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Abstract: The immobilization of some coumarin derivatives on modified poly(ethylene 
glycol)s is reported and the influence of the polymeric support on the photoluminescence 
activity of the compounds is discussed. Upon ultraviolet excitation, the derivatives showed 
coumarin - related emission properties whose peak position and efficiency depended on the 
loading of the polymer and on the mesomeric effects of the substituents. 
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Introduction  

Growing interest in coumarin chemistry was sparked by the discovery of their versatility in a large 
number of applications.  Over the last few decades, in fact, several polycyclic compounds containing at 
least one coumarinic unit have been isolated from natural products and a lot of derivatives have been 
synthesized and investigated especially for their biological (anti-HIV, antibacterial, anti-
hyperproliferative, anticoagulant) [1,2] and photophysical (as fluorescent tags and fluoroprobes) [3-5] 
properties.  
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Few examples of coumarins supported on polymers were previously reported in the literature, with 
the aim of investigating their photophysical characteristics such as the photodimerization and the 
photocleveage of the coumarinic nucleus [5] or in an attempt to harvest and transfer solar radiation 
energy [4,6]. The photodimerization effect was successfully used to reversibly control the release of 
guest molecules trapped within coumarin modified mesoporous silica [8]. Besides, due to its major 
applications in the optoelectronic field as UV-blue emitters, silylated coumarin dyes [9] and coumarin-
containing poly(fluorenediylvinylene)s [10] were synthesized to obtain a solid state and in solution 
polymer-light emitting devices. 

In this respect, the immobilization of the coumarinic nucleus on water-soluble supports could 
represent a promising approach, especially useful in optoelectronic applications. Consequently, we 
report  herein the immobilization of some coumarin derivatives on modified poly(ethyleneglycol)s of 
suitable molecular weight by using ether bond anchoring, with the aim of avoiding coumarin solubility 
problems and an investigation of their photoluminescence properties, which are fundamental aspects in 
pharmaceutical applications [11]. 

 
Results and Discussion   

 
An important restriction to the clinical use of some coumarin derivatives is related to their poor 

water solubility which, sometimes, has hampered further testing and development [12].  In an attempt 
to solve these problems, we have recently synthesized 4-methylcoumarin derivatives analogous to 
compounds 6, 9, 14 and 17, by using, for the first time, the soluble support approach applied to the von 
Pechmann reaction [13]. In the same way, we succeeded in the preparation of some other PEG-
coumarins, based on naturally occurring phenols [14]. 

We focused our attention on poly(ethylene glycol)s [(PEG)s] since they are non-toxic, inexpensive, 
generally soluble in a wide variety of solvents, commercially available and easy to functionalize, also 
offering many advantages over non-soluble polymeric supports. Moreover, when the molecular weight 
of the support is ≥ 2,000, the PEG - supported molecule system can be readily isolated as a pure 
product by precipitation /filtration, without using any other purification technique [15]. 

Due to these features, PEG chemistry has shown broad based applications, which may be in large 
part ascribed to the use of PEG-conjugates to deliver drugs, oligonucleotides or enzymes [16]. It is 
well known, for example, that the use of coumarins in the phototherapy of many skin diseases, is due 
to their ability to undergo electronic transitions when UVA-irradiated, working as photosensitizer 
drugs [17,18]. Thus, the maintenance of the optical properties of the polymer-supported coumarin is a 
mandatory task which can be successfully investigated by UV fluorescence spectroscopy [19-27].  

In the research presented herein, the commercially available coumarins 7-hydroxy-4-methyl- 
coumarin (3), 7-hydroxy-4-methyl-8-nitrocoumarin (4) and 7-hydroxy-8- methoxy-4-methylcoumarin 
(5) have been immobilized on the previously mesylated polymeric supports 1 and 2 (Scheme 1).  
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Scheme 1. Immobilization of coumarins 3, 4 and 5. 
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In some derivatives we inserted a spacer [28-31] between the support and the coumarin to test its 

possible influence on the photoluminescence properties of the anchored coumarin (Scheme 2).  
 

Scheme 2. Immobilization of coumarins 3, 4 and 5 in the presence of a spacer. 
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Photoluminescence (PL) experiments have been carried out on all the synthesized compounds, 

investigating their emission properties by exciting the solid samples at 337 nm, because it is well 
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known that 7-hydroxy-4-methylcoumarin displays an absorption band in the 300-400 nm range 
peaking at about 320 nm and PL features in the near UV-visible region [32]. The PL spectra of PEG-
coumarins  3 and 5, excited at 337 nm, together with the spectrum of a standard reference (a 5 x 10-4 M 
solution of 7-diethylamino-4-methylcoumarin in methanol, QE = 0.73, ref-1) are reported in Figure 1, 
while in Table 1 peak positions, full width at half maximum (fwhm) and  quantum efficiency (QE) are 
listed. As shown, coumarins’ PL spectra display different features; in fact, we have a peak at 392 nm 
with a fwhm of 33 nm for compound 3, while compound 5 shows a peak at 425 nm and a fwhm of 80 
nm. The PL spectrum of 4 is not reported because no PL signal was detected under the selected 
excitation wavelength. 

As a general rule, the emission properties of coumarins depend on the environmental conditions 
[9,32, 33]. In particular, the luminescence of the 7-hydroxy-4-methylcoumarin (3) is centred at about 
385 nm in neutral and slightly acidic solution and it is associated to the neutral molecule. On the 
contrary, the PL peak shows a bathochromic shift at about 455 nm in basic environments because of 
the anionic structure of the compound. Otherwise, under acidic conditions and in the presence of 
water, the zwitterionic exciplex emits at about 480 nm and in strongly acidic solutions the emission 
peak of the cationic form is at about 420 nm [9,32]. To a better understanding of the reported features, 
the PL spectrum of a methanol 7x10-4 M solution of 3 is reported in Figure 1 (ref-2).  
 

Figure 1. PL spectra of references (ref-1 and ref-2) and coumarin samples (3 and 5). 
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The spectrum of ref-2 can be interpreted as the combination of the neutral and anionic ground state 
emissions. By comparison the PL band detected for 3 can be related to the neutral molecule. On the  
contrary, no similar characterization of the fluorescence for 5 was found in literature so that we could 
not verify the possible contributions of different chemical forms of 5 to the PL feature. The expected 
red-shift of the fluorescence of 5 compared to 3, is associated to the presence of a strong electron-
donor methoxyl group in 7-position, whose effect is improved by the mesomeric effect of the hydroxyl 
group in 8-position [32,34]. 

As compared to quantum efficiency of the references (Table 1), the powder samples have a reduced 
quantum yield due to the concentration quenching effect typically observed in highly concentrated 
solution or solid state samples. In addition, it has been previously reported that the concentration effect 
can cause a red-shift of the emissions [35]. Thus, it can be hypothesized a concentration effect in the 
double-loaded samples. Conversely, the anchoring procedure does not affect the emission efficiency of 
PEG-supported coumarins since their QE is comparable to the QE of the parent coumarin. 
 

Table 1. Spectral characteristics of references and coumarin derivatives excited at 337 nm. 

SAMPLE λem (nm) fwhm (nm) QE (%) 
ref-1 453 62 70 
ref-2 388 57 55 

3 392 33 13 
5 430 74 8 
6 397 82 11 
8 435 150 0.4 
9 442 60 17 
11 441 130 0.6 
14 396 74 14 
16 463 240 0.2 
17 447 64 8 
19 488 160 0.1 

 
Moreover, spectra and data reported in Figure 2 and in Table 1, show that 6 and 14 single-loaded 

derivatives present broadened and slightly red-shifted PL bands with respect to the emission features 
of the parent coumarin 3. According to the attributions previously reported, 6 and 14 PL features can 
be assigned to the emission of the neutral and anionic form of the coumarin. A larger red shift is 
observed in the double-loaded derivatives 9 and 17 which can be ascribed to the concentration effect. 

PL spectra of compounds 8, 11, 16 and 19 are shown in Figure 3. As reported in Table 1, the peak 
position shifts bathocromatically up to 488 nm in compound 19, whereas the fwhm is larger than that 
of the parent coumarin 5, also with a greatly reduced emission efficiency. Both the effects could be 
explained by a different electronic distribution related to the presence of the O-PEG chain instead of 
the OH group in the 8-position. In these samples the electron-donor effect of the methoxyl group is the 
feature that mainly affects the electronic density distribution. In this respect, a red-shift of the 
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absorption and emission bands should be expected and an increase of the detected QE should be 
observed by exciting the samples with a less energetic wavelength.  

 
Figure 2. PL spectra of 7-hydroxy-4-methylcoumarin (3) derivatives (6, 9, 14 and 17). 

                                          
 

Figure 3. PL spectra of 8-hydroxy-7-methoxy-4-methylcoumarin derivatives (8, 11, 16 and 19). 
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Indeed, PL spectra recorded upon 365 nm excitation (Hg lamp) showed an enhancement of the 
efficiency (Table 2) and a red-shift of the emission band at about 485 nm.  

 
Table 2. Spectral characteristics of 5 and 8, 11, 16 and 19 excited at 365 nm (RQE = 
relative quantum efficiency measured with respect to 5). 

SAMPLE λem (nm) RQE (%) 
5 433 100 
8 485 16 
11 486 17 
16 482 8 
19 492 6 

 
However, as previously discussed, the presence of different chemical forms of 5 with different 

spectral properties cannot be excluded. In addition, by comparing 3 and 5 derivatives, two different 
effects can be evidenced: 1) reduction of the emission efficiency compounds 8, 11, 16 and 19 with 
respect to the parent 5 coumarin (roughly one order of magnitude) whereas 3 derivatives show 
comparable QE; 2) no evident red-shift of PL emission of the double loaded derivatives 9 and 17 if 
compared to the single loaded 6 and 14 whereas a progressive red-shift of the PL in 5 derivatives is 
observed. Beyond the different electronic distribution, the anchoring of the PEG chain in the 8-position 
may also cause the excited coumarin to access different non-radiative decay paths leading to a less 
efficient emission and reducing, even completely, the extent of the concentration effect. In fact,  the 
main photophysical features of coumarins can be interpreted as the emission from an intramolecular 
charge-transfer (ICT) excited state and a non-radiative decay related to the rotation of the emitting 
functionality at the 7-position. The latter mechanism, called twisted intramolecular CT (TICT), 
depends on the structure of the coumarin, the solvent polarity and the viscosity [33].  A detailed study 
of the absorption and emission properties of 5 as a function of the environmental conditions (i.e. pH of 
the solution and viscosity) is now under investigation.  

Concerning 4 and its derivatives 7, 10, 15 and 18, no PL signal was recorded by exciting at 337 nm. 
In fact, the lack of emission under the applied experimental conditions was expected, since N-related 
groups usually cause a red-shift of the absorption and emission features of coumarin samples (R = 
NH2) and are responsible of quenching effects (R = NO2) [32,36]. Even by exciting at larger 
wavelength (the 365 nm line of Hg lamp) no PL signal was recorded. Further measurements are in 
progress to characterize the optical features of the selected nitro-coumarin and its derivatives. 

A final comment pertains the photodimerization effect, which is typically observed in coumarin 
derivatives [34]. The laser power (of about 1 mW) and the irradiation time (few minutes) of the 
reported experiments are not sufficient to observe the cited effect. Indeed, the detected PL intensities 
do not decrease during the measurements, as expected if dimers were formed.  

Lastly, we have also verified that neither the support (PEG) nor the spacer contribute to the optical 
properties reported. As a consequence, the non UV-absorbing properties of our PEG-modified supports 
(at least at the excitation wavelength of 337.1 nm) could also represent an interesting option to carry 
out photochemical reactions under liquid phase conditions. 
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Conclusions 
 

In conclusion, we have succeeded in supporting some coumarin derivatives on PEG using an ether 
bond to anchor the coumarin onto the polymer, instead of the more often used ester linkage. Our aim, 
in fact, was to prepare a very stable system able to also resist drastic chemical or physical experimental 
conditions. The photoluminescence activity of the synthesized powders were investigated by exciting 
in the UV region. The resulting species still showed coumarin related photoluminescence properties, 
allowing a possible biological application of the supported systems.  

As predicted, all the compounds are easily dissolvable in a wide variety of solvents, water 
included, more than the pure coumarins and this could be an important and intriguing feature for a 
pharmaceutical application. Moreover, the PEG-conjugation technique could represent a valid way to 
improve the biological properties of the linked molecules, since the pegylated - coumarin systems 
could probably act as prodrugs, so improving the pharmacokinetics of the biologically active anchored 
molecule. In particular, the investigation of the spacer influence on the pharmacological activity of  the 
pegylated-coumarins could be of great interest, as recently discussed for many other PEG-drug 
conjugates [16,37]. 

 
Experimental  
 
General  

 
All PEG samples (Aldrich and Fluka) were melted under vacuum at 90 °C for about 45 min before 

use, to remove any trace of moisture. After reaction, the crude mixture was concentrated under vacuum 
to eliminate the solvent, added up by few mL of CH2Cl2 and then centrifuged to eliminate the excess of 
insoluble coumarin. The obtained solution was poured into Et2O (50 mL per g of polymer) and cooled 
at 0 °C. The resulting suspension was filtered through a sintered glass filter and the obtained solid was 
repeatedly washed on the filter with pure Et2O. All samples have been crystallized from isopropyl 
alcohol to eventually eliminate the excess of the polar reagents or the byproducts. It is well known, in 
fact, that PEGs, as a result to their helical structure, show a strong propensity to crystallize [38,39]. The 
yields of PEG-supported compounds were determined by weight, and their purity was confirmed by 
1H-NMR analysis in CDCl3 performed by a Varian 300 MHz using tetramethylsilane as internal 
standard and with a pre-saturation of the methylene signals of the polymeric support at 3.60 ppm. In 
recording the NMR spectra, a relaxation delay of 6 sec and an acquisition time of 4 sec were used to 
ensure complete relaxation and accuracy of integration. Coumarin compounds 3, 4 and 5 were 
commercially available (Aldrich, Lancaster). 

PL measurements were carried out by exciting the samples with the 337.1 nm wavelength of a 
pulsed N2 laser (PRA Laser inc., mod. LN100C). The excitation pulse duration was 300 ps, the mean 
power was 1 mW and the repetition rate 60 Hz. The PL signal was gathered by a photonic 
multichannel spectral analyzer (Hamamatsu PMA-11) in the 300-800 nm spectral range with a spectral 
bandwidth of 1 nm. The reported spectra are recorded applying a short wavelength cutoff filter 
(WG345) and corrected for the optical transfer function of the system. A quantitative estimation of the 
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quantum efficiency (QE) of the samples was obtained by comparison with a standard reference (ref-1) 
[32]. A 10% error on the estimated QE was allowed. Some derivatives were investigated also with the 
365 nm line of a Hg lamp and recorded with a GG400 short wavelength cutoff filter. PL measurements 
were carried out in front face configuration in order to minimize reabsorption effects [40]. 
 
General procedure to immobilize coumarins 3, 4 and 5  
 
Compounds 6-8 and 14-16: To a solution of 1 (0.98 mmol, previously dried under vacuum) in dry 
DMF (15 mL), Cs2CO3 (2.94 mmol) and commercial 3, 4 or 5 (2.94 mmol) were added and the 
reaction mixture was stirred at 60 °C in nitrogen atmosphere for 48 h. After reaction, the mixture was 
filtered and the filtrate evaporated to dryness. The obtained crude product, dissolved in a few mL of 
CH2Cl2, was centrifuged to eliminate the excess of insoluble 3, 4 or 5. Compounds 6-8 and 14-16 were 
obtained as pure products by using the precipitation-filtration technique (see General).  
 
Compounds 9-11 and 17-19: These compounds were prepared from 2 (1.05 mmol), 3, 4 or 5 (6.30 
mmol) and Cs2CO3 (6.30 mmol) in dry DMF (20 mL), following the same procedure as for compounds 
6-8 and 14-16. 
 
Analytical details for compounds 6 – 19 
 
Compound 6: Yield: 85%; 1H-NMR ppm: 2.40 (s, 3H), 3.36 (s, 3H), 6.25 (s, 1H), 6.35 (s, 1H), 6.82 (d, 
3J = 8.50 Hz, 1H), 7.60 (d, 3J = 8.50 Hz, 1H); Compound 7: Yield: 79%; 1H-NMR ppm: 2.42 (s, 3H), 
3.36 (s, 3H), 6.20 (s, 1H), 6.95 (d, 3J = 8.20 Hz, 1H), 7.91 (d, 3J = 8.20 Hz, 1H); Compound 8: Yield: 
83%; 1H-NMR ppm 2.38 (s, 3H), 3.40 (s, 3H), 3.75 (s, 3H), 6.21 (s, 1H), 6.73 (d, 3J = 7.98 Hz, 1H), 
7.41 (d, 3J = 7.98 Hz, 1H); Compound 14: Yield: 77%; 1H-NMR ppm: 1.64 (m, 2H), 2.51 (s, 3H), 2.70 
(t, 3J = 7.40 Hz, 2H), 3.36 (s, 3H), 3.92 (t, 3J = 6.70 Hz, 2H), 6.18 (s, 1H), 6.30 (s, 1H), 6.81 (m, 2H), 
6.88 (m, 3H), 7.50 (d, 3J = 8.41, 1H); Compound 15: Yield: 74%; 1H-NMR ppm: 1.77 (m, 2H), 2.40 (s, 
3H), 2.67 (m, 2H), 3.36 (s, 3H), 4.12 (t, 3J = 6.50 Hz,  2H), 6.18 (s, 1H), 6.72 (m, 2H), 6.94 (m, 3H), 
7.88 (d, 3J = 8.17 Hz, 1H); Compound 16: Yield: 75%; 1H-NMR ppm: 1.81 (m, 2H), 2.40 (s, 3H), 2.62 
(t, 3J = 7.22 Hz, 2H), 3.36 (s, 3H), 3.75 (s, 3H), 4.20 (t, 3J = 6.70 Hz, 2H), 6.18 (s, 1H), 6.48 (d, 3J = 
8.30 Hz, 2H), 6.73 (d, 3J = 8.85 Hz, 1H), 6.98 (d, 3J = 8.30 Hz, 2H), 7.43 (d, 3J = 8.85 Hz, 1H); 
Compound 9: Yield: 87%; 1H-NMR ppm: 2.45 (s, 6H), 6.21 (s, 2H), 6.48 (s, 2H), 6.90 (d, 3J = 8.45 
Hz, 2H), 7.65 (d, 3J = 8.45 Hz, 2H); Compound 10: Yield: 80%; 1H-NMR ppm: 2.51 (s, 6H), 6.38 (s, 
2H), 7.02 (d, 3J = 8.20 Hz, 2H), 7.84 (d, 3J = 8.20 Hz, 2H);  Compound 11: 1H-NMR ppm: 2.36 (s, 
6H), 3.83 (s, 6H), 6.17 (s, 2H), 6.70 (d, 3J = 8.01 Hz, 2H), 7.51 (d, 3J = 8.01 Hz, 2H); Compound  17: 
Yield: 76%; 1H-NMR ppm: 1.58 (m, 4H), 2.42 (s, 6H), 2.74 (t, 3J = 7.65 Hz, 4H), 4.00 (t, 3J = 6.81 Hz, 
4H), 6.16 (s, 2H), 6.30 (s, 2H), 6.75 (m, 4H), 6.89 (m, 6H), 7.47 (d, 3J = 8.44, 2H); Compound 18: 
Yield: 73%; 1H-NMR ppm: 1.89 (m, 4H), 2.44 (s, 6H), 2.60 (m, 4H), 4.25 (t, 3J = 6.62 Hz,  4H), 6.14 
(s, 2H), 6.68 (m, 4H), 7.02 (m, 6H), 7.94 (d, 3J = 8.11 Hz, 2H); Compound 19: Yield: 75%; 1H-NMR 
ppm: 2.01 (m, 4H), 2.49 (s, 6H), 2.70 (t, 3J = 7.14 Hz, 4H), 3.71 (s, 6H), 4.15 (t, 3J = 6.74 Hz, 4H), 
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6.20 (s, 2H), 6.50 (d, 3J = 8.15 Hz, 4H), 6.75 (d, 3J = 8.90 Hz, 2H), 7.00 (d, 3J = 8.15 Hz, 4H), 7.48 (d, 
3J = 8.90 Hz, 2H). 
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