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SYMMETRY AND REGULARITY OF AN OPTIMIZATION
PROBLEM RELATED TO A NONLINEAR BVP

CLAUDIA ANEDDA, FABRIZIO CUCCU

Abstract. We consider the functional

f 7→
Z

Ω

` q + 1

2
|Duf |2 − uf |uf |qf

´
dx,

where uf is the unique nontrivial weak solution of the boundary-value problem

−∆u = f |u|q in Ω, u
˛̨
∂Ω

= 0,

where Ω ⊂ Rn is a bounded smooth domain. We prove a result of Steiner
symmetry preservation and, if n = 2, we show the regularity of the level sets

of minimizers.

1. Introduction

Let Ω be a bounded domain Ω ⊂ Rn with smooth boundary. We consider the
Dirichlet problem

−∆u = f |u|q in Ω,

u
∣∣
∂Ω

= 0,
(1.1)

where 0 ≤ q < min{1, 4/n} and f is a nonnegative bounded function non identically
zero. We consider nontrivial solutions of (1.1) in H1

0 (Ω). The equation (1.1) is the
Euler-Lagrange equation of the integral functional

v 7→
∫

Ω

(q + 1
2
|Dv|2 − v|v|qf

)
dx, v ∈ H1

0 (Ω).

By using a standard compactness argument, it can be proved that there exists a
nontrivial minimizer of the above functional. This minimizer is a nontrivial solution
of (1.1).

From the maximum principle, every nontrivial solution of (1.1) is positive. Then,
by [5, Theorem 3.2] the uniqueness of problem (1.1) follows. To underscore the
dependence on f of the solution of (1.1), we denote it by uf . Moreover, uf ∈
W 2,2(Ω) ∩ C1,α(Ω) for all α, 0 < α < 1 (see [8, 10]).

Let f0 be a fixed bounded nonnegative function. We study the problem

inf
v∈H1

0 (Ω), f∈F(f0)

∫
Ω

(q + 1
2
|Dv|2 − v|v|qf

)
dx, (1.2)
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where, denoting by |A| the Lebesgue measure of a set A,

F(f0) = {f ∈ L∞(Ω) : |{f ≥ c}| = |{f0 ≥ c}| ∀c ∈ R}; (1.3)

here F(f0) is called class of rearrangements of f0 (see [9]).
Problems of this kind are not new; see for example [1, 2, 3, 5]. From the results

in [5] it follows that (1.2) has a minimum and a representation formula. Let

E(f) = inf
v∈H1

0 (Ω)

∫
Ω

(q + 1
2
|Dv|2 − v|v|qf

)
dx. (1.4)

Renaming q′ the constant q and putting p = 2 and q′ = q + 1 in [5] we have

E(f) =
q′ − 2

2
I(f),

where

I(f) = sup
H1

0 (Ω)

q′

2− q′

∫
Ω

( 2
q′
f |v|q

′
− |Dv|2

)
dx

is defined in the same paper. By [5, Theorem 2.2] it follows that there exist mini-
mizers of E(f) and that, if f is a minimizer, there exists an increasing function φ
such that

f = φ(uf ). (1.5)

We denote by supp f the support of f , and we call a level set of f the set
{x ∈ Ω : f(x) > c}, for some constant c.

In Section 2, we consider a Steiner symmetric domain Ω and f0 bounded and
nonnegative, such that | supp f0| < |Ω|. Under these assumptions, we prove that
the level sets of the minimizer f are Steiner symmetric with respect to the same
hyperplane of Ω. As a consequence, we have exactly one optimizer when Ω is a
ball.

Chanillo, Kenig and To [4] studied the regularity of the minimizers to the problem

λ(α,A) = inf
u∈H1

0 (Ω), ‖u‖2,|D|=A

∫
Ω

|Du|2 dx+ α

∫
D

u2 dx,

where Ω ⊂ R2 is a bounded domain, 0 < A < |Ω| and α > 0. In particular they
prove that, if D is a minimizer, then ∂D is analytic.

In Section 3, following the ideas in [4], we give our main result. We restrict our
attention to Ω ⊂ R2. Let b1, . . . , bm > 0 and 0 < a1 < · · · < am < |Ω|, m ≥ 2, be
fixed. Consider f0 = b1χG1 + · · · + bmχGm

, where |Gi| = ai for all i, Gi ⊂ Gi+1,
i = 1, . . . ,m− 1.

We call η the minimum in (1.2); i.e.,

η =
∫

Ω

(q + 1
2
|Duf |

2 − uf |uf |
q f
)
dx,

where f and uf are, respectively, the minimizing function and the corresponding
solution of (1.1).

In this case (1.5) becomes

f =
m∑
i=1

biχDi ,

where

D1 = {uf > c1}, D2 = {uf > c2}, . . . , Dm = {uf > cm},
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for suitable constants c1 > c2 > · · · > cm > 0.
We show regularity of ∂Di for each i proving that |Duf | > 0 in ∂Di. Following

the method used in [4], we consider

E(s, t) =
∫

Ω

(q + 1
2
|Duf + sDv|2 − (uf + sv)|uf + sv|qf t

)
dx− η, (1.6)

where v ∈ H1
0 (Ω), f t is a family of functions such that f t ∈ F(f0) with f0 = f , and

s ∈ R. We have
E(s, t) ≥ E(0, 0) = 0 ∀s, t.

Therefore, (s, t) = (0, 0) is a minimum point; it follows that∣∣∣∣∣∣
∂2E
∂s2 (0, 0) ∂2E

∂s∂t (0, 0)

∂2E
∂t∂s (0, 0) ∂2E

∂t2 (0, 0)

∣∣∣∣∣∣ ≥ 0. (1.7)

Expanding (1.7) in detail and using some lemmas from [4] we prove that the bound-
aries of level sets of f are regular.

Theorem 1.1. Let Ω ⊂ R2, f0 =
∑m
i=1 biχGi with m ≥ 2, and f =

∑m
i=1 biχDi a

minimizer of (1.2). Then |Duf | > 0 on ∂Di, i = 1, . . . ,m.

2. Symmetry

In this section we consider Steiner symmetric domains. We prove that, under
suitable conditions on f0 in (1.3), minimizers inherit Steiner symmetry.

Definition 2.1. Let P ⊂ Rn be a hyperplane. We say that a set A ⊂ Rn is Steiner
symmetric relative to the hyperplane P if for every straight line L perpendicular
to P , the set A ∩ P is either empty or a symmetric segment with respect to P .

To prove the symmetry, we need [6, Theorem 3.6 and Corollary 3.9], that, for
more convenience for the reader, we state here. These results are related to the
classical paper [7].

Theorem 2.2. Let Ω ⊂ Rn be bounded, connected and Steiner symmetric relative
to the hyperplane P . Assume that u : Ω→ R has the following properties:

• u ∈ C(Ω) ∩ C1(Ω), u > 0 in Ω, u|∂Ω = 0;
• for all φ ∈ C∞0 (Ω),∫

Ω

Du ·Dφdx =
∫

Ω

φF (u) dx,

where F has a decomposition F = F1 + F2 such that F1 : [0,∞) → R is
locally Lipschitz continuous, while F2 : [0,∞) → R is non-decreasing and
identically 0 on [0, ε] for some ε > 0.

Then u is symmetric with respect to P and ∂u
∂v (x) < 0, where v is a unit vector

orthogonal to P and x belongs to the part of Ω that lies in the halfspace (with origin
in P ) in which v points.

Theorem 2.3. Let Ω be Steiner symmetric and f0 a bounded nonnegative function.
If | supp f0| < |Ω| and f ∈ F(f0) is a minimizer of (1.2), then the level sets of f
are Steiner symmetric with respect to the same hyperplane of Ω.
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Proof. Let u = uf be the solution of (1.2). Then u ∈ C0(Ω) ∩ C1(Ω) and satisfies∫
Ω

Du ·Dψ dx =
∫

Ω

ψfuq dx ∀ψ ∈ C∞0 (Ω).

Since u > 0 and since (from (1.5)) f = φ(u) with φ increasing function, it follows
that φ(u) ≡ 0 on {x ∈ Ω : u(x) < d} for some positive constant d. Then we have
uqf = F1(u) + F2(u) with F1(u) ≡ 0 and F2(u) = φ(u)uq. From Theorem 2.1 and
f = φ(u) we have the assertion. �

Remark 2.4. By this theorem, if Ω is an open ball and | supp f0| < |Ω|, then f is
radially symmetric and decreasing.

3. Regularity of the free boundaries

In this section we prove the following result.

Theorem 3.1. Let Ω ⊂ R2, f0 =
∑m
i=1 biχGi

with m ≥ 2, and f =
∑m
i=1 biχDi

a
minimizer of (1.2). Then |Duf | > 0 on ∂Di, i = 1, . . . ,m.

We use the notation introduced in Section 1. Without loss of generality we can
assume m = 3; the general case easily follows. Let f = b1χD1 + b2χD2 + b3χD3 . We
will prove |Duf | > 0 in ∂D2; we omit the proof for D1 and D3 because it is similar.
We define the family f t by replacing only the set D2 by a family of domains D2(t).

First of all, we explain how to define the family D2(t).
In the sequel we use the notation introduced in [4], reorganized according to our
needs.

We call a curve γ : [a, b]→ R, −∞ < a < b <∞, regular if:
(i) it is simple, that is: if a ≤ x < y ≤ b and x 6= a or y 6= b, then γ(x) 6= γ(y);
(ii) ‖γ‖C2(a,b) is finite;

(iii) |γ′| is uniformly bounded away from zero.
If, in addiction, γ(a) = γ(b), we say that the curve is closed and regular. If the
domain of γ is (a, b) we say that γ is regular (respectively, closed and regular) if
the continuous extension of γ to [a, b] is regular (respectively, closed and regular).

Now, we introduce the notation

F := ∂D2; F∗ := F ∩ {|Duf | > 0}.

Let J = ∪pk=1Jk be a finite union of open bounded intervals Jk ⊂ R, γ = (γ1, γ2) :
J → F∗ a simple curve which is regular on each interval Jk and γ(J) ⊂ F∗.
We suppose that dist

(
γ(Jk), γ(Jh)

)
> 0 for 1 ≤ h 6= k ≤ p. Assume also that

|γ′| ≥ θ on J . For each ξ ∈ J , we denote by N(ξ) =
(
N1(ξ), N2(ξ)

)
the outward

unit normal with respect to D2 at γ(ξ). We also define the tangent vector to γ
N⊥(ξ) =

(
−N2(ξ), N1(ξ)

)
, and N′ the first derivative of N.

Reversing the direction of γ if necessary, we will assume, without loss of gener-
ality, that γ′ and N⊥ have the same direction; i.e., ∠γ′,N⊥〉 = |γ′|. We observe
that, because γ is C2 and simple on Jk, for each k there exists βk > 0 such that
the function

φk : Jk × [−βk, βk]→ R2, (ξ, β) 7→ (x1, x2) = φk(ξ, β) = γ(ξ) + βN(ξ)

is injective.
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Because dist
(
γ(Jk), γ(Jh)

)
> 0 for all h 6= k, we can find a number β0 > 0

and we can paste together the functions φk to obtain a function φ injective on
J× [−β0, β0]. Choose β0 such that dist

(
φ(J× [−β0, β0]), ∂D1

)
> 0 and dist

(
φ(J×

[−β0, β0]), ∂D3

)
> 0.

Now, we define
K = D2 \ φ

(
J × (−β0, 0]

)
;

for t ∈ (−t0, t0) we define

D2(t) = K ∪ {φ(ξ, β) : ξ ∈ J, β < g(ξ, t)}, (3.1)

where g : J × (−t0, t0)→ R, t0 > 0, is a function such that

g(ξ, t), gt(ξ, t), gtt(ξ, t) ∈ C(J) ∀t ∈ (−t0, t0) (3.2)

and
g(ξ, 0) ≡ 0 ∀ξ ∈ J. (3.3)

We observe that D2(0) = D2. Next we compute the measure of D2(t). Put A(t) =
|D2(t)| and A = |D2(0)| = |D2|; we have

A(t) = |D2|+
∫
J

∫ g(ξ,t)

0

J(ξ, β)dβdξ,

where

J(ξ, β) =
∂(x1, x2)
∂(ξ, β)

=

∣∣∣∣∣∣
γ′1 + βN ′1 N1

γ′2 + βN ′2 N2

∣∣∣∣∣∣
=
∣∣− 〈γ′,N⊥〉 − β〈N′,N⊥〉∣∣ =

∣∣|γ′|+ β〈N′,N⊥〉
∣∣.

We show that |γ′| + β〈N′,N⊥〉 ≥ 0. Indeed, from the fact that ‖γ‖C2(J) < ∞,
we have ‖〈N′,N⊥〉‖L∞(J) < ∞. Substituting t0 by a smaller positive number if
necessary, we can assume that

‖g‖L∞(J×(−t0,t0)) < β0

and
‖〈N′,N⊥〉‖L∞(J) ‖g‖L∞(J×(−t0,t0)) < θ.

Note that the first of these assumptions guarantees that ∂D2(t) has positive distance
from ∂D1 and ∂D3. We have

|β|
∣∣〈N′,N⊥〉∣∣ ≤ ‖g‖L∞(J×(−t0,t0))‖〈N′,N⊥〉‖L∞(J) ≤ θ ≤ |γ′|

for all ξ ∈ J and |β| ≤ ‖g‖L∞(J×(−t0,t0)). Thus, J(ξ, β) = |γ′| + β〈N′,N⊥〉.
Substituting into the formula for A(t) we have

A(t) = A+
∫
J

∫ g(ξ,t)

0

(|γ′|+ β〈N′,N⊥〉)dβdξ

= A+
∫
J

(
g(ξ, t)|γ′|+ 1

2
(g(ξ, t))2〈N′,N⊥〉

)
dξ.

To obtain |D2(t)| = |D2| for all t ∈ (−t0, t0), we find the further constraint on g:∫
J

(
g(ξ, t)|γ′|+ 1

2
(
g(ξ, t)

)2〈N,N⊥〉
)
dξ = 0 ∀t ∈ (−t0, t0). (3.4)
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Moreover, we calculate the derivatives of A(t), that we will use later.

A′(t) =
∫
J

(
gt(ξ, t)|γ′(ξ)|+ g(ξ, t)gt(ξ, t)〈N′,N⊥〉

)
dξ = 0;

A′′(t) =
∫
J

(
gtt(ξ, t)|γ′(ξ)|+

(
g(ξ, t)gtt(ξ, t) + g2

t (ξ, t)
)
〈N′,N⊥〉

)
dξ = 0.

(3.5)

Once we have defined the family D2(t), we can go back to the functional (1.6).
The following lemma describes (1.7) with f t = b1χD1 + b2χD2(t) + b3χD3 . We find
an inequality corresponding to [4, (2.3) of Lemma 2.1].

Lemma 3.2. Let f t = b1χD1 + b2χD2(t) + b3χD3 , where the variation of domain
D2(t) is described by (3.1) and g : J × (−t0, t0) → R, t0 > 0, satisfies (3.2), (3.3)
and (3.4). Then, for all v ∈ H1

0 (Ω), the conditions (1.7) becomes∫
Ω

(
|Dv|2 − quf v

2|uf |
q−2f

)
dx ·

∫
γ

g2
t (γ−1, 0)|Duf |dσ

≥ b2cq2
(∫

γ

gt(γ−1, 0) vdσ
)2

.

(3.6)

Proof. We calculate the second derivative of the functional (1.6), with respect to s.
We have

∂E

∂s
= (q + 1)

∫
Ω

(
〈Duf + sDv,Dv〉 − v|uf + sv|qf t

)
dx

and
∂2E

∂s2
(0, 0) = (q + 1)

∫
Ω

(
|Dv|2 − quf v

2|uf |
q−2f

)
dx. (3.7)

Before calculating the second derivative of E with respect to t, we rewrite (1.6) in
the form

E(s, t) =
∫

Ω

q + 1
2
|Duf + sDv|2dx− b1

∫
D1

(uf + sv)|uf + sv|qdx

− b2
∫
D2(t)

(uf + sv)|uf + sv|qdx− b3
∫
D3

(uf + sv)|uf + sv|qdx− η.

We observe that, if F : R2 → R is a continuous function, then∫
D2(t)

F −
∫
D2

F =
∫
J

∫ g(ξ,t)

0

F
(
φ(ξ, g(ξ, β))

)
J(ξ, β)dβdξ;

whence, from the Fundamental Theorem of Calculus,
∂

∂t

∫
D2(t)

F =
∫
J

gt(ξ, t)F
(
φ(ξ, g(ξ, t))

)
J(ξ, g(ξ, t))dξ.

Using the above relation with F = (u+ sv)
∣∣u+ sv

∣∣q, we have

∂E

∂t
= −b2

∫
J

gt(ξ, t)
(
uf + sv

)∣∣uf + sv
∣∣qJ(ξ, g(ξ, t)) dξ,

where, for simplicity of notation, we set uf
(
φ(ξ, g(ξ, t))

)
= uf and v

(
φ(ξ, g(ξ, t))

)
=

v. Moreover
∂2E

∂t2
= −b2

∫
J

|uf + sv|q
{[
gtt(ξ, t)(uf + sv) + (q + 1)g2

t (ξ, t)〈Duf + sDv,N〉
]

× J(ξ, g(ξ, t)) + g2
t (ξ, t)(uf + sv)〈N′,N⊥〉

}
dξ,
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where we have used that
∂

∂t
uf
(
φ(ξ, g(ξ, t))

)
= 〈Duf

(
φ(ξ, g(ξ, t))

)
,N〉gt(ξ, t),

∂

∂t
J(ξ, g(ξ, t)) = gt〈N′,N⊥〉.

We note that, when t = 0,

uf
(
φ(ξ, g(ξ, t))

)
= uf (γ(ξ)) = c2,

Duf
(
φ(ξ, g(ξ, 0))

)
= −|Duf

(
γ(ξ)

)
|N(ξ) and J(ξ, g(ξ, 0)) = J(ξ, 0) = |γ′(ξ)|. Eval-

uating the above expression in (0, 0), we find

∂2E

∂t2
(0, 0) = −b2cq+1

2

∫
J

[
gtt(ξ, 0)|γ′(ξ)|+ g2

t (ξ, 0)〈N′,N⊥〉
]
dξ

+ b2c
q
2(q + 1)

∫
J

g2
t (ξ, 0)|Duf (γ(ξ))||γ′(ξ)|dξ.

By using (3.5) with t = 0 we find

∂2E

∂t2
(0, 0) = b2c

q
2(q + 1)

∫
J

g2
t (ξ, 0)|Duf (γ(ξ))| |γ′(ξ)|dξ

= b2c
q
2(q + 1)

∫
γ

g2
t (γ−1, 0)|Duf | dσ.

(3.8)

We also have
∂2E

∂s∂t
= −b2(q + 1)

∫
J

gt(ξ, t)v|uf + sv|qJ(ξ, g(ξ, t)) dξ;

that is,
∂2E

∂s∂t
(0, 0) = −b2cq2(q + 1)

∫
J

gt(ξ, 0) v
(
γ(ξ)

)
|γ′(ξ)| dξ

= −b2cq2(q + 1)
∫
γ

gt(γ−1, 0) v dσ.
(3.9)

Using (1.7) in the form

∂2E

∂s2
(0, 0)

∂2E

∂t2
(0, 0) ≥

( ∂2E

∂s∂t
(0, 0)

)2

,

and using (3.7), (3.8) and (3.9) in this inequality, we obtain (3.6). �

Note that in inequality (3.6) only g(γ−1, 0) appears. Moreover, g(γ−1, 0) has
null integral on γ. Indeed, differentiating (3.4) with respect to t and putting t = 0,
we obtain ∫

J

g(ξ, 0)|γ′|dξ = 0.

Now a natural question arises: does inequality (3.6) hold for any function h with
null integral on γ? The answer is contained in the following result.

Lemma 3.3. Let J and γ be the same as described. Let h : γ → R bounded,
continuous and such that

∫
γ
h dσ = 0. Then, for all v ∈ H1

0 (Ω) and for all a ∈ R
we have∫

Ω

(
|Dv|2 − quf v

2|uf |
q−2f

)
dx ·

∫
γ

h2|Duf | dσ ≥ b2c
q
2

(∫
γ

h(v − a) dσ
)2

. (3.10)
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The proof of the above lemma is similar to that of [4, Lemma 2.2]; we omit it.
The following lemma is an analogue to [4, Lemma 3.1].

Lemma 3.4. Let P be a point on F = ∂{uf > c2}. Suppose that for all k ∈ Z+

there exist a positive number rk, a bounded open interval Jk and a regular curve
γk : Jk → F∗ such that r1 > r2 > · · · → 0, γk(Jk) ⊂ F∗∩Brk

(P )\Brk+1(P ). Then
we must have

∞∑
k=1

∫
γ(Jk)

1
|Duf |

dσ <∞.

Proof. Without loss of generality, we assume that P is the origin. We suppose also
that Jk ∩ Jh = ∅ for all k 6= h, and denote all γk with γ. We define

Jk,m =

{
Jk ∪ Jk+1 ∪ · · · ∪ Jm if m ≥ k,
∅ otherwise.

We suppose by contradiction that
∞∑
k=1

∫
γ(Jk)

1
|Duf |

dσ =∞. (3.11)

Let V be a smooth radial function in R2, decreasing in |x|, defined by
V (x) = 2, |x| = 0
1 < V (x) < 2, 0 < |x| < 1/2
0 < V (x) < 1, 1/2 < |x| < 1
V (x) = 0, |x| ≥ 1.

For all k ∈ Z+ we define vk(x) = V ( xrk
). Consider k large enough such that

supp vk ⊂ Ω. Now we fix k; we have
vk(x)− 1 = 1, |x| = 0
0 < vk(x)− 1 < 1, 0 < |x| < rk/2
−1 < vk(x)− 1 < 0, rk/2 < |x| < rk

vk(x)− 1 = −1, |x| ≥ rk.

Since Jk and |γ′| are bounded, γ(Jk) is of finite length. Moreover, |Duf | is uniformly
bounded away from 0 on γ(Jk) since γ(Jk) ⊂ F∗. Together with the fact that
γ(J1,k−1) ⊂ (Brk

)C , we have

−∞ <

∫
γ(J1,k−1)

vk − 1
|Duf |

dσ = −
∫
γ(J1,k−1)

1
|Duf |

dσ < 0.

Choose m such that rm < rk/2. From the facts that vk(x) − 1 > 0 in Brm
,

γ(Jl) ⊂ Brm
for all l ≥ m and vk(x)− 1→ 1 as x→ 0 and (3.11), we have∫

γ(Jm,l)

vk − 1
|Duf |

dσ →∞ for l→∞.

Consequently, there must be a number l ≥ m such that∫
γ(Jm,l−1)

vk − 1
|Duf |

dσ ≤ −
∫
γ(J1,k−1)

vk − 1
|Duf |

dσ <

∫
γ(Jm,l)

vk − 1
|Duf |

dσ.
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Choose a subinterval J ′l ⊂ Jl such that∫
γ(Jm,l−1)

vk − 1
|Duf |

dσ +
∫
γ(J′l )

vk − 1
|Duf |

dσ = −
∫
γ(J1,k−1)

vk − 1
|Duf |

dσ.

Then we have ∫
γ(Jk)

vk − 1
|Duf |

dσ = 0,

where Jk = J1,k−1 ∪ Jm,l−1 ∪ J ′l .
Now we can apply Lemma 3.3 to Jk, γ, vk, a = 1 and h = vk−1

|Duf |
and, after

rearranging, obtain∫
Ω

(
|Dvk|2 − quf v

2
k|uf |

q−2f
)
dx ≥ b2cq2

∫
γ(Jk)

(vk − 1)2

|Duf |
dσ.

We find that ∫
Ω

(
|Dvk|2 − quf v

2
k|uf |

q−2f
)
dx ≤

∫
B1(0)

|DV |2dx.

By the above estimate, for a suitable constant C, we have

C

∫
B1(0)

|DV |2dx ≥
∫
γ(Jk)

(vk − 1)2

|Duf |
dσ

≥
∫
γ(J1,k−1)

(vk − 1)2

|Duf |
dσ

=
k−1∑
h=1

∫
γ(Jh)

(vk − 1)2

|Duf |
dσ.

Then, when k →∞, we have

C

∫
B1(0)

|DV |2dx ≥
∞∑
h=1

∫
γ(Jh)

(vk − 1)2

|Duf |
dσ = +∞,

which is a contradiction. So we must have
∞∑
k=1

∫
γ(Jk)

dσ

|Duf |
<∞,

as desired. �

Lemma 3.5. Let P be a point on F = ∂{uf > c2}. Suppose that there are
numbers K ∈ Z and σ > 0 such that, for each k ≥ K, there exists a regular curve
γk : Jk → F∗ with the following two properties:

γ(Jk) ⊂ F∗ ∩B2−k(P ) \B2−(k+1)(P ),

H1(γk(Jk)) =
∫
Jk

|γ′(ξ)|dξ > σ 2−k.

Then |Duf (P )| > 0.

For a proof of the above lemma, see [4, Lemma 3.2]. From an intuitive point
of view, this lemma says that, if the set ∂{uf > c2} ∩ {|Duf | > 0} is big enough
around a point of ∂{uf > c2}, then |Duf | > 0 at this point.

Now, we are able to prove our main theorem.
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Proof of Theorem 3.1. By using the previous Lemmas and superharmonicity of uf
the Theorem follows from the results of sections 5 and 6 in [4]. �

Open problems. The method used in this paper to prove regularity does not
work when the number of level sets of f is infinite. Therefore it remains to study
the boundaries of level sets of f in the case of the rearrangement class F(f0) of a
general function f0.

We can obtain an analogous result to Lemma 3.4 for the p-Laplacian operator,
but we cannot go further because we lack a suitable regularity theory for the p-
Laplacian operator and its solutions. We think that it is reasonable to guess that
a regularity result of the type that we have proven in this work will hold for the
situation with the p-Laplacian when p < 2.

Acknowledgments. The authors want to thank the anonymous referees for their
valuable comments and suggestions.
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