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Abstract: Extended Thermodynamics of dense gases is characterized by two hierarchies
of field equations, which allow one to overcome some restrictions on the generality of
the previous models. This idea has been introduced by Arima, Taniguchi, Ruggeri and
Sugiyama. In the case of a 14-moment model, they have found the closure of the balance
equations up to second order with respect to equilibrium. Here, the closure is obtained up to
whatever order and imposing only the necessary symmetry conditions. It comes out that the
first non-symmetric parts of the higher order fluxes appear only at third order with respect
to equilibrium, even if Arima, Taniguchi, Ruggeri and Sugiyama found a non-symmetric
part proportional to an arbitrary constant also at first order with respect to equilibrium.
Consequently, this constant must be zero, as Arima, Taniguchi, Ruggeri and Sugiyama
assumed in the applications and on an intuitive ground.

Keywords: extended thermodynamics; dense gas; moments equations



Entropy 2015, 17 7053

1. Introduction

One of the challenging tasks of modern research is that of modeling non-equilibrium phenomena in
which steep gradients and rapid changes occur. Two complementary approaches have been followed in
this regard, the kinetic approach and the continuum approach. Here, we follow this second approach, in
particular by using the extended thermodynamics (ET) framework, which has many undisputed physical
and mathematical advantages.

The first ideas in this regard were proposed by Müller [1] and were based on the modification of the
Gibbs relation. Following Ruggeri’s criticism [2], a new version was proposed by Liu and Müller [3]
and, subsequently, for the relativistic case, by Liu, Müller and Ruggeri [4]; more recent papers in this
framework are [5–23].

However, the internal structure of ET implies so strong restrictions to allow only particular state
functions; for example, the function p = p(ρ, T ) relating the pressure p with the mass density ρ and
the absolute temperature T was determined, except for a single-variable function, so that it was adept
at describing only particular gases or a continuum (this situation is indicated in Equation (7.9) of [3],
for example).

A new approach has been proposed in [24] and other articles, such as [25–38], which overcomes this
problem by considering two blocks of balance equations. In this framework, we have recently studied
two different cases: one deals with rarefied polyatomic gases [37], even if the reduced set of applicability
is not indicated in the title of that paper. The other one is presented here and deals with dense gases.
These two cases are like two branches of the same tree; consequently, the description of their common
trunk is the same, and we report it here for the sake of completeness, but with the prospect of the new
application. We will address below the new points of the present article, for example after Equation (5)
and four lines after Equation (9). The results will be expressed in terms of a function H , which will
result in the sum of the corresponding expression in [37] and of a new incremental term; the present
study aims to find this new term.

Therefore, let us begin with the description of the above-mentioned common trunk; in particular, in
the 14-moment case treated in [24], the two blocks of balance equations are:

∂tF + ∂kF
k = 0, ∂tF

i + ∂kF
ki = 0, ∂tF

ij + ∂kF
kij = P ij, (1)

∂tG+ ∂kG
k = 0, ∂tG

i + ∂kG
ki = Qi ,

here (1)1,2 are the conservation laws of mass and momentum, while (1)4 is the conservation laws of
energy. The block (1)1−3 is called the “mass block” while (1)4,5 is called the “energy block”.

Equation (1) can be written in a more compact form as:

∂tF
A + ∂kF

kA = PA, (2)

where FA = (FN , GE), F kA = (F kN , GkE), PA = (PN , QE).

In Equation (2), the constitutive functions F kij , Gki, P ij , Qi appear. Restrictions on their
generalities are obtained by imposing the entropy principle, the symmetry conditions and the Galilean
relativity principle.
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The first of these principles can be exploited through Liu’s theorem [39] and by using a bright
idea conceived of by Ruggeri [40]; so, it becomes equivalent to assuming the existence of Lagrange
multipliers µA, which can be taken as independent variables, and after that, we have:

FA =
∂h′

∂µA
, F kA =

∂h′k

∂µA
, (3)

which expresses all of the moments in terms of only two unknown functions, the four-potentials h′, h′k.
A consequence of Equation (3) is that the field equations assume the symmetric form, thus assuring
hyperbolicity if h′ is a convex function of its variables.

Other restrictions are given by the symmetry conditions, that is the flux in each balance equation is
equal to the independent variable in the subsequent equation, except for the flux in the last equation of
the mass block and of that in the energy block. Moreover, F ij is a symmetric tensor.

Thanks to Equation (3), these conditions assume the form:

∂h′

∂µi
=
∂h′i

∂µ
,

∂h′

∂µij
=
∂h′i

∂µj
,

∂h′

∂λi
=
∂h′i

∂λ
, (4)

(where we have assumed the decomposition µA = (µ,µi,µij, upλ, λi) for the Lagrange multipliers) and
µij is a symmetric tensor.

Eventual supplementary symmetry conditions are those imposing the symmetry of the tensors F kij

and Gki and are motivated by the kinetic counterpart of this theory. Thanks to Equation (3), these
conditions may be expressed as:

∂h′[k

∂µi]j
= 0,

∂h′[k

∂λi]
= 0. (5)

These supplementary symmetry conditions were not imposed in [24] because in that article, the
phenomenological approach was adopted in order to construct the extended thermodynamics of dense
gases. After the development of this theory, the kinetic theoretical approach was proposed in [28], but
only for rarefied polyatomic gases, not dense gases. For this reason, in the balance Equation (1), the
moments appear as a distribution function, which is generalized, so that it depends also on an internal
energy parameter I; as a consequence, the supplementary symmetry condition Equation (5) has to be
imposed for this case.

In [37], the general solution has been found up to whatever order with respect to the equilibrium of the
condition Equations (4) and (5) and of the below reported Equation (6). Therefore, the general solution
for the rarefied polyatomic gases has been completely exploited.

In the present article, we aim to obtain the general solution without imposing the supplementary
condition Equation (5) in order to have the model for dense gases and in agreement with the article [24].

The next conditions come from the Galilean relativity principle. A natural way to impose this
principle is described in [33] for the 18-moment model. It extends, to the two-block theory, the
method described in [41] with the further deepening of [42] for the old one-block theory. The resulting
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Equations (13) and (14) of [33] contain two additional variables with respect to the present model, that
is µill and λll; by making these variables equal to zero, we obtain the counterpart for our model, that is:

∂h′

∂µ
µi +

∂h′

∂µh
(2µih + 2λδhi) + 2

∂h′

∂µhi
λh +

∂h′

∂λ
λi = 0 , (6)

∂h′k

∂µ
µi +

∂h′k

∂µh
(2µih + 2λδhi) + 2

∂h′k

∂µhi
λh +

∂h′k

∂λ
λi + h′δki = 0 .

Now, by using Equation (4), we note that the derivative of (6)1 with respect to µk is equal to the
derivative of (6)2 with respect to µ; similarly, the derivative of (6)1 with respect to λk is equal to the
derivative of (6)2 with respect to λ.

Consequently, the left-hand side of Equation (6)1 is a vectorial function depending only on two scalars
µ, λ and on a symmetric tensor µij . For the representation theorems [43,44], it can be only zero, and for
this reason, we do not need to impose (6)1.

This result, combined with the above conditions coming from the entropy principle and the symmetry
conditions, will be that a scalar function H exists, such that:

h′ =
∂H

∂µ
, h′i =

∂H

∂µi
. (7)

∂2H

∂µ∂µij
=

∂2H

∂µi∂µj
,

∂2H

∂µ∂λi
=

∂2H

∂λ∂µi
. (8)

∂2H

∂µ∂µk
µi + 2

∂2H

∂µ∂µkj
µji + 2

∂2H

∂µ∂µki
λ + 2

∂2H

∂µk∂µij
λj +

∂2H

∂µ∂λk
λi +

∂H

∂µ
δki = 0 . (9)

The challenge is now to find the general solution of our conditions, up to whatever order with respect
to equilibrium. This is defined as the state where µi = 0, µij = 0, λi = 0, so that the only non-zero
variables are µ and λ.

Now, in [37], the general solution has been found, up to whatever order with respect to equilibrium,
of the condition Equations (8) and (9) and also of Equation (5); but, for a closer agreement with the
article [24], we want now to do this without imposing Equation (5).

However, although it may seem strange, with less conditions, the calculations become heavier! In
fact, if it was possible to use the condition Equation (5), then the function H can be expressed as a
sum of a function, which has derivatives that are symmetric tensors (so that we can also easily write its
expansion), and of a function depending only on µab, λ, λc (so that it does not contribute to Equations (5),
(8) and (9).

Now, in the present article, we cannot use this property, because we do not have the constraint
Equation (5). To overcome this difficulty, we proceed as follows. Firstly,

1. We show a particular solution of Equations (8) and (9).

It is H = H1, where:

H1 =
0···∞∑
p,q

∑
r∈Ip

1

p!

1

q!

1

r!

(p+ 2q + r + 1)!!

p+ 2q + r + 1

∂r+p

∂λr∂µp

[(
−1

2λ

)q+ p+r
2

ψ p+r
2

]
· (10)

·δ(i1···iph1k1···hqkqj1···jr)µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · ·λjr ,
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and ψn(µ, λ) is a family of functions constrained only by:

∂

∂µ
ψn+1 = ψn for n ≥ 0 . (11)

In Equation (10), the symbol r ∈ Ip means that the summation is limited to the values of r, such
that r + p is even.

In Appendix 1, the proof is reported for the fact that H = H1 is a solution of Equations (8) and
(9). Moreover, (H1)eq. = ψ0(µ, λ), which is an arbitrary two-variable function, such as Heq..

So we can identify ψ0(µ, λ) = Heq. and define ∆H = H −H1 . (12)

In this way, the condition Equations (8) and (9) become:

∂2∆H

∂µ∂µij
=

∂2∆H

∂µi∂µj
,

∂2∆H

∂µ∂λi
=
∂2∆H

∂λ∂µi
, (13)

∂2∆H

∂µ∂µk
µi + 2

∂2∆H

∂µ∂µkj
µji + 2

∂2∆H

∂µ∂µki
λ+ 2

∂2∆H

∂µk∂µij
λj +

∂2∆H

∂µ∂λk
λi +

∂∆H

∂µ
δki = 0

and we have also (∆H)eq. = 0 . (14)

Now, an interesting consequence of Equations (13) and (14) is that:
Property 1: “ The expansion of ∆H up to order n ≥ 1 with respect to equilibrium is a polynomial
of degree n− 1 in the variable µ.”

We report in Appendix 2 the proof of the property.

Now, a well-known elementary mathematical property is that the Taylor expansion of a polynomial
is not an approximate expression of that polynomial function, but is exactly equal to it. We can
also assume an expansion of infinity order for that polynomial, with zero coefficients for the terms
of order greater than the degree of the polynomial itself.

Moreover, we have deduced this property from Equations (13) and (14); consequently, it will be
not necessary to take into account what coefficients are zero, since on the resulting expansion, we
will impose again Equations (13) and (14).

Thanks to these properties, it is not restrictive to assume for ∆H a polynomial expansion of infinity
order in the variable µ; this fact allows us to treat the variable µ as the other Lagrange multipliers
µi and µij of the block (1)1, because we had already a polynomial expansion for them.

Therefore, even if µ is not zero at equilibrium, as concerns ∆H , we can do an expansion also
around µ = 0; obviously, the situation is different for the particular solution H1 reported in
Equation (10). Therefore, the physical meaning of a non-polynomial expression in the variable
µ remains charged only to the solution H1.
The next step with which we proceed is the following one:

2. We note that ∂
2∆H
∂µ2 has symmetric tensors as derivatives.

The details in this regard are reported in Section 2, and also, they will imply the following
expression for ∂∆H

∂µ
:
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∂∆H

∂µ
=

0···∞∑
p,q,s

∑
r∈Ip

1

p!

1

q!

1

r!

1

s!
ϑp,q,r,s(λ)µsδ(i1···iph1k1···hqkqj1···jr) (15)

µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · ·λjr + +H∗0(µab, λ, upλc) .

with:

ϑ0,q,r,0(λ) = 0, ϑ0,0,0,s(λ) = 0 for s ≥ 0, H∗0(0ab, λ, 0c) = 0 . (16)

Further restrictions are consequences of Equation (13) and will be considered in Subsection 2.1.
They are expressed by Equation (26) and will be useful for the sequel.

In Section 3, restrictions will be found for the scalar functions appearing in Equation (15),
by analyzing Equation (26) and the derivative of Equation (13) with respect to µ. In Section 4,
Equation (15) will be integrated, and arbitrary functions will arise from integration; moreover, the
condition Equation (13) (not derivated) will restrict their generality. The solution of these restrictions
will be found in Sections 5 and 6. Finally, conclusions will be drawn.

It is not difficult to report in explicit form the fields equations up to whatever order; but a very long
expression is not elegant and may give to this article the aspect of a mere database. Therefore, we prefer
to show how to write them by simple taking some derivatives without repeating the present calculations.
To this end, let us consider firstly H = H1 + ∆H with H1 given by Equation (10) and ∆H given by the
below Equation (54); then, let us write h′ and h′k from Equation (7).

After that, let us substitute them into Equation (3), which can be written in explicit form as:

F =
∂h′

∂µ
, F i =

∂h′

∂µi
, F ij =

∂h′

∂µij
, Gll =

∂h′

∂λ
, Gill =

∂h′

∂λi
,

F kij =
∂h′k

∂µij
, Gkill =

∂h′k

∂λi
. (17)

By substituting these expressions in Equation (1), we obtain partial differential equations for the
determination of the unknown functions µA(~x, t) and λA(~x, t). Finally, by substituting these last
functions into Equation (17), we obtain how the fields evolve in space and time. Someone may object
that the Lagrange multipliers have no physical meaning; this is true, but at the end, we obtain in any
case the fields FA and F kA. The situation has a counterpart in the geometry of a surface. This can be
given through parametric equations, and the parameters have no geometrical meaning, however, nobody
objects for this reason to use parametrical equations of a surface.

Obviously, from this situation, it is evident that the Lagrange multipliers are special parameters, and
in fact, for this reason, they have been called “main field” in [40].

Alternatively, (17)1−5 may be used to obtain the Lagrange multipliers in terms of F , F i, F ij , Gll, Gill

and then to substitute them into (17)6−7; the invertibility is surely possible, but the resulting expressions
are very long and complicated, so that only with a computer program this is possible, after having chosen
the order in which to stop the process.

A more fine procedure is to follow the same iter, but with the Galilean invariant parts of the fields.
In this case, instead of Equation (17), we have to consider the relations:

ρ =
∂h′

∂µ
, 0 =

∂h′

∂µi
, M ij =

∂h′

∂µij
, mii =

∂h′

∂λ
, mipp =

∂h′

∂λi
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to obtain the velocity-independent parts of the Lagrange multipliers in terms of M ij , mii, mipp and of
the mass density ρ; after that, we have to substitute them into:

Mkij =
∂h′k

∂µij
, mkipp =

∂h′k

∂λi

and, finally, in Equation (8) of [24]. Furthermore, in this case, the resulting expressions are very long
and complicated and may be written only after having chosen the order in which to stop the process.

We conclude this section noting that, since the non-symmetric part of the higher order fluxes appear
only at third order with respect to equilibrium, we have that the closure up to second order satisfies all
of the symmetry conditions (also the supplementary ones), so that it is equal to that of [37]. In that
paper, it has been proven also that its results reproduce exactly those of [24] in the approximation near
the equilibrium state, provided that an arbitrary constant is considered zero, as also the authors of [24]
have done in all of the applications and on an intuitive ground. Consequently, the same thing can be said
for the present results; this gives a strong confirmation of the results in [24], because it furnishes proof
that a higher order approach does not limit also the results near equilibrium. Obviously, the article [24]
did not need this confirmation, but it will not do any harm.

For the sake of completeness, we report here the constitutive equations with the second order closure
with respect to equilibrium, which have not been achieved in [24].

Let us begin by writing the field equations in the physical variables ρ, T , vi, π, S<ij>, qi, as can be
found from Equation (9) of [24] by taking into account Equations (10)–(12) of the same article. They are:

d

d t
ρ + ρ

∂vk
∂xk

= 0, ρ
d

d t
vi +

∂[(p+ π)δij − S<ij>]

∂xj
= 0,

d

d t
(2ρε) + 2ρε

∂vk
∂xk

+ 2
∂qk
∂xk

+ 2[(p+ π)δik − S<ik>]
∂vi
∂xk

= 0

d

d t
(p+ π) + (p+ π)

∂vk
∂xk

+
1

3

∂Miik

∂xk
+

2

3
[(p+ π)δik − S<ik>]

∂vi
∂xk

= Pii,

d

d t
S<ij> + S<ij>

∂vk
∂xk
− ∂M<ij>k

∂xk
− 2(p+ π)

∂v<i
∂xj>

(18)

+

(
S<kj>

∂vi
∂xk

+ S<ki>
∂vj
∂xk
− 2

3
S<ka>

∂va
∂xk

δij
)

= −P<ij>,

d

d t
qi + qi

∂vk
∂xk

+
1

2

∂mppik

∂xk
+Mpik

∂vp
∂xk

+ qk
∂vi
∂xk

+[(p+ π)δip − S<ip>]
d

d t
vp + ρε

d

d t
vi =

1

2
Qi ,

where d
d t

denotes the Lagrangian derivative with respect to time.
The constitutive functions appearing in these equations are M ijk, mppik, besides the production terms

about which we add nothing more to what is written in [24]. We find:
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M ijk =
3

2
Kq(iδjk) + 3K1

(
S(<ij>qk) + δ(ijS<k)c>qc

)
+

3

2
K2πδ

(ijqk) − 3

2
K3δ

(ijS<k)c>qc , (19)

mppik = β1δ
ik + πδik

[
5

12

h4

h2

K − h4

2h2

∂P
∂T

ρ ∂ε
∂T

+ 2

(
ε+

p

ρ

)]
− S<ik>

[
h4

2h3

K + 2

(
ε+

p

ρ

)]
+B2π

2δik +B3S<ab>S<ab>δ
ik +B4qaqaδ

ik +B5q
iqk +B6πS

<ik>

+B7πS
<ia>S<ak> .

The expressions of the coefficients are reported in [24] and Equations (90)–(93) of [37]; we do not
copy them here for the sake of brevity.

2. On the Symmetry of the Derivatives of ∂2∆H
∂µ2 and Its Consequences

We note that ∂2∆H
∂µ2 has symmetric tensors as derivatives. In fact, from the derivatives of (13)1,2 with

respect to µk, we can take the skew-symmetric part with respect to i and k, so obtaining:

∂3∆H

∂µ∂µ[k∂µi]j
= 0,

∂3∆H

∂µ∂µ[k∂λi]
= 0 . (20)

From the second derivatives of (13)1,2 with respect to µ and µab, we can take the skew-symmetric part
with respect to i and b, so obtaining:

∂4∆H

∂µ2∂µa[b∂µi]j
=

∂4∆H

∂µ∂µa[b∂µi]∂µj
= 0,

∂4∆H

∂µ2∂µa[b∂λi]
=

∂4∆H

∂µ∂λ∂µa[b∂µi]
= 0 (21)

where Equation (20) has been used in the second passage.
Equation (21) and the derivatives of Equation (20), with respect to µ, prove our property. We

now prove that ∂∆H
∂µ

is the sum of H∗0(µab, λ, λc) and of a scalar function whose derivatives are all
symmetric tensors.

In fact, from Equation (20), we deduce that ∂2∆H
∂µk∂µ

has all symmetric derivatives, so that its expansion
around equilibrium is of the type:

∂2∆H

∂µk∂µ
=

0···∞∑
p,q

∑
r∈Ip+1

1

p!

1

q!

1

r!
H∗p,q,rδ

(ki1···iph1k1···hqkqj1···jr)µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · · λjr .

By integrating this expression with respect to µk, we obtain:

∂∆H

∂µ
=

0···∞∑
p,q

∑
r∈Ip+1

1

(p+ 1)!

1

q!

1

r!
H∗p,q,rδ

(i1···ip+1h1k1···hqkqj1···jr)

µi1 · · ·µip+1µh1k1 · · ·µhqkqλj1 · · · λjr +H∗(µ,µab, λ, λc) . (22)
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The derivative of Equation (22) with respect to µ is:

∂2∆H

∂µ2
=

0···∞∑
p,q

∑
r∈Ip+1

1

(p+ 1)!

1

q!

1

r!

∂H∗p,q,r
∂µ

δ(i1···ip+1h1k1···hqkqj1···jr)

µi1 · · ·µip+1µh1k1 · · ·µhqkqλj1 · · · λjr +
∂H∗

∂µ
. (23)

However, also ∂2∆H
∂µ2 has all symmetric derivatives, so that its expansion is:

∂2∆H

∂µ2
=

0···∞∑
p,q

∑
r∈Ip

1

p!

1

q!

1

r!

∂Hp,q,r(µ, λ)

∂µ
δ(i1···iph1k1···hqkqj1···jr)

µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · · λjr . (24)

where Hp,q,r appears through its derivative with respect to µ for later convenience and without loss
of generality.

By substituting Equation (24) into Equation (23), we find an expression from which we deduce ∂H∗

∂µ
;

by integrating it, we obtain:

H∗ =
0···∞∑
p,q

∑
r∈Ip

1

p!

1

q!

1

r!
Hp,q,r(µ, λ)δ(i1···iph1k1···hqkqj1···jr)µi1 · · ·µipµh1k1 · · ·µhqkqλj1

· · · λjr −
0···∞∑
p,q

∑
r∈Ip+1

1

(p+ 1)!

1

q!

1

r!
H∗p,q,rδ

(i1···ip+1h1k1···hqkqj1···jr)

µi1 · · ·µip+1µh1k1 · · ·µhqkqλj1 · · · λjr +H∗0(µab, λ, λc) ,

whereH∗0 arises from an integration with respect to µ, so that it does not depend on µ; moreover, it does
not depend on µi, because H∗ does not depend on µi.

By substituting this expression into Equation (22), we find that ∂∆H
∂µ

is the sum of H∗0(µab, λ, λc) and
of a function whose derivatives are all symmetric tensors; consequently, it can be written in the form:

∂∆H

∂µ
=

0···∞∑
p,q

∑
r∈Ip

1

p!

1

q!

1

r!
Hp,q,r(µ, λ)δ(i1···iph1k1···hqkqj1···jr)

µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · · λjr +H∗0(µab, λ, λc) . (25)

If we take into account the result of Property 1, we see that also ∂∆H
∂µ

can be expressed as a polynomial
of infinite degree in µ, so that Equation (25) can be written as Equation (15). Now, if we substitute into
Equation (15) H∗0 with H∗0N −

∑0···∞
q

∑
r∈I0

1
q!

1
r!
ϑ0,q,r,0(λ)δ(h1k1···hqkqj1···jr)µh1k1 · · ·µhqkqλj1 · · · λjr ,

we note that Equation (15) remains unchanged, except that now, we have H∗0N instead of H∗0 and
zero instead of ϑ0,q,r,0. We conclude that we may still use Equation (15) and assume, without loss of
generality, that (16)1 holds.

If we calculate Equation (15) at equilibrium and take into account Equation (14), we obtain:
0 =

∑∞
s=0

1
s!
ϑ0,0,0,s(λ)µs +H∗0(0ab, λ, 0c).

Consequently, we have ϑ0,0,0,s(λ) = 0 for s ≥ 1, and from Equation (16)1, it follows (16)2. Moreover,
Equation (14) will give (16)3.
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2.1. Further Restrictions

For the sequel, it will be useful to consider some consequences of Equation (13). They are:

∂3∆H

∂µj∂λi∂µ
=

∂3∆H

∂λ∂µij∂µ
, (26)[

∂2∆H

∂µ∂µk
µi + 2

∂2∆H

∂µ∂µkj
µji + 2

∂2∆H

∂µ∂µki
λ +

∂∆H

∂µ
δki
]
λj=0

= 0 ,

∂3∆H

∂µa∂µk∂µ
µi + 2

∂2∆H

∂µ∂µ(k

δa)i + 2
∂3∆H

∂µa∂µkj∂µ
µji + 2

∂3∆H

∂µa∂µki∂µ
λ

+
∂3∆H

∂µa∂λk∂µ
λi + 2

∂3∆H

∂µij∂µka∂µ
λj = 0 ,

∂3∆H

∂µki∂µ∂λ
µi + 2

∂3∆H

∂µkj∂µ∂λ
µji + 2

∂3∆H

∂µki∂µ∂λ
λ + 2

∂2∆H

∂µki∂µ

+
∂3∆H

∂λk∂µ∂λ
λi +

∂2∆H

∂λ∂µ
δki + 2

∂3∆H

∂µij∂λk∂µ
λj = 0

The first one of these equations is obtained by taking the derivatives of (13)2 with respect to µj and
by substituting in its right-hand side ∂2∆H

∂µi∂µj
from (13)1; the second one is obtained by simply calculating

(13)3 in λj = 0; similarly, (26)3 is obtained by taking the derivative of (13)3 with respect to µa and,
subsequently, by substituting in its fourth term ∂2∆H

∂µk∂µa
from (13)1. Finally, in the derivative of (13)3 with

respect to λ, we can substitute ∂2∆H
∂λ∂µk

from (13)2 in its fourth term; in this way, (26)4 is obtained.
We see that Equation (26) is the conditions on ∂∆H

∂µ
, so that they may be considered a sort of

integrability condition on ∆H , if ∂∆H
∂µ

would be known.
In the next section, restrictions will be found for the scalar functions appearing in Equation (15), by

analyzing Equations (13) and (26).

3. The Expression for ∂∆H
∂µ

If we substitute Equation (15) in the derivative of (13)1,2 with respect to µ, we obtain:

ϑp,q+1,r,s+1 = ϑp+2,q,r,s , ϑp,q,r+1,s+1 =
∂

∂λ
ϑp+1,q,r,s . (27)

From Equation (27)1, we now obtain:

ϑp,q,r,s =

{
ϑ0,q+ p

2
,r,s+ p

2
if p is even

ϑ1,q+ p−1
2
,r,s+ p−1

2
if p is odd .

(28)

After that, we see that Equation (27)1 is satisfied as a consequence of Equation (28).
Let us now focus our attention on Equation (27)2; for p = 0, 1, it becomes:

ϑ0,q,r+1,s+1 =
∂

∂λ
ϑ1,q,r,s , ϑ1,q,r+1,s+1 =

∂

∂λ
ϑ0,q+1,r,s+1 , (29)

where, for (29)2, we have used Equation (28) with p = 2. After that, Equation (27)2 will be a
consequence of Equations (28) and (29).
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However, we have now to impose the derivative of (13)3 with respect to µ, that is:

∂3∆H

∂µ2∂µk
µi + 2

∂3∆H

∂µ2∂µkj
µji + 2

∂3∆H

∂µ2∂µki
λ + 2

∂3∆H

∂µ∂µk∂µij
λj +

∂3∆H

∂µ2∂λk
λi +

∂2∆H

∂µ2
δki = 0 .

To impose this relation, let us take its derivatives with respect to µi1 , · · · , µiP , µh1k1 , · · · , µhQkQ , λj1 ,
· · · , λjR , and let us calculate the result at equilibrium; with some calculations, we obtain:

0 = (2Q+R + 1)ϑ0,Q,R,s+1 + 2λϑ0,Q+1,R,s+1 + 2Rϑ1,Q+1,R−1,s , (30)

0 = (2Q+R + 2)ϑ1,Q,R,s+1 + 2λϑ1,Q+1,R,s+1 + 2Rϑ0,Q+2,R−1,s+1 ,

with the agreement that the last terms are not present in the case R = 0. Summarizing the results, we
have that Equation (28) gives ϑP,Q,R,s in terms of ϑ0,Q,R,s and ϑ1,Q,R,s, while Equations (29) and (30)
give restrictions on ϑ0,Q,R,s and ϑ1,Q,R,s.

• We want now to impose the further restriction Equation (26). By substituting Equation (15) into
Equation (26) and with some calculations, we find:

∂2H∗0

∂λ∂µij
=

0···∞∑
q

∑
r∈I0

1

q!

1

r!
ϑ1,q,r+1,0δ

(ijh1k1···hqkqj1···jr)µh1k1 · · ·µhqkqλj1 · · · λjr . (31)

0 =

{
∂Q

∂µh1k1 · · · ∂µhQkQ

[
2µji

∂H∗0

∂µkj
+ 2λ

∂H∗0

∂µki
+H∗0δki

]}
λj=0,µia=0

. (32)

0 =
0···∞∑
q

∑
r∈I1

1

q!

1

r!
[(2q + r + 2)ϑ1,q,r,0 + 2λϑ1,q+1,r,0] δ(akih1k1···hqkqj1···jr)µh1k1 · · ·µhqkqλj1 · · · λjr (33)

+2λj
∂2H∗0(µab, λ, λc)

∂µij∂µka
,

0 = 2µji
∂2H∗0

∂µkj∂λ
+ 2λ

∂2H∗0

∂µki∂λ
+ 2

∂H∗0

∂µki
+ λi

∂2H∗0

∂λk∂λ
+ δki

∂H∗0

∂λ
+ 2λj

∂2H∗0

∂µij∂λk
. (34)

These are restrictions on H∗0.

4. The Expression for ∆H

By integrating Equation (15) with respect to µ, we obtain:

∆H =
0···∞∑
p,q,s

∑
r∈Ip

1

p!

1

q!

1

r!

1

(s+ 1)!
ϑp,q,r,s(λ)µs+1δ(i1···iph1k1···hqkqj1···jr) (35)

µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · · λjr + µH∗0(µab, λ, λc) + ˜̃H(µa,µbc, λ, λd) .
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By substituting ∆H from here into (13)1 and with an integration, we find:

˜̃H =
0···∞∑
p,q

∑
r∈Ip

1

(p+ 2)!

1

q!

1

r!
ϑp,q+1,r,0δ

(i1···ip+2h1k1···hqkqj1···jr)

µi1 · · ·µip+2µh1k1 · · ·µhqkqλj1 · · · λjr +
1

2
µiµj

∂H∗0

∂µij
+ ˜̃H i(µab, λ, λc)µi + ˜̃H0(µab, λ, λc) , (36)

where ˜̃H i and ˜̃H0 arise from the integration.

By substituting ∆H from Equation (35) into Equation (13)2, and by taking into account
Equation (36), we find:

∂H∗0

∂λi
=
∂ ˜̃H i

∂λ
. (37)

Let us substitute now ∆H from Equation (35) into (13)3 and take into account Equation (36);
we obtain:

2µji
∂H∗0

∂µkj
+ 2λ

∂H∗0

∂µki
+ λi

∂H∗0

∂λk
+ δkiH∗0 + 2λj

∂ ˜̃Hk

∂µij
= 0 . (38)

Therefore, the situation is now that Equation (13) is equivalent to Equation (36) (which gives ˜̃H in
terms of ˜̃H i(µab, λ, λc) and of ˜̃H0(µab, λ, λc)) and to the condition Equations (37) and (38) on ˜̃Hk, while
˜̃H0 remains arbitrary, as was obvious, because in Equation (13) it appears only through its derivatives

with respect to µ and µk, which are zero. We note also that Equation (32) is a particular case of
Equation (38), when this last one is calculated in λj = 0.

A sort of integrability condition can be obtained in the following way: let us take the derivative of
Equation (38) with respect to µab; let us contract the result with λb; and let us take from the resulting
equation the skew-symmetric part with respect to i and a. In this way, we obtain:

0 = 2µj[i
∂2H∗0

∂µa]b∂µkj
λb + 2λ

∂2H∗0

∂µk[i∂µa]b

λb + λ[i
∂2H∗0

∂µa]b∂λk
λb + δk[i∂H

∗0

∂µa]b

λb . (39)

To conclude this section, we can say that we have to impose the condition Equations (31)–(34) and
(39) on H∗0(µab, λ, λc).

After that, Equations (37) and (38) will give ˜̃H i; we will see that a small further integrability condition
will be necessary to this end.

We firstly note that the second term in Equation (39) is zero thanks to Equation (33). We can take
the derivative with respect to λ of what remains and substitute Equation (31). We obtain a relation and
note that:

• Its terms of degree zero in µij and of degree one in λi give ϑ1,0,1,0 = 0.

• After that, what remains of its term of degree one in λi gives ϑ1,q+1,1,0 = 0. This result, jointly
with the previous one, gives ϑ1,q,1,0 = 0.
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• After that, its term of degree zero in µij gives ϑ1,0,R+3,0 = 0.

• What remains, after a reformatting of its indexes, is equivalent to ϑ1,q+1,R+3,0 = 0. This result,
jointly with the previous one, yields ϑ1,q,R+3,0 = 0 and ϑ1,q,R+1,0 = 0.

This result can be rewritten also as: ϑ1,q,r,0 = 0 , (40)

because the sum of the first and third index must be an even number, so that obviously, we must have
r ≥ 1 in ϑ1,q,r,0.

By using this condition, we can see that a solution of the condition Equations (31)–(34) and (39) is
given by:

H∗0 =
∑
r∈I0

1

(r + 2)!
ψ0,0,r,0,0δ

(j1···jr+2)λj1 · · · λjr+2 −
∞∑
r=0

2λ
2r + 3

r!
(λaλ

a)r+1βr (41)

+
∞∑
r=0

2r + 3

r!
(λaλ

a)rβrµikλ
iλk ,

where ψ0,0,r,0,0 and βr are two arbitrary sets of constants. In fact,

• it is easy to verify Equation (31), because H∗0 given by Equation (41) is the sum of a function
not depending on λ and of a function not depending on µij; moreover, the right-hand side of
Equation (31) is zero, thanks to Equation (40).

• It is to verify Equation (32), because H∗0 given by Equation (41) becomes zero when calculated
in λi = 0.

• It is to verify Equation (33), thanks to Equation (40) and because H∗0 given by Equation (41) is
linear in µij = 0.

• Let us verify Equation (34). By a substitution of H∗0 from Equation (41) it becomes:

0 = 2
∞∑
r=0

2r + 3

r!
βr(λaλ

a)rλkλi + λi
∂

∂λk

[
−
∞∑
r=0

2
2r + 3

r!
βr(λaλ

a)r+1

]

+δki

[
−
∞∑
r=0

2
2r + 3

r!
βr(λaλ

a)r+1

]
+ 2λj

∂

∂λk

[
∞∑
r=0

2r + 3

r!
βr(λaλ

a)rλiλj

]
,

which is true, because the sum of the 1st and 4th term is equal to ∂
∂λk

[
2
∑∞

r=0
2r+3
r!

βr(λaλ
a)rλiλjλj

]
,

while the sum of the 2nd and 3rd term is equal to ∂
∂λk

[
−λi

∑∞
r=0 22r+3

r!
βr(λaλ

a)r+1
]
.

• Let us verify Equation (39). By a substitution of H∗0 from Equation (41), it becomes:

0 = λbλ
[i ∂

∂λk

[
∞∑
r=0

2r + 3

r!
βr(λcλ

c)rλa]λb

]
+ λbδ

k[i

[
∞∑
r=0

2r + 3

r!
βr(λcλ

c)rλa]λb

]
.
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In the first term, when we do not take the derivative of λa with respect to λk, we obtain zero
for the identity λ[iλa] = 0; when we take the derivative of λa with respect to λk, we obtain
λbλ

[iδa]k
∑∞

r=0
2r+3
r!

βr(λcλ
c)rλb, which is the opposite of the second term.

This completes our verification.
We can prove that Equation (41) is the unique solution of our conditions, but the passages are very

long and boring; so we avoid reporting them for the sake of brevity; the interested reader can ask for
this proof, and we will send it to him or her. Only to mention briefly the strategy of the proof, we
say that Equation (31) can be used, with some passages, to obtain H∗0, except for an arbitrary function
H̃∗02(µij, λk). After that, Equation (33) will give the expression of λj ∂2H̃∗02

∂µij∂µka
.

Subsequently, Equation (34) will give the expression of ∂H̃∗02

∂µki
+ λj

∂2H̃∗02

∂µij∂λk
, and Equations (32), (39)

will give other conditions on H̃∗02. By solving all of these conditions and substituting the resulting
expression of H̃∗02 into the above-mentioned H∗0, we obtain Equation (41).

5. Solution of the Conditions on ˜̃H i

Let us firstly change the unknown function from ˜̃Hk to ˜̃H∗k defined by:

˜̃Hk = ˜̃H∗k +
∑
r∈I0

1

(r + 1)!

[
λδ(kj1···jr+1) − 1

2

r + 3

r + 2
δ(kijj1···jr+1)µij

]
ψ0,0,r,0,0λj1 · · · λjr+1 (42)

+
∂

∂λk

[
∞∑
r=0

2r + 3

r!
βr(λaλ

a)r
(
λµbcλ

bλc − λ2λbλ
b
)]

−µkdλd(µbcλbλc)
∞∑
r=2

2r + 3

r!
βr(λaλ

a)r−1 − 1

4
λk(µbcλ

bλc)2

∞∑
r=2

(2r − 3)
2r + 3

r!
βr(λaλ

a)r−2

−λk(µbdµdcλbλc)
∞∑
r=2

2r + 3

r!
βr(λaλ

a)r−1 .

By substituting ˜̃Hk from Equation (42) and H∗0 from Equation (41) into Equations (37) and (38),
these equations are transformed respectively into:

∂

∂λ
˜̃H∗i = 0 , (43)

0 = 2λj
∂ ˜̃H∗k

∂µij
+
[
δki(µbcλ

bλc) + 4λ(kµi)jλj
]

(3β0 + 5β1λaλ
a) + 10λiλk(µbcλ

bλc)β1 . (44)

A further refinement of the situation can be obtained with another change of the unknown function
from ˜̃H∗k to ˜̃H∗∗k defined by:

˜̃H∗k = ˜̃H∗∗k − 5

4
β1

{
4(µbcλ

bλc)µkdλd + λk
[
(µbcµ

bc)(λaλ
a) + 2λaλbµacµcb

]}
. (45)

By using this, Equation (44) becomes:

0 = 2λj
∂ ˜̃H∗∗k

∂µij
+ 3β0

[
δki(µbcλ

bλc) + 4λ(kµi)jλj
]
. (46)
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We can now prove that, as a consequence of this equation, we have:

β0 = 0 . (47)

5.1. Solution of the Conditions on ˜̃H∗∗k

Let us consider the Taylor expansion of ˜̃H∗∗k around the state with µij = 0; Equation (46) at the order
one with respect to this state is:

0 = 2λj
∂ ˜̃H∗∗k2

∂µij
+ 3β0

[
δki(µbcλ

bλc) + 4λ(kµi)jλj
]
, (48)

where ˜̃H∗∗k2 is the homogeneous part of ˜̃H∗∗k of second degree with respect to µij . Thanks to the
representation theorems, it has the form:

˜̃H∗∗k2 = f1(G0)µkaµabλb + f2(G0)µllµkaλa + f3(G0)(µbcλ
bλc)µkaλa

+λk
[
f4(G0)(µll)2 + f5(G0)(µbcλ

bλc)2 + f6(G0)(µbcλ
bλc)µll + f7(G0)µbcµ

bc + f8(G0)µbaµacλ
bλc)

]
,

where G0 = λaλ
a. By substituting this into Equation (48), we obtain:

0 = 2λj
{
f1δ

k(iµj)bλb + f1µ
k(iλj) + f2δ

ijµkbλb + f2µ
llδk(iλj) + f3λ

iλjµkbλb + f3(µbcλ
bλc)δk(iλj)

+λk
[
2f4µ

llδij + 2f5(µbcλ
bλc)λiλj + f6λ

iλjµll + f6(µbcλ
bλc)δij + 2f7µ

ij + 2f8λ
(iµj)bλb

]}
+3β0

[
δki(µbcλ

bλc) + 4λ(kµi)jλj
]
,

that is,

0 = f1δ
ki(µbcλ

bλc) + 2f1λ
(kµi)bλb + f1µ

kiG0 + 2f2λ
iµkbλb + f2µ

llδkiG0 + f2µ
llλkλi

+2f3G0λ
iµkbλb + f3(µbcλ

bλc)δkiG0 + f3(µbcλ
bλc)λkλi

+λk
[
4f4µ

llλi + 4f5(µbcλ
bλc)G0λ

i + 2f6G0λ
iµll + 2f6(µbcλ

bλc)λi + 4f7µ
ijλj + 2f8λ

i(µbcλ
bλc)

+ 2f8G0µ
ibλb
]

+ 3β0

[
δki(µbcλ

bλc) + 4λ(kµi)jλj
]
.

The skew-symmetric part of this relation, with respect to i and k, is:

0 = λ[kµi]bλb(−2f2 − 2f3G0 + 4f7 + 2f8G0) ,

from which we obtain:

4f7 = 2f2 + 2f3G0 − 2f8G0 . (49)

By taking into account this value of f7, the remaining part of our condition becomes:

0 = δki
[
f2µ

llG0 + (f1 + f3G0 + 3β0)(µbcλ
bλc)

]
+ f1µ

kiG0

+λ(kµi)bλb(2f1 + 4f2 + 4f3G0 + 12β0)

+λkλi
[
µll(f2 + 4f4 + 2f6G0) + (µbcλ

bλc)(f3 + 4f5G0 + 2f6 + 2f8)
]
.
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In this relation, the coefficients of µki and δkiµll give, respectively, f1 = 0 and f2 = 0. After that, the
coefficient of δki(µbcλbλc) gives f3G0+3β0 = 0, which, calculated in λj = 0, gives the above-mentioned
Equation (47).

This result transforms Equation (46) into:

0 = 2λj
∂ ˜̃H∗∗k

∂µij
. (50)

Now, we proceed to find the general solution of this last equation, and we prove that it is:
˜̃H∗∗k = λkF (G0 , G1 , G2) , (51)

where:

G1 = G0δ
bcµbc − µbcλ

bλc , G2 = G0µ
bcµbc − 2µbcµcaλ

bλa + 2(δbcµbc)(µbcλ
bλc)−G0(δbcµbc)

2

and F is an arbitrary function of its variables.
In fact, if λj = 0, from the representation theorems, we know that ˜̃H∗∗k = 0, just as in Equations (51)

and (50), is an identity.
If λj 6= 0, we can define the projector into the subspace orthogonal to λj , that is:

hij = δij − 1

G0

λiλj , (52)

from which it follows hijλj = 0, as is obvious. By taking as independent variables λi, µ̃ = µbcλ
bλc,

µ̃i = hijµjaλ
a, µ̃ij = hiaµabh

bj ,
Equation (50) becomes:

0 = 2λj

(
∂ ˜̃H∗∗k

∂µ̃
λiλj +

∂ ˜̃H∗∗k

∂µ̃b
hb(jλi) +

∂ ˜̃H∗∗k

∂µ̃ab
ha(ihj)b

)
= 2G0

∂ ˜̃H∗∗k

∂µ̃
λi +

∂ ˜̃H∗∗k

∂µ̃b
G0h

bi .

By contracting this relation with λi and with hia, we obtain, respectively:

∂ ˜̃H∗∗k

∂µ̃
= 0 ,

∂ ˜̃H∗∗k

∂µ̃a
= 0 . (53)

It follows that ˜̃H∗∗k may depend only on λi and µ̃ij . However, µ̃ijλj = 0, so that, for the
representation theorems, we have that ˜̃H∗∗k is proportional to λk, as in Equation (51); moreover, the
coefficient F can be a scalar function of G0, Q1 = δijµ̃

ij , Q2 = δijµ̃
iaµ̃aj .

Now, we have:

Q1 = δijµ̃
ij = hijµ

ij = δijµ
ij − 1

G0
λiλjµ

ij,

Q2 = δijh
ibµbch

cahadµdeh
ej = hbeµ

bchcdµ
de = δbeµ

ecδcdµ
de − 2

G0
δbeµ

bcλcλd µ
de +

(
1
G0

)2 (
µbcλ

bλc
)2
.

However, an arbitrary function of G0, Q1, Q2 is also an arbitrary function of G0, Q1 and of:

Q2 − (Q1)2 = µecµec −
2

G0

µdeµecλdλc +
2

G0

(δijµ
ij)(µabλ

aλb)− (δijµ
ij)2

and an arbitrary function ofG0,Q1,Q2−(Q1)2 is also an arbitrary function ofG0,Q1G0, [Q2−(Q1)2]G0,
and this completes the proof of Equation (51)2,3. These last passages have been done with the end result
being to have a function defined also in λj = 0, without going too far from equilibrium.
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6. Conclusions

We can now collect all of our results. By substituting ˜̃H∗∗k2 from Equation (51) into Equation (45),
we obtain ˜̃H∗k; by substituting this and Equation (47) into Equation (42), we obtain the expression
of ˜̃Hk. Thanks to this expression and Equation (41), taking also into account Equation (47), we can
rewrite the expression for ˜̃H in Equation (36); finally, we can substitute this new expression and that of
Equation (41) for H∗0 into Equation (35). In this way, we obtain:

∆H =
0···∞∑
p,q,s

∑
r∈Ip

1

p!

1

q!

1

r!

1

(s+ 1)!
ϑp,q,r,s(λ)µs+1δ(i1···iph1k1···hqkqj1···jr) (54)

µi1 · · ·µipµh1k1 · · ·µhqkqλj1 · · · λjr+

+µ

{∑
r∈I0

1

(r + 2)!
ψ0,0,r,0,0δ

(j1···jr+2)λj1 · · · λjr+2 −
∞∑
r=1

2λ
2r + 3

r!
(λaλ

a)r+1βr+

+
∞∑
r=1

2r + 3

r!
(λaλ

a)rβrµikλ
iλk

}
+

+
0···∞∑
p,q

∑
r∈Ip

1

(p+ 2)!

1

q!

1

r!
ϑp,q+1,r,0δ

(i1···ip+2h1k1···hqkqj1···jr)

µi1 · · ·µip+2µh1k1 · · ·µhqkqλj1 · · · λjr +
1

2
µiµj

∞∑
r=1

2r + 3

r!
(λaλ

a)rβrλ
iλj +

+µi

{
λiF (G0 , G1 , G2)− 5

4
β1

[
4(µbcλ

bλc)µidλd + λi
(
(µbcµ

bc)(λaλ
a) + 2λaλbµacµcb

)]
+

+
∑
r∈I0

1

(r + 1)!

[
λδ(ij1···jr+1) − 1

2

r + 3

r + 2
δ(ikjj1···jr+1)µkj

]
ψ0,0,r,0,0λj1 · · · λjr+1 +

+
∂

∂λi

[
∞∑
r=1

2r + 3

r!
βr(λaλ

a)r
(
λ µbcλ

bλc − λ2λbλ
b
)]

+

−µidλd(µbcλbλc)
∞∑
r=2

2r + 3

r!
βr(λaλ

a)r−1 − 1

4
λi(µbcλ

bλc)2

∞∑
r=2

(2r − 3)
2r + 3

r!
βr(λaλ

a)r−2 +

−λi(µbdµdcλbλc)
∞∑
r=2

2r + 3

r!
βr(λaλ

a)r−1

}
+ ˜̃H0(µab, λ, λc) .

We recall that in this expression, F (G0 , G1 , G2) is an arbitrary function, ψ0,0,r,0,0 and βr are
arbitrary constants, while ϑp,q,r,s(λ) are constrained by Equations (28)–(30), (40), (16)1 and (16)2. The
presence of the arbitrary function ˜̃H0(µab, λ, λc) is obvious, since it is not constrained by Equation (13),
because it does not depend on µ, nor on µk. Consequently, it is not necessary to impose the condition
˜̃H0(0ab, λ, 0c) = 0, which comes out from Equations (14), (16)2 and (54).

The sum of the expression Equation (54) for ∆H and of the expression Equation (10) for H1 gives
the general solution for the unknown function H . Let us substitute it into the equations:

F kij =
∂2H

∂µk∂µij
, Gki =

∂2H

∂µk∂λi
(55)
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which are a subset of the Equation (3). We obtain that F kij − ∆F kij and Gki − ∆Gki are symmetric
tensors, with ∆F kij and ∆Gki defined by:

∆F kij = λk
∂F (G0 , G1 , G2)

∂µij
− 5

4
β1

[
4(µbcλ

bλc)δk(iλj) + λk
(
2µij(λaλ

a)− 4λ(iµj)bλb
)]

(56)

+2
∞∑
r=1

2r + 3

r!
βr(λaλ

a)r λ δk(iλj) − δk(iλj)(µbcλ
bλc)

∞∑
r=2

2r + 3

r!
βr(λaλ

a)r−1 ,

∆Gki =
∞∑
r=1

2r + 3

r!
(λaλ

a)rβrλ
kµi + λk

∂F

∂G1

∂G1

∂λi
+ λk

∂F

∂G2

∂G2

∂λi
− 5β1λ

kµicµcbλb (57)

−2λiµkdλd(µbcλ
bλc)

∞∑
r=2

2r + 3

r!
(r − 1)βr(λaλ

a)r−2

−λkµidλd(µbcλbλc)
∞∑
r=2

(2r − 3)
2r + 3

r!
βr(λaλ

a)r−2 − 2λkµidµdcλc

∞∑
r=2

2r + 3

r!
βr(λaλ

a)r−1 .

It follows that the eventual non-symmetric parts for F kij and Gki may come only from ∆F kij

and ∆Gki, respectively. However, from (51)2,3, we see that ∂G1

∂µij
is a tensor at least of second order

with respect to equilibrium and ∂G2

∂µij
is a tensor at least of third order with respect to equilibrium.

Consequently, from Equation (56), it is clear that F kij up to second order with respect to equilibrium is
a symmetric tensor; its eventual non-symmetric parts may appear only from the third order with respect
to equilibrium. This result is different from its counterpart in [24], where a non-symmetric part appeared
also at first order with respect to equilibrium. We shall see in Appendix 3 that from the equations of that
paper, it follows that this non-symmetric part is proportional to a constant; consequently, here, we have
proven that this constant is zero and that this further constraint follows by imposing the equations up to
order higher than one with respect to equilibrium. This is not a problem, because the authors of [24]
assumed (for example, in the first three lines of Subsection 7.2) that the integration constants vanish and
furnished reasons for this assumption based on the kinetic theory approach.

Similarly, from (51)2,3, we see that ∂G1

∂λi
is a tensor of second order with respect to equilibrium and

∂G2

∂λi
is a tensor at least of third order with respect to equilibrium. Consequently, from Equation (57),

it is clear that Gki up to second order with respect to equilibrium is a symmetric tensor; its eventual
non-symmetric parts may appear only from the third order with respect to equilibrium. This result
agrees with its counterpart in [24].
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Appendix 1. The Particular Solution H = H1

Let us prove that H = H1, with H1 given by Equation (10) and ψn constrained by Equation(11), is a
particular solution of Equations (8) and (9).

In fact, by substituting Equation (10) in (8)1, we obtain:

∂r+p+1

∂λr∂µp+1

[(
−1

2λ

)q+1+ p+r
2

ψ p+r
2

]
=

∂r+p+2

∂λr∂µp+2

[(
−1

2λ

)q+ p+2+r
2

ψ p+2+r
2

]
which surely holds because ψ p+r

2
= ∂

∂µ
ψ p+r

2
+1, thanks to Equation (11).

By substituting Equation (10) into (8)2, we obtain:

∂r+p+2

∂λr+1∂µp+1

[(
−1

2λ

)q+ p+r+1
2

ψ p+r+1
2

]
=

∂r+p+2

∂λr+1∂µp+1

[(
−1

2λ

)q+ p+1+r
2

ψ p+1+r+
2

]
which is an evident identity.

It is more delicate to verify Equation (9). To do it, let us substitute Equation (9) with its derivatives
with respect to µi1 , · · · , µiP , µh1k1 , · · · , µhQkQ , λj1 , · · · , λjR ; let us substitute Equation (10) into the
resulting equation, and let us calculate the last form at equilibrium. We obtain:

0 = Pδii1δ(i2···iP kh1k1···hQkQj1···jR) (P + 2Q+R + 1)!!

P + 2Q+R + 1

∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+P+R
2

ψP+R
2

]

+2Qδih1δ(k1h2k2···hQkQki1···iP j1···jR) (P + 2Q+R + 1)!!

P + 2Q+R + 1

∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+P+R
2

ψP+R
2

]

+2λδ(kih1k1···hQkQi1···iP j1···jR)(P + 2Q+R + 1)!!
∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]

+2Rδ(kih1k1···hQkQi1···iP j1···jR)(P + 2Q+R + 1)!!
∂R+P

∂λR−1∂µP+1

[(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]

+Rδij1δ(j2···jRkh1k1···hQkQi1···iP ) (P + 2Q+R + 1)!!

P + 2Q+R + 1

∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+P+R
2

ψP+R
2

]

+δkiδ(i1···iP h1k1···hQkQj1···jR) (P + 2Q+R + 1)!!

P + 2Q+R + 1

∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+P+R
2

ψP+R
2

]
,

where overlined indexes denote symmetrization over those indexes, after that, the other one (round
brackets around indexes) has been taken.

Now, the first, second, fifth and sixth term can be put together, so that the above expression becomes:

0 = δii1δ(i2···iP kh1k1···hQkQj1···jR)(P + 2Q+R + 1)!!
∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+P+R
2

ψP+R
2

]

+(P + 2Q+R + 1)!!δ(kih1k1···hQkQi1···iP j1···jR)

{
2λ

∂R+P+1

∂λR∂µP+1

[(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]

+ 2R
∂R+P

∂λR−1∂µP+1

[(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]}
,
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which is satisfied as a consequence of the property δii1δ(i2···iP kh1k1···hQkQj1···jR) = δ(kih1k1···hQkQi1···iP j1···jR)

and of the identity:

∂R

∂λR

[(
−1

2λ

)Q+P+R
2

ψP+R
2

]
=

∂R

∂λR

[
−2λ

(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]

= −2λ
∂R

∂λR

[(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]
− 2R

∂R−1

∂λR−1

[(
−1

2λ

)Q+1+P+R
2

ψP+R
2

]
.

This completes the proof that H = H1 is a particular solution of Equations (8) and (9).

Appendix 2. Proof of Property 1

Let us prove it with the iterative procedure, and let ∆Hn denote the homogeneous part of ∆H of
order n with respect to equilibrium. We have,

• Case n = 1: The equation (13)3 at equilibrium, thanks to Equation (14), becomes 2∂
2∆H1

∂µ∂µki
λ = 0

from which we have that ∂∆H1

∂µ
can depend only on µ, µi, λ, λc; but the representation theorems

show that no scalar function of order one with respect to equilibrium can depend only on these
variables. It follows that ∂∆H1

∂µ
= 0, so that ∆H1 is of degree zero with respect to µ, and the

property is verified for this case.

• Case n ≥ 2: Let us suppose, for the iterative hypothesis that ∆H up to order n ≥ 1 with respect
to equilibrium is a polynomial of degree n− 1 in the variable µ; we proceed now to prove that this
property holds also with n+ 1 instead of n.

In fact, Equation (13)1 up to order n− 1 gives ∂2∆Hn

∂µ∂µij
= ∂2∆Hn+1

∂µi∂µj
from which we have:

∆Hn+1 = Pn−2 + ∆Hn+1
i (µ,µab, λ, λc)µ

i + ∆Hn+1
0 (µ,µab, λ, λc) (58)

where Pn−2 is a polynomial of degree n− 2 in µ and which is at least quadratic in µj .
After that, Equation (13)2 up to order n gives ∂2∆Hn+1

∂µ∂λi
= ∂2∆Hn+1

∂λ∂µi
,

which, thanks to Equation (58), becomes:

∂2Pn−2

∂µ∂λi
+
∂2∆Hn+1

j

∂µ∂λi
µj +

∂2∆Hn+1
0

∂µ∂λi
=
∂2Pn−2

∂λ∂µi
+
∂∆Hn+1

i

∂λ
. (59)

This relation, calculated in µj = 0, gives:

∂2∆Hn+1
0

∂µ∂λi
=
∂∆Hn+1

i

∂λ
(60)

because Pn−2 is at least quadratic in µj .

The derivative of Equation (59) with respect to µj , calculated then in µj = 0, is
∂2∆Hn+1

j

∂µ∂λi
=(

∂3Pn−2

∂µj∂λ∂µi

)
µj=0

from which
∂∆Hn+1

j

∂λi
= P ij

n−1 with P ij
n−1 a polynomial of degree n−1 in µ. By integrating

this relation, we obtain ∆Hn+1
i = P i

n−1 + f in−1(µ,µab, λ, ) where P i
n−1 is a polynomial of degree n− 1
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in µ. However, for the representation theorems, a vectorial function, such as f in−1, is zero, because it
depends only on scalars and on a second order tensor. It follows that:

∆Hn+1
i = P i

n−1 . (61)

By using this result, Equation (60) can be integrated and gives:

∂∆Hn+1
0

∂λi
= P i

n (62)

with P i
n a polynomial of degree n in µ.

Now, we impose Equation (13)3 at order n and see that its first, second, fifth and sixth terms are of
degree n− 2 in µ, so that we have

2∂
2∆Hn+1

∂µ∂µki
λ + 2∂

2∆Hn+1

∂µk∂µij
λj = Qn−2

with Qn−2 a polynomial of degree n− 2 in µ. This relation, thanks to Equation (58), becomes

2λ∂
2∆Hn+1

a

∂µ∂µki
µa + 2λ

∂2∆Hn+1
0

∂µ∂µki
+ 2λj

∂2Pn−2

∂µk∂µij
+ 2λj

∂
∂µij

∆Hn+1
k = Zn−2

with Zn−2 a polynomial of degree n − 2 in µ. This relation, calculated in µj = 0, thanks to Equation
(61) and to the fact that Pn−2 is at least quadratic in µj , gives

2λ
∂2∆Hn+1

0

∂µ∂µki
= Q̄ki

n−1

with Q̄ki
n−1 a polynomial of degree n− 1 in µ. It follows that

∂∆Hn+1
0

∂µki
= P̄ ki

n

with P̄ ki
n a polynomial of degree n in µ. This result, jointly with Equation (62), gives that:

∆Hn+1
0 = P̃n + f(µ, λ) . (63)

However, a function depending only on µ and λ cannot be of order n+ 1 with respect to equilibrium;
it follows that f(µ, λ) = 0.

Consequently, Equations (58), (61) and (63) give that ∆Hn+1 is a polynomial of degree n in µ, and
this completes the proof.

Appendix 3. A Further Integration in the Framework of the Initial Article

A further integration is possible for one combination of Equation (44) of the paper [24].
In fact, the integrability condition on (44)1,4 of that paper allows us to obtain:

∂

∂ ρ
h4 = −2T 2 ∂ε

∂ T

∂p

∂ ρ
− 2

T 3

ρ2

(
∂p

∂ T

)2

= −2
∂ε

∂ T

(
2
T

ρ
h2 +

5T 2p

3ρ

)
. (64)

(Here, and in the sequel, we use the notation of [24]. For example, the scalars β2, β3 are different from
the constants with the same name of the present paper).
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After that, by using (44)2,3 and the present Equation (64), we obtain:

∂

∂ ρ

[
β2 −

5

6
β3 −

(
4h2 +

10

3
pT

)(
ε+

p

ρ

)]
= 0 . (65)

Consequently, β2 − 5
6
β3 −

(
4h2 + 10

3
pT
) (
ε+ p

ρ

)
may depend only on temperature.

Similarly, from (44)5,6 and the present Equation (64), we obtain:

∂

∂ T

[
β2 −

5

6
β3 −

(
4h2 +

10

3
pT

)(
ε+

p

ρ

)]
= − 1

T

[
β2 −

5

6
β3 −

(
4h2 +

10

3
pT

)(
ε+

p

ρ

)]
,

(66)
which is a differential equation for the unknown β2 − 5

6
β3 −

(
4h2 + 10

3
pT
) (
ε+ p

ρ

)
, whose solution is:

β2 −
5

6
β3 −

(
4h2 +

10

3
pT

)(
ε+

p

ρ

)
=
constant

T
. (67)

However, in [26], it has been shown that Mijk is symmetric if and only if L = 5
6
K, as can be seen

also from (47)1,2 of [24]. This equation, for (48) and (43)2 of [24], means that the left-hand side of
the present Equation (67) is zero. Consequently, we have the symmetry of Mijk at first order, if and
only if the constant arising from integration on the right-hand side of the present Equation (67) is zero!
On the other hand, mppik at first order is already symmetric; eventually, its skew-symmetric parts may
appear at higher orders with respect to equilibrium. This result is in agreement also with Chapter 5 of
the book [38], where the symmetricity of F ijk and Gik at first order has been discussed.
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