically 0 on [0, €] for some € > 0.

Then u is symmetric with respect to P and %(x) < 0, where v is a unit vector
orthogonal to P and x belongs to the part of Q) that lies in the halfspace (with origin
in P) in which v points.

Theorem 2.3. Let ) be Steiner symmetric and fo a bounded nonnegative function.

If |supp fo| < |Q| and f € F(fo) is a minimizer of (1.2), then the level sets of f
are Steiner symmetric with respect to the same hyperplane of €.
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Proof. Let u = ug be the solution of (L.2). Then u € C°(Q) N C*(Q2) and satisfies

/Du-Dwdx:/i/quqd:E Vi € C5° ().
Q Q

Since u > 0 and since (from ) f = ¢(u) with ¢ increasing function, it follows
that ¢(u) =0 on {z € Q: u(z) < d} for some positive constant d. Then we have
ulf = Fy(u) + Fy(u) with Fy(u) = 0 and Fy(u) = ¢(u)u?. From Theorem 2.1 and
f = ¢(u) we have the assertion. O

Remark 2.4. By this theorem, if Q is an open ball and |supp fo| < ||, then f is
radially symmetric and decreasing.

3. REGULARITY OF THE FREE BOUNDARIES
In this section we prove the following result.

Theorem 3.1. Let Q C R?, fo =" bixg, withm >2, and f =", bixp, a
minimizer of (L.2). Then |[Duz| >0 on 9D;, i=1,...,m.

We use the notation introduced in Section 1. Without loss of generality we can
assume m = 3; the general case easily follows. Let f = bixp, +baxp, +b3xD,. We
will prove \Duﬂ > 0 in dD4; we omit the proof for D; and D3 because it is similar.

We define the family f, by replacing only the set Dy by a family of domains Dy(t).
First of all, we explain how to define the family Ds(t).
In the sequel we use the notation introduced in [4], reorganized according to our
needs.
We call a curve 7 : [a,b] = R, —00 < a < b < 00, regular if:
(i) it is simple, that is: if a <z <y <band x # a or y # b, then vy(z) # v(y);
(i) [[7llc2(ap) is finite;
(iii) |9/| is uniformly bounded away from zero.
If, in addiction, y(a) = ~(b), we say that the curve is closed and regular. If the
domain of 7 is (a,b) we say that « is regular (respectively, closed and regular) if
the continuous extension of v to [a,b] is regular (respectively, closed and regular).
Now, we introduce the notation

F=0Dy; F*:=Fn{|Duz| > 0}.

Let J = UY_,Ji be a finite union of open bounded intervals Ji, C R, v = (71,72) :
J — F* a simple curve which is regular on each interval Jj and ~v(J) C F*.
We suppose that dist (W(Jk),w(Jh)) > 0for 1 < h # k < p. Assume also that
[7/| = 6 on J. For each £ € J, we denote by N(&) = (N1(€), N2(£)) the outward
unit normal with respect to Dy at (£). We also define the tangent vector to
N (&) = (= N2(€), N1(€)), and N’ the first derivative of N.

Reversing the direction of 7 if necessary, we will assume, without loss of gener-
ality, that 7' and N+ have the same direction; i.e., Zv',IN*) = |7/|. We observe
that, because 7 is C? and simple on Jj, for each k there exists 3, > 0 such that
the function

b+ e X [ B, Br] = R%, (£,8) — (21,22) = ¢(&, 8) = v(€) + BN(E)

is injective.
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Because dist (v(Jx),¥(Jn)) > 0 for all h # k, we can find a number Gy > 0
and we can paste together the functions ¢, to obtain a function ¢ injective on
J X [=fBo, Bo]- Choose [y such that dist (¢S(J X [—ﬂo,ﬁg])ﬁDl) > 0 and dist (¢(J X

[—50, Bo)), 3D3) > 0.

Now, we define
K = D2\ ¢(J x (f,0]);
for t € (—to,to) we define

DQ(t) :KU{¢(53/B) de Ja /6<g(§at)}’ (31)
where g : J x (—tg,t0) — R, ¢y > 0, is a function such that
g(gat)7 gt(fvt)7 gtt(é-at) € C(j) vt € (_t07t0) (32)
and
g(£,0)=0 Vee (3.3)

We observe that D3(0) = Dy. Next we compute the measure of Dy(t). Put A(t) =
|D2(t)| and A = |D3(0)| = |D2|; we have

g9(&,t)
A(t) = |Da| + // J(&, B)dpd,
JJo

where

dwi,zp) |[MTANT N

TED=0em "yt am
’ Y3+ BNy N
= ‘ - <717NL> _/6<NI7NL>| = ||’7l| +/8<NlaNL>|'

We show that [7/| + 3(N’,N+) > 0. Indeed, from the fact that [|v|/c2(s) < oo,

we have [[(N',N+)| 1) < co. Substituting ¢y by a smaller positive number if
necessary, we can assume that

HQHLC’C(JX(—tU,tO)) < fo
and
[(N', N oo (1) 191l Lo (7 (—t0,t0)) < 0-

Note that the first of these assumptions guarantees that D5 (t) has positive distance
from 0D, and 9D3. We have

18] [N, N | < (gl 2o (7% (—t0,0) [N, N[ oo () < 0 < [

for all & € J and 8] < [|gllLoe(rx(~toto)). Thus, J(&B) = |¥| + BN/, N*).
Substituting into the formula for A(t) we have

g(&,t)
Alt)= A+ /J / (Y| + BN’ N*))dgde

1
= A+ [ (a0 1+ o6, 02NN de
To obtain |Da(t)| = |D2| for all t € (—tg,to), we find the further constraint on g:

[ (stem1+ 5 (@) (NN Jag =0 Ve (tot). (34)
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Moreover, we calculate the derivatives of A(t), that we will use later.

A'(t) :/ (9: (&, )Y ()] + g(&,1)g: (€, 1) (N', N+) ) dé = 0;
7 (3.5)

A(t) = /J (9ee(& N (O] + (9(& )9 (€, ) + g7 (£, 1)) (N, N*))d€ = 0.

Once we have defined the family Ds(t), we can go back to the functional (1.6).
The following lemma describes (1.7) with f, = bixp, + baXp, ) + b3xp,- We find
an inequality corresponding to [4, (2.3) of Lemma 2.1].

Lemma 3.2. Let f, = bixp, + baX D, (1) + b3XDs, where the variation of domain

Ds(t) is described by (3.1) and g : J X (—to,to) — R, to > 0, satisfies (3.2)), (3.3)
and (3.4). Then, for allv € HF(Q), the conditions (1.7)) becomes

/Q(|DU|2 — quy U2|U?|q72f)d$~/93(771,0)|Duf|d0
vy

1 2
> b2cg(/9t(7_ ,0) vdo) :
Y

Proof. We calculate the second derivative of the functional ([L.6)), with respect to s.
We have

(3.6)

OF _
5 (g + 1)/ ((Du?—l— sDv, Dv) —v|uz + sv|9f,)dx
Q
and
0’E 2 2 q—27F
G 0.0 =@+ 1) [ (1Dof = qug gl *F)da, (3.7)

Before calculating the second derivative of E with respect to ¢, we rewrite (L.6)) in
the form

1
E(s,t) = a*- |Du?+st|2das—b1 (ug + sv)|ug + sv|dz
o 2 D,

sz/ (u7+sv)|u?+5v\‘1dxfb3/ (u7 + sv)|ug + sv|?dz — 7.
Dz(t) D3

We observe that, if F': R? — R is a continuous function, then

/Dz(t)F B /DF = / /Og(g’t)F(ez»(ag(f,m))m,md@ds;

whence, from the Fundamental Theorem of Calculus,

)
at/Dz(t)FZ/Jgt(éUt)F(cﬁ(éUg(&t)))J(g,g(g,t))dg.

Using the above relation with F = (u + sv)|u + sv}q, we have
oOF
T =t [ e nug+ so)lur + o] a6 ) .

where, for simplicity of notation, we set u?(qb(f, g(&.1)) = uF and v(p(&,9(&, 1)) =
v. Moreover

82

X (6, 9(6,1)) + g (5, 8) (g + 50) (N, N*) e,
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where we have used that

& 7 (06 9(6.11)) = (Dug(0(6, (6. 1) N)gi(&.1),

2 J(E 9le.1) = 9N/, N,
We note that, when t = 0,
ur(6(6,9(6,1))) = uz(4(€)) = c2,
Duz(¢(€,9(€,0))) = —~[Dug(v(€))IN(€) and J(€, 9(€,0)) = J(£,0) = [/ (€)]. Eval-
uating the above expression in (0,0), we find
0*’E

Tz 0.0 = <tuct™ [ [ule. 0 ()] + g€ 0N N4 e

+bacl(q + 1) /J G (€,0) | Duz(+(6) |1 (€) .

By using (3.5) with ¢ = 0 we find
82E q 2 /
L2(0,0)=bachla+1) | G2(6.0)|Dur(x(©)] 1 (€)ldg
7 (3.8)
—bacf(q+ 1) [ G2",0)| D do
¥
We also have

0%E

Gy = ~tela+1) [ a(€tiolug + ol T(€ gl6.0) d
that is,

OB (0,0) = ~baci(q + 1) [ 91(6,0) v(x(€) ' (©)]

888t 5 - 2C5 (g ge(s, vy 5 v g

S~
—
w
©
Nt

= —bocd(q+1) [ g:(v7".0) vdo.

Using (|1.7) in the form

0’E 0’E 0’E 2
i Z = > (22
Os? (0,0) ot? (0,0) = (85875 (0’0)) ’
and using (3.7)), (3.8) and (3.9)) in this inequality, we obtain (3.6)). O

Note that in inequality (3.6) only g(y~!,0) appears. Moreover, g(y~!,0) has
null integral on «y. Indeed, differentiating (3.4)) with respect to ¢ and putting ¢ = 0,
we obtain

/ 9(£,0)['|de = 0.
J

Now a natural question arises: does inequality (3.6) hold for any function h with
null integral on 47 The answer is contained in the following result.

Lemma 3.3. Let J and v be the same as described. Let h : v — R bounded,
continuous and such that f,y hdo = 0. Then, for all v € H}(Q) and for all a € R
we have

_ 2
/ (\Dv|2_quf UQ‘u?|q—2f)dx-/h2|Du?| dazbgcg(/h(v—a) da) . (3.10)
Q 2 v
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The proof of the above lemma is similar to that of [4, Lemma 2.2]; we omit it.
The following lemma is an analogue to [4, Lemma 3.1].

Lemma 3.4. Let P be a point on F = 0{uz > c2}. Suppose that for all k € /A
there exist a positive number ri, a bounded open interval Ji and a regular curve

Ve S — F* such thatry > 1y > -+ — 0, ve(Jx) C F*NB,, (P)\ By, (P). Then

we must have
= 1
Z/ —— do < 0.
=y [Dugl

Proof. Without loss of generality, we assume that P is the origin. We suppose also
that Jx, N Jy, = 0 for all k # h, and denote all v, with v. We define

)

Je U1 U---Udy, ifm >k,
Jem = .
0 otherwise.

We suppose by contradiction that

oo

ZL S (3.11)

= Sy [Dugl
Let V be a smooth radial function in R?, decreasing in |x|, defined by

V(z) =2, |z] =0
1<V(z)<2, 0<]z|<1/2
0<Vix)<1, 1/2<]z|<1
V(z) =0, |x| > 1.

For all k € Z* we define vg(z) = V(;Z). Consider k large enough such that
supp vi C 2. Now we fix k; we have

vp(z) —1=1, |z] =0
O<ovp(z)—1<1, O<|z|<rg/2
“l<uog(z) —1<0, /2 <|z|<my
vp(z) — 1= -1, |z| > 7.

Since J and |y/[ are bounded, ~y(Jk) is of finite length. Moreover, | Dug| is uniformly

bounded away from 0 on ~(J) since v(Ji) C F*. Together with the fact that
Y(J1k-1) C (By, )¢, we have

-1 1
*O°</ = dU:*/ ———do < 0.
Y(J1,k-1) |Du?| Y(J1k-1) |Du7|

Choose m such that 7, < 7,/2. From the facts that viy(z) — 1 > 0 in B, ,
v(Ji) C By, foralll >m and vg(z) —1 — 1 as © — 0 and (3.11)), we have

-1
/ Uk do — oo for | — oo.
() D]

Consequently, there must be a number [ > m such that

—1 1 1
/ Uk do < — / Uk do < / Ok do.
(1) Dzl (1) |Dugl V() 1DUF]




EJDE-2013/108 SYMMETRY AND REGULARITY 9

Choose a subinterval J; C J; such that

—1 -1 -1
/ Uk do + / Uk do = — / il do.
- D7l 27 1Dl A Dzl

Then we have )
/ Uk — do =0,
,Y(Jk) |DU?|

where J* = J17k_1 U Jm,l—l uJ/.

Now we can apply Lemma to J*, v, vp, a = 1 and h = ‘“5‘1;1‘ and, after
¥

rearranging, obtain

/ (|ka|2 - quy v,3|u?|q_2f) dx > bQCg/ (e —1)* do.
Q S+ [Dugl

We find that

/ (\ka|2 —quy vi|uﬂq_2f>dac < / |DV [*d.
Q B1(0)

By the above estimate, for a suitable constant C', we have

—1)?
c \DV 2da z/ (e — 1)
B1(0) v(%)  |Dug

2/ Mda
’Y(Jl k—1) |Du7\

SO = e
h=177(Jn) |Du

do

Then, when k — oo, we have

- — 1)
C |DV |*dx > E / Uk do = +o0,
B1(0) = Ly Dugl

which is a contradiction. So we must have
o0

as desired. O

Lemma 3.5. Let P be a point on F = a{u? > co}. Suppose that there are
numbers K € Z and @ > 0 such that, for each k > K, there exists a regular curve
Vg : Jr — F* with the following two properties:

Y(Jk) C F* N By-x(P) \ By-trsy (P),
H (v (Jr)) /|W (&)|dé > 27",
Then |Duz(P)| > 0.

For a proof of the above lemma, see [4, Lemma 3.2]. From an intuitive point
of view, this lemma says that, if the set 0{uz > co} N {[Dug| > 0} is big enough
around a point of O{uz > c2}, then [Duz| > 0 at this point.

Now, we are able to prove our main theorem.
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Proof of Theorem[3.1. By using the previous Lemmas and superharmonicity of ug
the Theorem follows from the results of sections 5 and 6 in [4]. O

Open problems. The method used in this paper to prove regularity does not
work when the number of level sets of f is infinite. Therefore it remains to study
the boundaries of level sets of f in the case of the rearrangement class F(fy) of a
general function fj.

We can obtain an analogous result to Lemma [3.4] for the p-Laplacian operator,
but we cannot go further because we lack a suitable regularity theory for the p-
Laplacian operator and its solutions. We think that it is reasonable to guess that
a regularity result of the type that we have proven in this work will hold for the
situation with the p-Laplacian when p < 2.

Acknowledgments. The authors want to thank the anonymous referees for their
valuable comments and suggestions.
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