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This study is aimed at the development of a model for an experimental vapour-phase fungi bioreactor, which could be derived in
a simple way using the available measurements of a pilot-plant reactor, without the development of ad hoc experiments for the
evaluation of fungi kinetics and the estimation of parameters related to biofilm characteristics. The proposed approach is based on
hybrid models, obtained by the connection of the mass balance equation (used in traditional phenomenological models) with
a feedforward neural network (used in black-box modelling), and the proper use of statistical tools for the model assessment
and system understanding. Two different hybrid models were developed and compared by proper performance indexes, and their
capability to predict the biological complex phenomena was demonstrated and compared to that of a first-principle model.

1. Introduction

The harmful effects of the emissions of volatile organic
compounds (VOCs) on the environment and human health
have prompted the development of a wide range of off-
gas treatment technologies [1]. The degradation of pollutant
compounds by means of biological systems is attractive for
several reasons: low cost of the process, absence of toxic
by-products, ambient condition for operation, and high
efficiency of the process.

Among the different biodegradation methods, biofiltra-
tion is emerging because of its efficiency to treat large
volume of air contaminated by volatile organic compounds
(VOCs) [1–3]. In this context, fungi-based biofiltration can
support an enhanced mass transfer of hydrophobic VOCs
due to the high hydrophobicity of the fungal cell wall and
the ability of fungi to colonize with their aerial hyphae the
empty space in the biofilter [4]. The possibility of using
such processes for industrial applications depends on the
availability of good knowledge of the complex phenomena
occurring in the biological systems; therefore a considerable

effort in bioprocess modeling has been done [5–9]. The
implementation of system models is a support for design,
management, and process control purposes.

Traditionally, biofilter models are based on mass balance
principles and require a good knowledge of the underlying
physics of the process such as information on specific growth
rate of microbes, biofilm thickness and density, values of
diffusivity, partition coefficient, yield, and biofilm distribu-
tion [9]. Significant efforts have been done on developing
methods and equations to estimate key design parameters
of biofiltration processes such as Henry constants, interfacial
areas, and active biomass in biofilters [10]. It is worth noticing
that the achievement of a precise and reliablemodel requires a
high experimental effort, sometimes with elaborate technical
facilities and expertise in order to properly estimate model
parameters. For instance, Dorado et al. [11] evidenced that
the determination of kinetic parameters is a demanding task,
due to the difficulty to reproduce the experimental system
and the necessity of calibrating each model for each specific
experimental condition. Even if the use of first-principle
models proposed in literature is generally able to give a good
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description of the considered biofilter system [8–11], a limited
understanding of the biological processes along with the high
uncertainties in themodel parameter estimationmay restrain
the applications of such models.

The aim of the present work is to propose a simplemodel-
ing approachminimizing themeasurement and experimental
effort, while retaining model efficiency. Within this purpose,
data-driven (or black-box) models are a possible alternative
to describe the biological complex systems, with the advan-
tage that, in principle, they can be constructed without any
knowledge on the process, if a proper amount of data is
available. In particular, neural networks (NNs) have shown
good reconstruction capabilities in different application fields
[12–15] and, recently, in the modeling of biological waste-
gas treatment systems [16–21]. As well underlined by Rene
et al. [19], the main issues with black-box models concern
(i) the availability of a large amount of data from which
it is possible to extract the information on the underlying
system, (ii) the choice of the network architecture, and (iii)
the selection of input variables from which it is possible to
infer the process outputs. Sometimes, it may be convenient
to take advantage of the a priori knowledge of the nonlinear
system using the macroscopic balances (i.e., mass, energy
balances) and introducing NNs only for the description
of some phenomena. The resulting model is called hybrid
[19, 22–24], and it has proved to be successful for dynamic
systems, with better generalization features and, in addition,
identifiable with a reduced set of data with respect to a black-
box equivalent model. To our best knowledge, such hybrid
models have been recently applied to waste-water treatment
bioreactors [25] and food technology [26, 27] but never to a
gas-phase bioreactor.

In previous works [9, 28] the authors applied a phe-
nomenological model to a bioreactor, where hexane was
removed from a contaminated stream, and the obtained
results were compared with experimental data. The biofiltra-
tion process was conducted in a vapor-phase fixed-bed biore-
actor, containing a biological phase, the fungus Aspergillum
niger, immobilized on a support. Different experiments were
conducted both on the lab-scale reactor and in batch condi-
tions for assessing, respectively, fluid dynamic properties and
kinetic parameters. Even if the first-principlemodel allowed a
good reconstruction of the average removal efficiency of the
biofilter at different pollutant loads, model uncertainty was
evidenced through sensitivity analysis, showing that partition
coefficient, maintenance coefficient, and available specific
surface, which had been determined partly by theoretic
and simulation approach, were the parameters with greatest
influence on the final removal efficiency of the bioreactor.

Following these premises, the aim of this work is to
propose an alternative modeling approach based on the
available measurements easily acquired in a vapor-phase
fungi pilot plant. For this purpose, the first-principle model
previously developed [28] has been modified by introducing
a neural network for the description of the removal rate of
the pollutant, which represents the most difficult modeling
task, because it requires the determination of the specific
kinetic rate expression (which is usually a complex function
of state variables) and of the distribution of the nonuniform

biofilm coverage.This information on the reacting biosystem
was extracted from the input-output experimental data of the
pilot plant, using a neural network in two different hybrid
models: (i) a heterogeneous model where the neural network
describes the kinetic rate in the biological phase and (ii) a
homogeneousmodel where the neural networks approximate
the flux of hexane at the biolayer/air interface. The two
different structures have been compared and the assessment
of the models has been aided by using proper statistical tools.

2. Experimental Apparatus and Conditions

A lab-scale bioreactor inoculated with a strain of Aspergillus
nigerwas used for the treatment of an artificially polluted hex-
ane airstream.The system consisted of two identical columns
connected in series; therefore reactor performance could
refer either to each single column (single configuration) or
to a unique reactor of double length (double configuration).
Each column was a jacketed glass column of overall height
0.40m, internal diameter 25mm, with a stainless steel net
at 40mm from the bottom to sustain the packing material
(expanded clay in granular form with average Ø 3–5mm)
and sampling ports for the substrate and air supply and
for the outlet gas flow. The contaminated air-stream was
artificially created by mixing two distinct flows supplied by a
compressor: the first one was passed through a humidifying
system; the second one was made air sparging in a vessel
containing liquid hexane at 30∘C. The gas flow rate was set
to 4⋅10−3m3/h, corresponding to an empty bed residence time
(EBRT) of 159 sec. Optimal EBRT should be in the range from
15 to 60 sec, but the minimum value is actually dictated by
the given set of off-gas composition and filter conditions, the
pollutant RE, or maximum outlet concentration allowed by
regulations. In our case preliminary trials with a double flow
rate and corresponding EBRT of 80 sec had brought to an
almost zero RE and poor mycelium development [28].

Even if the system was located in a conditioned room
to work as close as possible to a constant temperature of
30∘C, optimal value for the fungal growth, daily monitoring
temperature showed that it varied from 19∘C to 30∘C.

More details about the bioreactor inoculation procedure,
the development of the experiments, and the results obtained
from this reactor were already reported [9, 28].

Reactor performancewas represented in terms of removal
efficiency (RE) calculated from the inlet (𝐶

𝐺0
) and outlet

(𝐶
𝐺𝑒
) gas concentration, as reported in the following:

RE =

𝐶

𝐺0 − 𝐶

𝐺𝑒

𝐶

𝐺0
. (1)

3. Modeling Approach

Starting from the first-principle model of the biofiltration
system, a hybrid model approach has been proposed where
empirical models (e.g., neural networks) are used to describe
the most critical phenomena of the considered biosystem.

3.1. First-Principle Model. Before describing the hybrid mod-
els developed in the present paper, the first-principle model
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previously proposed [9] to describe the biofiltering system of
Section 2 is recalled:
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with the following boundary conditions:
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(2c)

In the above equations 𝑆

𝐺
and 𝑆

𝐹
are the dimensionless

pollutant concentrations, respectively, in the gas phase and
in the biofilm phase, obtained by dividing the actual con-
centrations, 𝐶

𝐹
and 𝐶

𝐺
, for the inlet concentration 𝐶

𝐺0
; 𝑈
𝑔

is the superficial gas velocity; 𝜁 is the dimensionless reactor
height calculated with respect to the reactor length (ℎ/𝐻,
with ℎ being the position in the column); and 𝜂 is the
dimensionless biolayer thickness calculated with respect to
the effective one (𝜃/𝛿∗, with 𝜃 being the position in the
biolayer and 𝛿

∗ the effective biolayer thickness). The model
has six parameters related to the system fluid dynamics,
biofilm characteristics, and mass transfer:𝐷 is the dispersion
coefficient in the reactor; V is the bed porosity; 𝐷

𝑒
is the

effective diffusion coefficient of the pollutant in the biolayer;
𝐴 is the biolayer surface area per unit volume of the reactor;
𝛼 is the fraction of 𝐴 covered by the biofilm; and 𝑚 is
the pollutant air/biofilm distribution coefficient. For the
specific growth rate expression of the fungi growing on
hexane, Monod kinetics with an Andrews type inhibition
was assumed where 𝐾

𝑆
is the saturation constant; 𝐾

𝐼
is the

inhibition constant; 𝑚
𝑆
is the maintenance coefficient; 𝜇max

is the maximum specific growth; 𝑋
𝐹
is the biofilm density;

and 𝑌 is the biomass yield coefficient.
The model has many parameters, which had been evalu-

ated [9] partly through a trial-and-errormethod, partly using
the knowledge on the process obtained through experimental
data and from the literature (Table 1). The proposed model
showed good performance capabilities, but sensitivity analy-
sis evidenced model uncertainty, principally due to param-
eters related to the biological phase, which are difficult to
be experimentally evaluated. The main critical experimental
points concern the evaluation of biodegradation kinetics and
the prediction of biomass film distribution, which strongly
influence degradation and imply large data variability. This
aspect unfavorably plays in the construction of a bioreactor

Table 1: Estimation of parameters in the first-principle model.

Model parameter Estimation
𝐷 Experimental
𝐷

𝑒

Theoretical
𝛼 Experimental/theoretical
𝑉biomass Experimental/theoretical
Δ Experimental/theoretical
𝐾

𝑆

Experimental
𝑋

𝑓

⋅ 𝜇max/𝑌 Experimental
𝐾

𝐼

Theoretical/simulation
𝑚
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𝑚 Simulation
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...

...

...
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Figure 1: Scheme of the feedforward neural network.

model, which should be robust with respect to data variation
or presence of outliers. It is also important to notice that
some parameters are quite difficult to be experimentally
estimated, like the partition coefficient 𝑚, while biofilm
thickness and biofilm surface are impossible to measure and
might be only adjusted by fitting. Furthermore, the inoc-
ulated fungus Aspergillus niger can develop as filamentous
mycelium and spores, and in the previous study it was not
possible to recognize which form was responsible for hexane
degradation.

3.2. Neural Networks. A feedforward neural network (FNN)
has been used here coupled with the first-principle model,
in order to describe phenomena occurring in the biofilter
systems and related with pollutant degradation kinetics. A
general FNN is represented in Figure 1, for 𝑛

1
inputs, repre-

sented by the vector z1, and one output, z3. In more detail,
the input signals z1 are scaled by the adjustable parameters,
calledweights,𝑤

1
(𝑖, 𝑗); then all the contributions are summed

andprocessed by the activation function𝑓
𝑒
(3a).The resulting

signal, z2, is scaled by the weight 𝑤
2
(𝑖, 𝑗). Its components
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are summed and mapped into the vector z3 by the activation
function 𝑓

0
(3b):

𝑧2 (𝑖) = 𝑓

𝑒
(

𝑛1

∑

𝑗=1
𝑤1 (𝑗, 𝑖) 𝑧1 (𝑗) +𝑤1 (𝑛1 + 1, 𝑖) 𝑏) (3a)

𝑧3 (𝑖) = 𝑓

𝑜
(

𝑛2

∑

𝑗=1
𝑤2 (𝑗, 𝑖) 𝑧2 (𝑗) +𝑤2 (𝑛2 + 1, 𝑖) 𝑏) , (3b)

where 𝑏 represents the bias term.
Neural networks are data-driven models and, in prin-

ciple, it is not necessary to have a deep knowledge on the
physicochemical phenomena governing the process. They
are universal approximators [29]. Therefore they should be
able to model any nonlinear system if the proper network
structure is used, that is, the right network input variables and
the number of hidden neurons.

In this work, a knowledge-based approach supported by
statistical tools has been used to identify the inputs of the
network, which are the variables affecting the consumption
of reactant. With regard to hidden neurons, it is important to
underline that they cannot be determined from the knowl-
edge of the process, because they elaborate signals that have
lost the physical meaning of the inputs. In this case, a trial-
and-errormethod has been used for the choice of the number
of hidden units: starting from the general consideration that
a parsimonious model is preferred, the number of hidden
units has been evaluated from the simplest model, with only
one hidden neuron and adding one more neuron until a
significant change in the model performance was observed.
Then, the input and hidden layers were augmented with an
extra neuron, the bias, which provides a constant output
signal equal to one.

3.3. Hybrid Models. Considering the drawbacks underlined
for the first-principle model in Section 3.1, the aim of the
present work is finding a simple modeling approach, which
could be easily applied also to industrial bioreactors, where
the possibility of accomplishing experimental measurements
for biomass characterization is scarce. The approach pro-
posed here is based on hybrid models, obtained by the
integration of a FNN in the first-principle model ((2a)–
(2c)). Aiming at the best compromise between simplicity
of description and prediction capabilities of the model, two
different approaches have been considered to reconstruct the
biological system behavior: a heterogeneous and a homoge-
nous model.

3.3.1. Heterogeneous Hybrid Model (GM1). The identification
of the kinetic law occurring in the biological phase is one of
the most critical points when describing biological systems,
because the kinetic constants may vary significantly with
process conditions [30]. The neural network, indicated as
𝑓NN1(z1), has been therefore introduced in the reactor model
((2b)-(2c)) to estimate hexane reaction rate along with the

term 𝑋

𝐹
𝑚

𝑠
; therefore the following heterogeneous or two-

phase hybrid model is obtained ((4a) and (4b)):
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along with the boundary conditions reported in Section 3.1.
In the above formulation z

1
is the input vector of the

network (cf. Figure 1), which consists of independent selected
variables affecting the reaction rate. It will be defined later.

Theuse of a neuralmodel has the immediate consequence
that it can be applied directly on the experimental data
obtained in the reactor configuration used for the biofiltration
of the polluted stream, without the necessity of conducting
ad hoc experiments for kinetics identification and parameter
estimation, as those previously carried out [9].

3.3.2. Homogeneous Hybrid Model (GM2). A further sim-
plification of the model has been obtained by using the
neural network to describe the flux of the hexane at the gas-
biological phase interface, avoiding also the estimation of the
parameters related to the biofilm characteristics. As a result,
a homogeneous model is obtained, where the derivative of
concentration in the biological phase is modeled by a neural
network, indicated as 𝑓NN2(z1), as reported in
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+𝑓NN2 (z1) = 0. (5)

In this case only the fluid dynamic characteristics of
the system need to be estimated, and the reactor efficiency
is obtained by integrating (5) along with the boundary
condition with respect to 𝜁, reported in Section 3. Again, the
input network variables, indicated with z

1
, will be defined

later.

4. Development of the Neural Network

Theexperimental data available for parameter estimation and
neuralmodel validationwere 290 outlet concentration values,
at constant gas flow rate of 4⋅10−3m3 h−1, according to the
single and double configuration, at different inlet concentra-
tion and temperature values, spanning, respectively, from 1
to 20 gm−3 and from 19 to 30∘C. All the used concentration
values were collected at regime condition, that is, when,
after an adaptation period of about two weeks, biomass
development was not visually observed anymore and steady-
state conditions could be assumed [9].

Data have been randomized and divided into training
(90%) and test (10%) set. The former series has been further
divided into two different sets, one set for parameter estima-
tion (80%) that means the proper training and one set (10%)
for cross-validation. The latter data set is used in order to
assure generalization capability of the neural model [29]. In
more detail, the training phase is stopped when the objective
function calculated on the cross-validation data reaches the
minimum.
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The number of data points used for the development of
the hybrid models is on average a high number compared
to the other artificial neural network models developed for
different waste-gas treatment systems [19] and it matches the
requisite that data-driven model needs a high number of
experimental patterns in order to give a good estimate of the
process.

The training of the network has been developed bymeans
of the Levenberg-Marquardt optimization algorithm. Unlike
more common applications of neural network modeling, the
variables to be estimated, which are reaction rate (GM1) and
pollutant flux at the air/biolayer interface (GM2), are not
experimentally measured; therefore FNN parameter estima-
tion has been based on the error between the experimental
and calculated concentration at the reactor exit. The latter
is obtained through the integration of the reactor model,
assuming that the error between the experimental and cal-
culated concentration is exclusively due to reaction rates for
GM1 and due to the hexane flux for GM2. In particular, the
following objective function Φ(w) has been used for both
models:

Φ (w) =
𝑁
𝑡

∑

𝑖=1
[

(𝐶

𝑒

𝐺

(𝑖) − 𝐶

𝑐

𝐺

(𝑖))

𝐶

𝑒

𝐺

(𝑖)

]

2

,

(6)

where w represents the weights (parameters) of the neural
model, 𝑁

𝑡
is the number of data used for the training,

and 𝐶

𝑒

𝐺

(𝑖) and 𝐶

𝑐

𝐺

(𝑖) are, respectively, the experimental and
calculated concentration at reactor exit.

The minimum search was accomplished for every net-
work structure considering one hundred initial w vector
values, randomly generated, and considering those weights
leading to the lowest error calculated on cross-validation
set. This approach solves the problem of generalization, that
is, the obtainment of good performance with data that do
not belong to the training set [29]. The cross-validation was
also used to examine the prediction capabilities of neural
network with respect to sample variation and to assess model
robustness.

The development of the neural kinetic model should
capture, as well as possible, the essential characteristics of the
functional relationships between inputs (i.e., concentration
and temperature) and outputs (reaction rate). In other words,
the neural kinetic model must also provide consistent deriva-
tives of the reaction rate with respect to the concentration and
temperature.

5. Selection of the Model

The construction of the two neural models has been accom-
plished selecting the model inputs, the number of hidden
neurons, and the activation functions. The selection of the
best structure has been based on the following performance
indexes evaluated on the training data:

(i) Coefficient of determination 𝑅

2, which measures the
variance explained by the model and defined as

𝑅
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where 𝐶

𝐺
is the average concentration value calcu-

lated for the 𝑁

𝑡
experimental points of the training

set;
(ii) Standardized residuals, 𝑑(𝑖), which indicates if there

are deterministic features that have not been pre-
dicted by the model, defined as [31]
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2
, (8)

where𝑁
𝑤
is the number of neural model parameters.

Nonrandom behavior of residuals with respect to
calculated RE reveals the inadequacy of the model to
capture system behavior. The Kolmogorov-Smirnov
test is also used to assess the goodness of fit [32–34].

5.1. Selection of NN Structure in GM1. The use of neural
network in the two-phase model GM1 allows using a priori
information on the reactor fluid dynamics and biofilm phase.
In particular, the following parameters previously reported
[9] have been used: 𝐷, 𝐷

𝑒
, 𝐴, 𝛼, 𝛿∗, and 𝑚. The kinetic law

has been, on the other hand, extracted from the experimental
data using the proper input variables, in particular hexane
concentration in the biofilm and reactor temperature. The
results obtained for the training showed that temperature
does not affect the reaction rate in the considered experi-
mental conditions, confirming the correctness of isothermal
assumption in the phenomenological model [9].

The selection of the hidden neurons has been established
by varying the number of neurons in the range 1–4 and the
best structure, consisting of two hidden neurons, has been
selected on the basis of residual analysis and 𝑅

2. Training
results evidenced better model behavior when a sigmoidal
and a linear activation function were used, respectively, for
input and hidden neurons instead of using the nonlinear one
for both the layers. The analytical forms of the activation
functions are reported in

𝑓

𝑒
=

1
1 + 𝑒

−(∑

𝑛1
𝑗=1 𝑤1(𝑗,𝑖)z1(𝑗)+𝑤1(𝑛1+1,𝑖)𝑏)

𝑓

𝑜
=

𝑛2

∑

𝑗=1
𝑤2 (𝑗, 𝑖) z2 (𝑗) +𝑤2 (𝑛2 + 1, 𝑖) 𝑏.

(9)

A summary on the structures and performance indexes
for different network is reported in Table 2, while Figure 2(a)
shows the results obtained for the training data set in terms
of comparison between experimental removal efficiency (RE)
and calculated ones.

It is worth noting that the variability of the data is quite
large due to the variations of biomass activity with respect
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Table 2: Network structure and performance indexes of the two hybrid models.

Model Model inputs Needed parameters Input neurons Hidden neurons Training Test
𝑅

2 MSE 𝑅

2 MSE
GM1 𝐶

𝐹

𝐷,𝐷
𝑒

, 𝐴, 𝛼, 𝛿∗,𝑚 1 2 0.824 0.0076 0.83 0.0059
GM2 𝐶

𝐺0

, 𝐶
𝐺

𝐷 2 2 0.844 0.0067 0.88 0.004
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Figure 2: Training results (removal efficiency RE versus inlet pollutant concentration 𝐶

𝐺0

) for heterogeneous hybrid model GM1: (a)
comparison between experimental (one reactor configuration: [∗], two reactors’ configuration: [+]) andGM1 data (one reactor configuration:
[◻], two reactors’ configuration: [I]) and (b) standardized residuals with respect to predicted RE (one reactor configuration: [◻], two reactors’
configuration: [I]).

to inlet pollutant concentration, as evidenced in [28]. The
hybrid model GM1 follows a medium trend of the RE with
respect to the inlet hexane concentration. Modeling errors
may exceed the measurement error that is equal to 5%, but
it is important to underline that the estimated RE correctly
tends to unity, for both reactor configurations, as 𝐶

𝐺0
tends

to zero.
Furthermore, a measure of the quality of the fitting is

obtained plotting the standardized residuals with respect to
the calculated RE (Figure 2(b)). The trend appears without a
deterministic structure, indicating that the obtained model
captures the essential features of the data.The data contained
in the region (−2, 2) are more than the 95% of the total
amount of data used for training, indicating that residuals can
be reasonably modeled as an outcome of a random normal
value. This is also corroborated by the Kolmogorov-Smirnov
test [33, 34] which does not reject the null hypothesis of
Gaussian assumption of the residuals with a significance level
of 5%.

5.2. Selection of the NN Structure for GM2. The neural
network used in the homogeneous model has to describe
two steps of the hexane degradation; in particular it should
extract from the experimental data the phenomenon of both

adsorption and reaction in the biological phase. On the other
hand, GM2 needs less information on the biological phase
and kinetics, therefore requiring a minor experimental effort
in terms of ad hoc experiments and sophisticated system
analysis. In particular, only the dispersion coefficient (𝐷) has
been used (5).

The selected network inputs are inlet hexane concentra-
tion and concentration of hexane along the reactor. Again,
results do not evidence temperature effects on RE, leading to
a network with two inputs.

The number of hidden neurons leading to the best results
has been, in this case, equal to two and, again, a sigmoidal
and a linear activation function have been used, respectively,
in the input and hidden neurons.

The principal aspects of GM2 model are reported in
Table 2, and the results for the training set are shown in
Figure 3(a). As for GM1, modeling errors may be higher
than measurement errors, but it is important to note that
residuals (Figure 3(b)) again seem randomly disposed with
respect to the estimated variable, and the amount of residuals
enclosed in the (−2, 2) region is less than 95%. Applying
the Kolmogorov-Smirnov test [33, 34] to residuals with a
significance level of 5% the null hypothesis of Gaussian
assumption is again not rejected.
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Figure 3: Training results (removal efficiency RE versus inlet pollutant concentration 𝐶

𝐺0

) for homogeneous hybrid model GM2: (a)
comparison between experimental (one reactor configuration: [∗], two reactors’ configuration: [+]) andGM2 data (one reactor configuration:
[◻], two reactors’ configuration: [I]) and (b) standardized residuals with respect to predicted RE (one reactor configuration: [◻], two reactors’
configuration: [I]).

6. Test Results

The ability of the two hybrid models to predict the biofil-
tration system behavior has been evaluated by comparing
calculated values with the experimental data selected for
testing purposes. To analyze the model performance for a
wide range of pollutant inlet concentration, the interval of
variation of 𝐶

𝐺0
1–20 gm−3 has been divided into nineteen

subintervals of unitary length. Test data (10% of all the data
points) have been randomly selected with more than one
sampling from intervals with larger amount of data. Because
those data have not been used during the network training,
this comparison shows the performance of the developed
models in unknown situations.

The test ofGM1 is reported in Figure 4, where the removal
efficiency calculated with the hybrid model for the single
(Figure 4(a)) and double (Figure 4(b)) configuration reactor
is compared with the experimental data, with a mean square
error for the total points equal to 0.0059. Considering the
significant variability of the experimental RE used for train-
ing and validation of themodel, the capability reconstruction
of the hybrid model is quite good. This is also evidenced by
the closeness of GM1 estimation with the RE calculated using
the first-principle model [28], which has a mean square error
equal to 0.0064.Thismeans that the information contained in
the data available at reactor exit allows a good reconstruction
of the kinetic law, which rules hexane degradation in the
biofilm phase. As a further confirmation of the capability of
the hybrid model approach, the kinetic rate predicted by the
neural model and that obtained in [9] (cf. (2b)) are reported
in Figure 5. Even if a mismatch exists in the estimation of

the two models, the qualitative behavior of the kinetic law is
well reproduced using only concentration data calculated in
one point of the reactor.This result indicates the possibility of
using this approach to obtain information on the functional
form of a kinetic law, when this is unknown for the problem
at hand.

The GM2 test results are reported in Figures 6(a) and
6(b), where the comparisonwith the experimental data shows
again discrete performance of the model. In this case the dis-
tance between the hybrid model and the experimental data is
smaller than in the previous case, themean square error being
equal to 0.004, but there is bigger mismatch with the first-
principle model. This is because GM2 used only information
on the system fluid dynamics, extracting all the information
regarding biofilm characteristics, kinetics, and mass transfer
phenomena from the experimental data (Table 2), with the
advantage of reducing ad hoc experiments and avoiding the
use of difficult analytical procedures to calculate the model
parameters related to the biofilm characteristics.

7. Conclusions

The modeling problem of a gas-phase bioreactor was solved
by resorting to hybrid models, a combination of material
balances (used in traditional phenomenological models)
and neural networks used to describe the most complex
phenomena present in the process. Two different options
were investigated: (i) a heterogeneousmodelwhere the neural
network describes the rate of consumption of the pollutant
in the biological phase and (ii) a homogenous model where
the neural network reconstructs the flux of the hexane at
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Figure 4: Test results (removal efficiency RE versus inlet pollutant concentration 𝐶

𝐺0

): comparison among heterogeneous hybrid model [I],
first-principle model [Δ], and experimental data [+] for (a) single and (b) double configuration reactor.
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the phenomenological model as (𝑋
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).

the interphase, avoiding the integration of the mass balance
in the biological phase. Model construction was based on a
large amount of experimental data, characterized by a large
variability, from which both the hybrid models were able
to capture the deterministic features of the observations (as

demonstrated by residual analysis). It is worth noting that the
neural model has not been used in the traditional way, where
it is trained to model directly observed variables. In fact, in
the present paper the kinetic rate or the mass transfer term
was not measured; therefore the neural networks had to learn
their functionality by using an indirect measure, which was
the outlet pollutant concentration.

The main contribution of the proposed modeling
approaches is the reduction of time and resources necessary
to conduct experimental activities aimed at the identification
of kinetic law and mass transfer phenomenon for the
bioreactor, which are the most demanding task when
modeling biological systems. The satisfactory reconstruction
capabilities of the neural networks in both the heterogeneous
and homogeneous model have been demonstrated by
comparing hybrid models predictions with the ones
obtained using the first-principle model. The good match
between the predictions indicates that neural networks are
able to extract information on specific complex phenomena
from the simple observations of the laboratory reactor
exit concentration. Furthermore, through the analysis of
residuals [31, 32] and Kolmogorov-Smirnov [33, 34] test
applied to the hybrid models, it was possible to corroborate
the isothermal assumption used in the phenomenological
model.

Results evidenced that the behavior of the heterogeneous
model was closer to that of first-principle model compared to
the homogenous one, with good prediction of the reaction
rate law. This model should, then, be recommended. On
the other hand, the homogenous model used less a priori
information on the biosystem, which might imply a possible
reduction of performance when used at different operating
conditions (e.g., changes of gas flow rate). To overcome this



Mathematical Problems in Engineering 9

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RE

CG0 (g/m3)

(a)

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RE

CG0 (g/m3)

(b)

Figure 6: Test results (removal efficiency RE versus inlet pollutant concentration 𝐶

𝐺0

): comparison among homogeneous hybrid model [I],
first-principle model [Δ], and experimental data [+] for (a) single and (b) double configuration reactor.

limitation, a proper experimental campaign (i.e., with ad hoc
trials at different flow rates) followed by model recalibration
could be carried out to improve description model capabili-
ties and obtain a wider applicability. This approach is easier
to be implemented in a full-scale industrial plant making the
homogenous model preferable to the heterogeneous one.

The proposed methodology allows the construction of
parsimonious models, which are useful for on-line appli-
cation, and also requires less computational time during
training. In particular, hybrid models based on neural net-
works can be useful for process monitoring purposes in
case of delayed concentration measurements, where it is
advantageous to have a simple tool to fast recognize if the
system is going out of control and take corrective measures.
Furthermore, the availability of the model can give an
effective tool for on-line optimization of the process.

Nomenclature

𝐴: Biolayer surface area per unit volume of the
reactor (m−1)

𝐶

𝐺
: Concentration of the pollutant in the air at
position ℎ along the biofilter (g/m3)

𝐶

𝐺
: Average concentration value calculated for the
experimental points of the training set (g/m3)

𝐶

𝑒

𝐺

: Experimental concentration
𝐶

𝑐

𝐺

: Calculated concentration
𝐶

𝐺0
: Concentration of the pollutant in the air at the
inlet of the biofilter (g/m3)

𝐶

𝐺𝑒
: Concentration of the pollutant in the air at the
outlet of the biofilter (g/m3)

𝐶

𝐹
: Concentration of the pollutant at a position 𝜃 in

the biolayer at a point ℎ along the column (g/m3)

𝐷: Dispersion coefficient in the reactor (m2/h)
𝐷

𝑒
: Effective diffusion coefficient of the pollutant in

the biolayer (m2/h)
𝐻: Reactor height (m)
𝐾

𝐼
: Inhibition constant (g/m3)

𝐾

𝑠
: Saturation constant in the specific growth rate

expression of a culture growing on the
pollutant (g/m3)

𝑁

𝑡
: Number of experimental points

𝑁

𝑤
: Number of neural model parameters

𝑅

2: Coefficient of determination
RE: Removal efficiency
𝑆

𝐺
: Dimensionless pollutant concentration in the

gas phase (𝐶
𝐺
/𝐶
𝐺0
)

𝑆

𝐹
: Dimensionless pollutant concentration in the

biological phase (𝐶
𝐹
/𝐶
𝐺0
)

𝑈

𝑔
: Superficial gas velocity (m/h)

𝑌: Yield coefficient of the culture on the pollutant
(g-biomass/g-compound)

𝑋

𝐹
: Biofilm density (g-dry cells/m3 biofilm)

𝑏: Bias term of the neural model
𝑓

𝑒
: Activation function of the hidden neurons

𝑓

𝑜
: Activation function of the output neurons

𝑓NN1(𝑧): Neural network for the heterogeneous hybrid
model

𝑓NN2(𝑧): Neural network for the homogeneous hybrid
model

ℎ: Position in the column; ℎ = 0 at the entrance
and ℎ = 𝐻 at the exit

𝑚

𝑆
: Maintenance coefficient (g-hexane/g-biomass/

h)
𝑚: Pollutant air/biofilm distribution coefficient
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𝑝

𝑟
: Parameter vector related to kinetics

𝑤

1
(𝑗, 𝑖): Weight connecting 𝑗th input and 𝑖th hidden

neuron
𝑤

2
(𝑗, 𝑖): Weight connecting 𝑗th hidden neuron and 𝑖th

output neuron
𝑥: Dimensionless biolayer thickness (𝜃/𝛿∗)
𝑧: Dimensionless reactor height (ℎ/𝐻)

z1: Input vector of neural network
z
2
: Signal vector of neural network from the

hidden to the output layer
z
3
: Output vector of neural network.

Greek Letters

𝛼: Fraction of 𝐴 covered by the biofilm
𝛿

∗: Effective biolayer thickness (m)
𝜂: Dimensionless biolayer thickness (𝜃/𝛿∗)
𝜇max: Maximum specific growth rate (h−1) in Monod

kinetics, kinetic constant in Andrews kinetics
(Monod-type equation with substrate
inhibition)

]: Bed porosity position in the biolayer (m), 𝜃 = 0

at the air/biofilm interface and 𝜃 = 𝛿

∗ at the
biofilm/support interface

𝜁: Dimensionless reactor height (ℎ/𝐻).
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