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Graphical abstract 

Abstract 

 Four positively charged compounds, previously shown to produce analgesic activity by interacting 

with prokinecitin receptor or T-type calcium channels, were tested for their ability to inhibit 

capsaicin-induced elevation of intracellular Ca2+ elevation in HEK-293 cells stably transfected with 

the human recombinant TRPV1, with the goal of identifying novel TRPV1 open-pore inhibitors. 

KYS-05090 showed the highest potency as a TRPV1 antagonist, even higher than that of the open-

pore triazine 8aA inhibitor. The latter showed quite remarkable agonist/desensitizer activity at the 

rat recombinant TRPM8 channel. The activity of KYS-05090 and the other compounds was 

selective because none of these compounds was able to modulate the rat TRPA1 channel. Open-

pore inhibitors of TRPV1 may be a new class of multi-target analgesics with lesser side effects, 

such as loss of acute pain sensitivity and hyperthermia, than most TRPV1 antagonists developed so 

far. 
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1. Introduction 
 
The transient receptor potential vanilloid 1, TRPV1 was the first identified member of a family of 

thermosensory receptors currently known as thermoTRPs, which encompass cold-, warm-, and 

heat-activated channels [1]. TRPV1 is a nonselective cation channel with high Ca2+ permeability, 

involved in somatosensation, chemical and thermal nociception and pain, and chronic 

neuroinflammatory conditions. It is also known as the ‘capsaicin receptor’, because capsaicin, the 

pungent principle of chili peppers, is a specific TRPV1 activator [2-4]. Endogenous mediators, like 

the endocannabinoid anandamide and 2-arachidonoyl glycerol [5-8], and some eicosanoids [9-10], 

also activate TRPV1 channels. The validation of TRPV1 as a therapeutic target for pain prompted 

the development of several TRPV1 antagonists that have entered clinical trials for the treatment of 

acute, chronic and neuropathic pain. [11-12]. However, complete pharmacological blocking of 

TRPV1 with high affinity irreversible, competitive vanilloid antagonists can result in hyperthermia 

and side effects [13]. 

Uncompetitive antagonists are activity-dependent inhibitors that specifically bind to the agonist-

receptor complex or to the open state of the channel, blocking only highly activated receptors. 

Open-channel blockers can only access the channel when it is open, recognizing a binding site 

located deep within the pore. A class of compounds, which act as uncompetitive TRPV1 antagonists, 

are 1,3,5-triazine derivatives (Figure 1). Triazine 8aA [(2,4-bis(2’-(3”-indolyl)ethylamino)-6-(3’-

(N,N-dimethylamino)-propylamino)-1,3,5-triazine)] (Figure 1) has been recently reported as the 

most potent TRPV1 blocker [14]. 8aA shares some structural features with a second family of 

1,3,5-triazines derivatives (Figure 1), which have been shown to be antagonists at prokinecitin 

receptors (PKRs), as assessed by evaluating their inhibition of intracellular Ca2+ mobilization 

induced by the peptide Bv8 [15].  Bombina variegata 8 (Bv8) is a peptide (8 kDa) secreted by the 

frog skin, and acts as a selective agonist for two G-protein–coupled receptors, the prokineticin 

receptors of type 1 and 2, PKR1 and PKR2, expressed in dorsal root ganglia (DRG), in the outer 

layers of the dorsal horns of the spinal cord, and in peripheral terminals of nociceptor axons. In fact, 

studies in the mouse, rat, cattle, monkey, and man, identified orthologues of Bv8. Two human 

cDNAs have been cloned encoding two secreted proteins of 86 and 81 amino acids. [16]. These two 

mammalian proteins were named prokineticin 1 (PK1, or EG-VEGF) and prokineticin 2 (PK2 or 

mBv8), which is an orthologue of amphibian Bv8 (for reviews see [17-18]), and were later shown to 



act as ligands for PKR1 and PKR2 [19-21]. Affinity of Bv8 for the receptors is comparable to that 

of PK2 and is about 40 times higher than that of PK1 [18]. Bv8/PKs are peripheral and central pain 

modulators: activation of nociceptor PKRs by Bv8 in rats and mice produces sensitization to 

thermal and mechanical stimuli, and mice lacking the PKRs or PK2 are less sensitive to noxious 

stimuli than wild type mice [22-23]. Very recently our group described the synthesis of compounds 

capable to reduce in vivo the Bv8-induced thermal hyperalgesia when injected into the hind paw of 

mice 5 minutes before Bv8. In particular, some triazinediones (Figure 1) showed very high efficacy 

as prokinecitin receptor antagonists [24].  

The transient receptor potential melastatin type-8 (TRPM8) ion channel was identified as the 

principal sensor for environmental cold in mammals [25-26]. No endogenous agonists for the 

TRPM8 channel have been so far identified, although there is recent evidence that testosterone 

exerts an ionotropic effect on TRPM8 at picomolar concentration [27], while the endocannabinoids 

anandamide and N-arachidonoyldopamine produce instead antagonism [28]. Apart from its role in 

thermosensation, acute activation of TRPM8 can have analgesic effects [29] suggesting that 

neuronal TRPM8 may play a neurogenic anti-inflammatory role. Very recently it has been shown 

that the synthetic TRPM8 agonist icilin (i) has a potent anti-inflammatory effect, and (ii) inhibits 

E2F1 transcription factor-mediated cell cycle regulatory programs in prostate cancer [30], thus 

suggesting the potential relevance of icilin and ‘icilin-like’ compounds as therapeutic tools for the 

treatment of a variety of pathological conditions [31]. 

Here we tested four positively charged compounds, previously shown to produce analgesic activity 

by interacting with PKRs or T-type calcium channels, for their ability to modulate TRPM8 and 

TRPV1 activity in vitro as potential open-pore inhibitors. 

 

2. Material and methods 

 

2.1. Materials 

MEM medium, foetal bovine serum (FBS), Fluo-4 AM, Pluronic® F-127, Geneticin G-418 and 

ionomycin were obtained from Invitrogen (Carlsbad, CA, USA). Dimethyl sulfoxide (DMSO), 

trypsin/EDTA, penicillin, streptomycin and all other chemicals were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). 

 

2.2. Cell Culture 

Human embryonic kidney HEK-293 cells were purchased from ATCC (LGC Standards, Sesto San 

Giovanni, Milan, Italy). 



HEK-293 and HEK-293 stably over-expressing human TRPV1, or rat TRPA1 or rat TRPM8 and 

selected by G-418 (Geneticin; 600 µg/ml), were grown as monolayers on 100 mm diameter Petri 

dishes in minimum essential medium supplemented with non-essential amino acids, 10 % foetal 

bovine serum, and 2 mM glutamine, and maintained under 5% CO2 at 37 °C. 

 

2.3. TRP functional assays 

Cell-based fluorescence assays of calcium influx upon TRPV1 activation were performed as 

described:  

The effect of the substances on [Ca2+] i was determined by using the selective intracellular 

fluorescent probe for Ca2+ Fluo-4. On the day of the experiment the cells were loaded for 1h at 

25°C with 4 µM Fluo-4 methylester (Molecular Probes) in DMSO containing 0.03% Pluronic. After 

the loading, cells were washed with Tyrode pH=7.4 (145 mM NaCl, 2.5 mM KCl, 1.5 mM CaCl2, 

1.2 mM MgCl2, 10 mM D-glucose, and 10 mM HEPES, pH 7.4), resuspended in Tyrode and 

transferred (~100,000 cells) to the cuvette of the fluorescence detector (Perkin-Elmer LS50B 

Waltham, MA, USA) under continuous stirring. Experiments were carried out by measuring cell 

fluorescence at 25 °C (λEX=488 nm, λEM = 516 nm) before and after the addition of the test 

compounds at various concentrations. Potency was expressed as the concentration of test 

compounds exerting a half-maximal agonist effect (i.e. half-maximal increases in [Ca2+] i) (EC50). 

The efficacy of TRPV1 and TRPM8 agonists was determined by normalizing their effect to the 

maximum Ca2+ influx effect on [Ca2+] i observed with application of 4 µM ionomycin, while the 

effects of TRPA1 agonists are expressed as a percentage of the effect obtained with 100 µM 

allylisothiocyanate (AITC). When significant, the values of the effect on [Ca2+] i in wild type 

HEK293 (i.e., not transfected with any TRP construct) were taken as baselines and subtracted from 

the values obtained from transfected cells. 

Antagonist/desensitizing behaviour was evaluated against capsaicin (0.1 µM) for TRPV1 against 

AITC (100 µM) for TRPA1 and icilin (0.25 µM) for TRPM8, by adding the test compounds in the 

quartz cuvette 5 min before stimulation of cells with agonists. In another set of experiments the 

loading cells were washed with Tyrode pH=7.4 without calcium ions (145 mM NaCl, 2.5 mM KCl, 

2.7 mM MgCl2, 10 mM D-glucose, and 10 mM HEPES, pH 7.4), resuspended in the same buffer 

and treated with 1 µM capsaicin for 1 hr (at the aim of dilating the pore and facilitate the entry of 

charged substances) in presence of different concentrations of the potential antagonist compound. 

After that the cells were extensively washed in order to remove capsaicin, balanced in Tyrode's 

buffer contained calcium and then treated with capsaicin 0.1 µM. Data are expressed as the 

concentration exerting a half-maximal inhibition of agonist-induced [Ca2+] i elevation (IC50), which 



was calculated using GraphPad Prism® software. The effect on [Ca2+] i exerted by agonist alone was 

taken as 100%. Dose response curves were fitted by a sigmoidal regression with variable slope. All 

determinations were performed at least in triplicate. Statistical analysis of the data was performed 

by analysis of variance at each point using ANOVA followed by the Bonferroni’s test. 

 

2.4. Electrophysiological studies 

DRG neurons were isolated as previously described [32]. Neurons on a glass coverslip were 

transferred into an external bath solution of 150 NaCl, 5 KCl, 3.5 MgCl2, 10 HEPES, and 10 

glucose at pH 7.4. Borosilicate glass pipettes (Sutter Instrument Co., Novato, CA, USA) (3–5 MΩ) 

were filled with internal solution containing 140 mM KCl, 2.5 mM CaCl2, 1 mM MgCl2, 5 mM 

EGTA, 10 mM HEPES, 2 mM Na-ATP and 0.3 mM Na-GTP, pH 7.3. Whole-cell patch clamp 

recordings were performed by using an EPC 10 amplifier (HEKA Elektronik, Bellmore, NY, USA) 

linked to a personal computer equipped with Pulse (V8.65) software (HEKA Elektronik). After seal 

formation, the membrane beneath the pipette was ruptured and the pipette solution was allowed to 

dialyze into the cell for 3–5 min before recording. Currents were elicited by application of 1 µM 

capsaicin from a holding potential of -60 mV. Data were recorded at 10 kHz and filtered at 2.9 kHz. 

Data analysis was performed by using online analysis built in Pulse software, and graphs were 

prepared by using GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). Error bars plotted 

represent the mean values ± standard error. 

3. Results and discussion 
 
3.1. TRPV1 antagonist activity  

The compounds were evaluated for TRPV1 antagonist activity based on their ability to block 

capsaicin-induced elevation of intracellular Ca2+ in HEK-293 cells stably transfected with the 

human recombinant TRPV1 (hTRPV1-HEK-293 cells). The tests were carried out with a 

fluorescence-based intracellular calcium detection assay for capsaicin. We started our investigation 

with the compound 8aA 2,4-Bis(4'-fluorophenethylamino)-6-(3'-(N,N-dimethylamino)-

propylamino)-1,3,5-triazine, a triazine-based TRPV1 receptor open channel uncompetitive 

antagonist, among the strongest TRPV1 open channel blockers described to date [14]. The pKa 

value calculated with Epik (Epik, version 2.1, Schrödinger, L.L.C.: New York, NY, 2010.) [33-34] 

for this compound is 9.51, indicating that it is protonated at physiological pH (7.4, at which our test 

is performed). Because known charged blockers have previously displayed agonistic activity, we 

also sought to check whether 8aA activates TRPV1. We observed that 8aA shows no agonist 

activity up to 100 µM, confirming that this compound is a pure blocker. Indeed, we calculated an 

inhibitory activity of the capsaicin (0.1 µM) response of 8aA with IC50 = 21.7 ± 0.7 µM from the 



corresponding dose-response curve in hTRPV1-HEK-293 cells. The IC50 value was therefore much 

higher than that measured by voltage-clamp against rat TRPV1 channels heterologously expressed 

in Xenopus oocytes (IC50 = 0.05 ± 0.007 µM), as reported by Vidal-Mosquera et al. [14]. 

 

The compound 8aA is endowed with some features in common with some prokinecitin antagonists 

based on the triazinedione scaffold, among which compounds with EC50 analgesic activity values in 

picoM range, i.e. PC-7 [1-(2-((5-(4-fluorobenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine] (EC50 = 0.31 pM) and PC-27 [1-(2-((1-(4-

methylbenzyl)-5-(4-(trifluoromethyl)benzyl)-4,6-dioxo--1,4,5,6-tetrahydro-1,3,5-triazin-2-

yl)amino)ethyl)guanidine] (EC50 = 0.033 pM), both containing an 4-halogen fluoride atom 

substituted benzyl group in position 5, which possibly explains why they are 10 and 100 times more 

potent, respectively than PC-1 [1-(2-((5-(4-ethylbenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine] (EC50 = 5.8 pM), which bears a 4-ethylbenzyl 

group in position 5 [22]. These compounds mimic the structural features required for Bv8 binding 

to PKRs [17, 35]. They present a triazine-guanidine moiety that mimics the N-terminal AVITGA 

sequence, whereas the benzyl moiety is orientated like the conserved tryptophan residue in position 

24. Importantly, PC-1, which preferentially binds PKR1, injected intraplantar at the dose of 30 ng, 

significantly reduced capsaicin-induced hyperalgesia [17], suggesting that it may also inhibit 

TRPV1. It is to be noted that peripheral nociceptors expressing the ion channels, TRPV1 and 

TRPA1, co-express PKR1, which most probably contributes to the development of inflammatory 

hyperalgesia [22, 36]. Indeed, some Bv8-responding DRG neurons also express neuromediators 

implicated in pain processing as calcitonin gene-related peptide (CGRP) and substance P and 

release these neuropeptides upon exposure to Bv8. The glial cell line-derived neurotrophic factor 

(GDNF) induced ‘de novo’ expression of functional PKRs suggesting a possible upregulation of 

PKRs after the tissue damage and inflammation that cause heat hyperalgesia by sensitizing TRPV1 

through PKC activation [36]. PKR1 gene deletion or PKR1 blockade with PC-1, markedly reduced 

the inflammation-induced hypersensitivity and the up-regulation of Bv8/PK2 [15, 23, 37]. 

Furthermore, the prokineticin system plays a role in neuroinflammation and in the evolution of the 

neuropathic pain, and PC-1 administration at peripheral or central levels alleviates an established 

neuropathic hyperalgesia and prevents the activation of glia and the increased production of 

inflammatory cytokines [38].  

 

In the view of the above reported in vivo activity of the PKR1 antagonist PC-1 against capsaicin-

induced hyperalgesia, and of its chemical similarity with 8aA, we extended the in vitro studies on 



TRPV1 to all three PKR antagonists, PC-1, PC-7 and PC-27. The pKa values calculated with Epik 

(Epik, version 2.1, Schrödinger, L.L.C.: New York, NY, 2010.) [33-34] for these compounds is 

12.44, indicating that they can be protonated at physiological pH more than 8aA. The compounds 

showed no or very low (PC-27 EC50 > 50 µM with an efficacy at 100 µM ~ 20 %) agonist activity 

(Table 1). However, PC-27 and PC-1 inhibited the capsaicin (0.1 µM)-induced response in 

hTRPV1-HEK-293 cells, although this effect was weaker than that observed for 8aA, whereas PC-

7 was not active as blocker (Figure 2, Table 1). 

 

Most of the exploration so far has been focused on the 5-position benzyl group: consistent with 

calcium influx data from recombinant TRPV1 (Table 1), the substitution of the ethyl group with a 

fluorine atom in position 4 on the 5-benzyl group was not tolerated and the resulting compound did 

not show in vitro potency at blocking capsaicin activation of TRPV1. The introduction of a CF3 in 

position 4 on the 5-benzyl group together with the simultaneous replacement of the methoxy group 

with a less polar methyl in position 4 on the 1-benzyl group resulted in the regaining in vitro 

activity, with slightly higher potency at blocking capsaicin activation of TRPV1 (IC50 = 27.2 ± 1.9 

µM). 

 

3.2. TRPA1 activity 

Responses to Bv8 were colocalized with responses to mustard oil, an activator of the channel 

TRPA1, which like TRPV1 is involved in nociception [39-41]. Furthermore, inflammatory heat 

hyperalgesia caused by mustard oil was also significantly lower in PKR1-/- mice [22], suggesting 

that these nonspecific proinflammatory stimuli act in part via release of PK and activation of PKR1 

receptors. It seemed therefore interesting to study whether the test compounds interacted with 

TRPA1. However, none of the compounds blocked mustard oil isothiocyanate-induced and TRPA1-

mediated elevation of intracellular Ca2+ in HEK-293 cells stably transfected with the rat 

recombinant TRPA1 channel, as is shown in Table 1. 

 

3.3. KYS05090 activity 

The T-type calcium channel blocker KYS-05090 [2-(3-(1,1'-biphenyl-4-yl)-2-((5-(N,N-

dimethylamino)pentyl)-N’-(methyl)amino)-3,4-dihydroquinazolin-4-yl)-N’’-benzylacetamide] 2-

hydrochloride was included in this study. Very recently the ability of KYS-05090 to block the Ca2+ 

channel, and the dependence of KYS-05090-induced cell death on the [Ca2+] i in a concentration- 

and time-dependent manner have been shown [42]. KYS-05090 is not a trisubstituted triazine but a 

quite rigid dihydroquinazoline containing a cationic tertiary N,N-dimethylaminopentyl-N’-methyl- 



amine group (pKa value calculated with Epik for this compound is 9.6, suggesting its protonation at 

physiological pH). This compound exhibited significant albeit very low agonist activity at both 

TRPV1 and TRPA1. However, KYS-05090 showed the highest potency as an antagonist against 

TRPV1, even higher than that of 8aA, with an IC50 value of 11.6 µM. Electrophysiological 

experiments performed on acutely dissociated dorsal root ganglion (DRG) neurons from adult mice 

confirmed the results of the calcium experiments. Figure 3 shows that DRG neurons positive for 

TRPV1 exhibit significantly reduced capsaicin-evoked currents after a 3-min incubation with KYS-

05090 (10 µM). For comparison, the IC50 found for KYS-05090 when screened against TRPA1 was 

> 50 µM.  

 

TRPV1 is permeable by different ions with a preference for divalent species (Ca2+ and Mg2+) over 

monovalent ions (Na+, K+ and Cs+) [1]. Studies with ATP-gated ion channels of the P2X family 

suggested that prolonged agonist exposure increases the pore size, leading to enhanced permeability 

of the channel to cations [43-44]. In the case of TRPV1 the permeability to different cationic 

species varies in a time-dependent and an agonist concentration-dependent manner, allowing 

permeation of large organic cations [45]. During prolonged activation with vanilloids, permeability 

to large cations increases, although the channel continues to exclude anions. One worth noting 

characteristic of TRPV channels that has been proposed to explain Ca2+ selectivity in TRPV1 is the 

presence of negatively charged residues in the outer region of the selectivity filter, due to the 

presence of acidic residue E648 and D646, which exert an electrostatic attraction on cations [46]. It 

has been shown that also TRPV3 [47], and TRPA1 activation resulted in dynamic changes in 

permeability to cations [48-50]. Alkaline pH has been found to cause helix dilation of the pore for 

TRPV5 [51], whereas TRPM8 activation does not seem produce significant changes in ion 

selectivity [48]. The three-dimensional structure of the TRPV1 channel was recently determined by 

single particle electron cryo-microscopy, allowing us to explore ionic conduction in TRP channels 

at atomic detail [52]. Pore dilation may facilitate the entry of otherwise impermeant drugs into cells 

[53], although the quaternary derivative of lidocaine QX-314 seems to enter through the standard 

pore and does not require pore dilation [54]. 

 

3.4. Experiments on hTRPV1-HEK-293 cells pre-treated with capsaicin  

When the experiments were performed on cells pre-treated with 1 µM capsaicin for 1 hr at the aim 

of dilating the pore and facilitate the entry of charged substances, all the tested compounds inhibited 

the capsaicin (0.1 µM)-induced response in hTRPV1-HEK-293 cells with about the same IC50 

(Table 1). 



The pore dilation previously measured in capsaicin-bound TRPV1 is still not sufficient to account 

for TRPV1 permeability to the large cations used in the present study. One possible explanation for 

our findings is that the capsaicin-bound channel represents an intermediate state, and that 

conformations of a flexible TRPV1 selectivity filter exhibiting even greater pore expansion are 

transient and possibly inducible by large cations themselves as they pass through the activated 

channel [55]. 

 

3.5 TRPM8 activity 

To assess channel selectivity, the five compounds tested here were screened also against TRPM8 

(Table 2) by measuring their effect on TRPM8-mediated elevation of intracellular Ca2+ in HEK-293 

cells stably transfected with the rat recombinant TRPM8 channel. The triazine 8aA activated and 

subsequently desensitized TRPM8 and the IC50 value observed desensitization was quite 

remarkable (0.95 ± 0.03 μM) (Figure 4 and Table 2). This effect was surprising since it has been 

shown that pore dilation does not occur in TRPM8 channels [48]. The interaction of 8aA with 

TRPM8 might be explained by evidence showing that this channel can be activated at the outer pore 

(EC50 1.1 ± 0.1 µM). Menthol interacts with a hydrophobic pocket within the S1-S4 transmembrane 

bundle, and causes conformational rearrangements that lead to gate opening [56]. Furthermore, 

TRPV1 can be activated at the outer pore by a bivalent tarantula toxin involving the extracellular 

domains of S5 and S6 [57]. Vanillotoxins activate TRPV1 channel in the outside-out, but not 

inside-out configuration, consistent with an extracellular site of action, and ruling against a role for 

the S3-S4 domain in TRPV1-vanillotoxin interaction. Recent reports have shown a hydrophobic 

binding pocket for capsaicin and anandamide that is accessible from the extracellular side [52, 58], 

thus indicating that these compounds access TRPV1 also from the outside [59]. Our results suggest 

that some TRPM8 negative charged aminoacids at extracellular domains could interact with the 

protonated 8aA at physiological pH. Similarly, but to a lesser extent, also PC-27 and KYS-05090, 

but not PC-1 and PC-7, activate and consequently desensitize TRPM8 (Table 2). 

 

4. Conclusions 

Based on past evidence obtained with 8aA, we have conducted studies on previously reported 

analgesic and positively charged compounds, such as three triazine inhibitors of PKRs, and a 

dihydroquinazoline T-type calcium selective channel blocker, with the goal of identifying novel 

TRPV1 open-pore inhibitors with acceptable in vitro potency and possible use as analgesics with 

lesser side effects than most TRPV1 antagonists developed so far. The latter compounds antagonize 

TRPV1 regardless of its endogenous activators, whereas TRPV1 open-pore inhibitors only act when 



the channel is prolongedly activated by endogenous noxious ligands, thus being potentially less 

prone to produce side effects such as loss of acute pain sensitivity and hyperthermia. Further 

chemical modification of KYS-05090, on the one hand, and PC-27 and PC-1, other hand, with the 

aim of enhancing their potencies as potential open-pore inhibitors of TRPV1 without diminishing 

their capability of antagonizing T-type channels or PKRs, respectively, might lead to efficacious 

multi-target analgesics. None of the compounds tested showed significant activity at rat TRPA1 

channels. However, we revealed that the previously developed open-pore TRPV1 antagonist, 8aA, 

behaves as a relatively potent agonist/desensitizer of the rat recombinant TRPM8 channel. 
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Fig.  1 
 



 

Figure 1. General structure of triazines. On the left: triazine derivative type 8aA. On the right: 

triazinedione type derivative. 

 
Fig. 2 

 

 

 

Fig 2: Effect of a 5 min pre-incubation with the tested compound on capsaicin (100 nM)-induced 

Ca2+ elevation in HEK-293 cells over-expressing the human TRPV1. The effect on [Ca2+] i exerted 

by capsaicin 100 nM alone was considered as 100%.  



 
 

Fig 3: KYS-05090 modulates capsaicin-evoked currents. 

(Upper panel) Representative current responses to consecutive applications of 1 µM capsaicin 

without or with an intervening 3-min incubation of KYS-05090 (10 µM) in acutely dissociated 

dorsal root ganglion neurons from adult mice. 

(Lower panel) Ratio of the second to the initial peak capsaicin response (mean ± SEM) in the 

absence or presence of an intervening KYS-05090 (10 µM) application. Capsaicin-evoked currents 

were significantly reduced after 3-min KYS-05090 pre-treatment (p < 0.0001, compared with no 

KYS-05090 treatment, n=4).  

 
 

Fig. 4 

 



 

 

Fig 4: Effect on intracellular Ca2+ elevation in HEK-293 cells over-expressing rat TRPM8. Data are 

expressed as % of the effect observed with 4 µM ionomycin 

 

Table 1. Structures and in vitro activity of studied compounds. 

Code Structure 
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IC50, µM 
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0.1 µM 
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treated 
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TRPV1 

EC50, µM 

(efficacy at 
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NA = not active 
Table 2. Structures and in vitro TRPM8 activity of studied compounds. 

 

Code Structure 

TRPM8 

IC50, µM 

vs icilin 0.25 µM 

TRPM8 

EC50, µM 

(efficacy at 100 µM) 
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(31.1 ± 1.7) 

KYS-05090 

N

N

N N

HN
O

 

11.0 ± 0.8 
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