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We investigate the performance of different variants of a suitably tailored Tabu Search
optimisation algorithm on a higher-order design problem. We consider four objective func-
tions to describe the performance of a compressor stator row, subject to a number of
equality and inequality constraints. The same design problem has been previously in-
vestigated through single-, bi- and three-objective optimisation studies. However, in this
study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search
(MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design.
It is shown that with these enhancements to the local search of the MOTS algorithm we
can achieve a rapid exploration of complicated design spaces, but there is a trade-off be-
tween speed and the quality of the trade-off surface found. Rapidly explored design spaces
reveal the extremes of the objective functions, but the compromise optimum areas are not
very well explored. However, there are ways to adapt the behaviour of the optimiser and
maintain both a very efficient rate of progress towards the global optimum Pareto front and
a healthy number of design configurations lying on the trade-off surface and exploring the
compromise optimum regions. These compromise solutions almost always represent the
best qualitative balance between the objectives under consideration. Such enhancements
to the effectiveness of design space exploration make engineering design optimisation with
multiple objectives and robustness criteria ever more practicable and attractive for modern
advanced engineering design. Finally, new research questions are addressed that highlight
the trade-offs between intelligence in optimisation algorithms and acquisition of qualita-
tive information through computational engineering design processes that reveal patterns
and relations between design parameters and objective functions, but also speed versus
optimum quality.

I. Introduction

M
odern Computational Engineering Design poses considerable challenges to and imposes demanding
requirements on the available state-of-the-art optimisation algorithms. In order to study a realistic

aerodynamic design problem we need to consider each of the most important flow metrics as individual
objective functions subject to the appropriate physical and geometric constraints.4,15,19 These objectives
are often in conflict, so the more of them the designer considers during a computational design task, the
greater the insight and understanding of the specific design problem gained.16 In this spirit, we investigate
the aerodynamic design of 3D blades for axial compressors from a four-objective optimisation viewpoint, in
order to assess the efficacy of such advanced techniques in engineering design. Previously, Harvey et al.11

have studied this problem from a single-objective perspective, and Kipouros et al.15,16 presented bi-objective
and three-objective studies of the same design problem. Multi-objective optimisation is found to be a more
appropriate approach to complicated engineering design problems, a finding supported by Sasaki et al.18
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Compromise optimum designs are found to exhibit robust behaviour over a range of crucial flow metrics,
and hence offer more stable performance with respect to the overall efficiency of the designed engineering
system.

However, the need in detailed aerodynamic design for flow metric evaluations of sufficient accuracy is also
widely recognised:3,15,18,20 the need for costly Computational Fluid Dynamics simulation tools is apparent.
At the same time, engineering systems can only be flexibly and accurately modelled with a relatively large
number of design parameters. All these factors contribute to making computational aerodynamic design
optimisation problems challenging and, as a consequence, the performance of the optimisation algorithms
used becomes an important factor in determining the viability of such techniques in real-world engineering
design.

Another important characteristic that modern engineering design systems should exhibit is the ability
to handle robustness criteria. The computational cost of design evaluation increases substantially when any
of the design objectives requires the evaluation of robustness metrics, such as the mean and variance of
the system performance with respect to uncertainties described by particular probability density functions.5

This again places importance in the efficiency of the optimisation routine guiding the search.
In this study we investigate the performance of two different variants of the Multi-objective Tabu Search

(MOTS) toolkit. The first is the PRMOTS variant, which has been presented by Jaeggi et al.13 and adapted
and applied by Kipouros et al.14 to a real-world bi-objective optimisation problem. This implementation
of MOTS is based on the path relinking principles proposed by Glover.10 The aim of this approach is to
identify the design parameters associated with low (assuming minimisation) objective function solutions,
and to reduce the dimensionality of the design space at each optimisation step by prioritising these.

The second variant, PCMOTS, has been developed and presented by Ghisu et al.,6,7 who applied it
successfully to a number of test functions taken from the ZDT21 and DTLZ2 families and to a real-world
aerodynamic test case, the preliminary design optimisation of the compressor core of an aero-engine. This
implementation is based on Principal Components’ Analysis, and the aim is to identify an optimal reorien-
tation of the design parameters and to prioritise the most energetic of these rotated design parameters. The
result is a more efficient search process that requires fewer design evaluations to find high quality solutions,
since a reduction to the dimensionality of the design space is achieved.

II. Description of the Four-Objective Optimisation Test Case

We consider the detailed aerodynamic design of axial compressor blade rows by reducing flow separation
and the general and secondary losses that develop through the row. The four objective metrics are block-
age, entropy generation rate, profile losses and endwall losses – detailed definitions and descriptions of the
modelling of these metrics can be found in Kipouros.16 The mass flow rate is treated as an equality con-
straint, and the mass averaged flow turning, the minimum radius of the leading edge, and the tip clearance
of the blade are considered as inequality constraints. The objective functions, equation 1, are normalised
and include penalty function terms to handle the aerodynamic and geometric constraints.
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In equation 1, M represents any of the objective metrics, ṁ is the mass flow rate, RLE is the minimum
radius of the leading edge of the blade, ∆θ is the mass-averaged flow turning, and C measures the tip
clearance of the blade. The zero subscripts identify the equivalent quantities for the datum blade geometry,
the initial design in the optimisation.

The geometry is parameterised using a Partial Differential Equation approach,1 giving a compact but
flexible representation of the design, in a design vector comprising 26 variables. It should be noted here
though that these parameters do not reflect direct geometrical characteristics (thickness, chord length, etc.)
or any other engineering properties.

Both variants of the Multi-Objective Tabu Search algorithm have been tuned with the same parameter
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settings, in order to be able to assess directly the significance of their corresponding search enhancements.
These parameters are presented in Table 1 and detailed description of their meaning can be found in.6,13

Table 1. Tabu Search Parameter Settings

Parameter Description Value

n stm Size of STM 25

n regions Divide search space into n var ∗ n regions regions 4

intensify Perform intensification when i local = intensify 35

diversify Perform diversification when i local = diversify 75

restart Reduce step sizes and restart when i local = restart 95

SS Initial step sizes (as % of variable range) 1%

SSRF Step sizes are multiplied by this factor at restart 0.5

n sample Number of points randomly sampled 8

select interval Perform variable selection every select interval iterations 20

n selected Number of active design variables 1
2
n var

III. Effects of Multi-objective Optimisation in Engineering Design

Aerodynamic design problems are challenging tasks to tackle and combine complicated and highly non-
linear characteristics. There are many conflicting metrics that define and control the overall efficiency of a
designed aerodynamic system. Figure 1 presents some optimum configurations for the aerodynamic design
of an axial compressor blade row. The performance of different optimisation strategies on this difficult,
real-world aerodynamic design application has been investigated in a succession of studies.

First, a single-objective study was performed by Harvey et al.,11 considering blockage as the only objective
function, subject to the same set of constraints as expressed in Eq. 1. Next, a bi-objective optimisation
case, considering blockage and entropy generation rate as objectives, was investigated15 leading to a three-
objective case, with profile and endwall losses and blockage as the objectives.16 We have now extended these
studies to a four-objective case in which blockage, profile and endwall losses, and entropy generation rate
are all to be minimised.

The richness of the design space for this application is readily apparent from the variation in the geomet-
rical characteristics of the various optimum designs. However, the optimum design from the four-objective
study appears to combine and blend geometrical characteristics identified in optimum designs from each of
the previous studies. This observation justifies the fact that a complete investigation of this particular design
problem has been achieved.

Figure 2 illustrates the 4D trade-off surface found using the PRMOTS variant of our optimisation algo-
rithm. The complexities of the design space are clear with two disjoint regions forming the Pareto front.

IV. Effects and Assessment of Optimisation Intelligence in 3D Aerodynamic

Shape Design

Practical engineering design problems require a large number of design parameters in order to model
design geometry accurately and flexibly enough. As consideration of multiple objectives inevitably increases
the proportion of the design space in which optimal solutions are to be found, reducing the dimensionality of
the design space can significantly improve the tractability of multi-objective design optimisation problems.
In order to achieve this, sophisticated parameter selection techniques are required. In this work, we deploy
the PCMOTS variant of our optimisation algorithm, which is equipped with the Principal Components’
Analysis technique for the selection of the most active design parameters in an optimal orientation of the
design space.7 Ghisu et al. showed that using this technique for the preliminary design of an aero-engine
core compression system the computational demands of the optimisation process reduce dramatically without
compromising the quality of the trade-off surface found.
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Figure 1. Optimum blade geometries found by different optimisation approaches

Figure 2. The 4D Pareto front found using PRMOTS

The behaviour of PCMOTS in our 3D aerodynamic design case was similar to the one already shown
by Ghisu et al.6,8, 9 The use of the technique reduced the dimensionality of the design space significantly,
improving the quality of the Pareto front. In particular, significantly reduced values of normalised endwall
losses were found; the values of normalised blockage were reduced noticeably, while the region of minimum
normalised profile losses was perhaps not similarly well explored. Figure 3 presents the Pareto front found
with PCMOTS and the differences compared to the trade-off found with PRMOTS, Fig. 2, are clear,
especially for the normalised endwall losses.

In an effort to facilitate a better exploration of the trade-off surface we modified the Intensification
Memory (IM) management of the PCMOTS algorithm. We define an upper limit on the size of the IM
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Figure 3. The 4D Pareto front found using PCMOTS

Figure 4. The 4D Pareto front found using enhanced PCMOTS

and we include the Pareto-optimal designs that maximise the coverage of the actual Pareto-front (this is
achieved by selecting a random design from the Pareto front first, and then adding the point that maximises
the mean distance from the already selected individuals, until the limit for the IM size is reached). We also
include all the extremes of the current Pareto front (the solutions with the lowest value of each individual
objective). When intensification occurs it is quite likely to relocate the search to an extreme solution and, in
this way, we prioritise exploration of the ends of trade-off surface, as well as minimising the risk of a repeated
exploration of an already well-explored region of the trade-off surface.

Figure 4 illustrates the trade-off found with this second variant of PCMOTS. It is evident that all of
the extremes were explored thoroughly; at the same time, the number of Pareto-optimal solutions is larger,
meaning that the diversification of the IM has worked satisfactorily.

It should be highlighted that, while all these runs were executed with the same number of TS iterations, in
both cases PCMOTS required 25% fewer objective function evaluations than PRMOTS, with an important
advantage in terms of computational cost.

In order to assess the actual optimisation performance of each algorithm we need to assign a measure
of quality to the revealed Pareto fronts. Two of the most common performance criteria for multi-objective
optimisation are the unary epsilon indicator and the hypervolume indicator. The former criteria was proposed
by Zitzler et al.22 and the latter by Zitzler and Thiele,21 and both are discussed in depth in.22

Due to the metaheuristic nature of the TS algorithm, optimisation runs are not deterministic. Perfor-
mance assessments of metaheuristic (or stochastic) optimisers require multiple runs of the same optimisation
case, in order to minimise the dependence of the performance metric on the stochastic elements of the search.
However, due to the computational cost for each optimisation run (about a week) we executed only two op-
timisations with each variant of the MOTS implementation. This operation produced 6 four-dimensional
trade-off surfaces, and the combined Pareto Set among these was assigned as the reference optimal set. The
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mean and standard deviation values for the epsilon and hypervolume indicators are presented in Table 2, for
each algorithm.

Table 2. Means and Standard Deviations of the hypervolume and epsilon performance indicators

Indicator PRMOTS PCMOTS v1 PCMOTS v2

Mean SD Mean SD Mean SD

hyp 0.5281 0.1166 0.1190 0.0786 0.1968 0.0211

eps 0.4484 0.1447 0.1270 0.0726 0.1422 0.0147

When an individual Pareto front is assessed with respect to the reference trade-off surface, these indicators
should take a minimum value, in order to express high optimum quality. According to this definition and
observing the mean values as presented in Table 2, both variants of PCMOTS outperform PRMOTS. The
stadard deviation is also reduced, and this is an indicator of a more consistent behaviour. The first PCMOTS
variant produces slightly lower values for the indicators than the second. The number of Pareto optimal
solutions found by the three variants is presented in Table 3. It is clear that the improved values found
by the PCMOTS variants were obtained at the price of a reduced richness of the trade-off surface. The
two runs for the second variant of PCMOTS were obtained with different limits on the IM size (5 and 10,
respectively). It seems that a small limit on the IM size produces a better behaviour for the algorithm.

Table 3. The size of the Pareto Sets revealed from each variant of MOTS

Optimisation run PRMOTS PCMOTS v1 PCMOTS v2

1 164 91 140

2 133 106 56

Another interesting comparison comes from the percentage of the reference set (which is an overall Pareto-
front from the combination of all available runs) as generated by the different MOTS variants. These results
are reported in Table 4. It is clear how PCMOTS is able to cover a significantly larger portion of the “true”
Pareto-front (the one taken as reference for this analysis), while also reducing the computational cost.

Table 4. Percentage of the reference set produced by each variant of MOTS

PRMOTS PCMOTS v1 PCMOTS v2

1.54 % 85.38 % 13.08 %

V. Analysis of the Design Space in Parallel Coordinates

When performing real-world shape optimisation design studies it is really important to analyse the
optimum design configurations, in order to relate geometrical characteristics with optimum behaviour of
the objective function. Such analysis is possible to happen when we are able to visualise the whole design
parameter space together with the objective function space. It is clear that the dimensionality of such
datasets is quite high, as it is in the case we are presenting in this paper (26 design parameters +4 objective
functions). However, we can easily represent this hyper-space in Parallel Coordinates12 and there is a
methodology, as described by Kipouros et al.,17 that we can extract such qualitative information.

Figures 5 and 6 illustrate the Parallel Coordinates analysis for representative trade-off surfaces revealed
with PRMOTS and PCMOTS respectively. Dimensions x1 to x26 express the design parameters and c1 to
c4 the objective functions of the optimisation problem; profile losses, endwall losses, blockage, and entropy
generation rate respectively. It is clear that the most influencial design parameters have been identified better
with PCMOTS, and hence, the significant reduction to the dimensionality of the design problem. There are
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Figure 5. Analysis and visualisation in Parallel Coordinates of the Pareto front revealed with PRMOTS (Full
dataset - Full dataset without the contant parameters - An identified pattern)

18 active design parameters within the PRMOTS Pareto Set, and only 13 for the PCMOTS trade-off surface.
However, for this case (Fig.6) there is not a clear pattern that relates design parameters with objective

functions. In contrast though, in Fig.5 design parameters x20 and x25 express the whole optimum region for
lowest c2 and c3 objective functions. This is a very important observation that assists towards the physical
understanding of the optimality level of the operation of compressor blades.
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Figure 6. Analysis and visualisation in Parallel Coordinates of the Pareto front revealed with PCMOTS (Full
dataset - Full dataset without the contant parameters - An identified pattern)

VI. Conclusions

It has been shown that PCMOTS is more efficient for rapid design space exploration. Being able to
identify the most energetic directions of the design space, the PCMOTS variant is able to explore the
design space more quickly, producing better designs in a reduced time. Previously, these results had been
demostrated both through mathematical test functions and in a real-world aerodynamic design problem (the
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preliminary design of a core compression system). Our test case represents a potentially more challenging
problem, as detailed aerodynamic optimisation (using three-dimensional CFD) is likely to generate a more
fragmented and discontinuous design landscape. Even in this case, PCMOTS outperformed the original
PRMOTS implementation. The improved performance was demonstrated by the lower values of epsilon
and hypervolume indicators, as well as the capability to cover a significantly larger portion of the reference
Pareto front, while also reducing the computational cost (lower number of evaluations) by about 25%.

With a modified implemetation of the Intensification Memory (IM) of the PCMOTS algorithm we can
rapidly explore complicated design spaces and also identify the extreme optimum areas for each objective
function. At the same time though the Pareto front is not very rich, representing incomplete exploration of
the compromise optimum design area that penalises the quality of the Pareto Set. It is anticipated that with
proper tuning of the IM size parameter PCMOTS will reveal the same quality trade-off surfaces as these
revealed with PRMOTS, but at considerable reduced computational cost. This characteristic is extremely
important for real-world computational engineering design problems, in particular when robustness criteria
are considered during the design process.

Further investigations towards the balance of efficiency and quality of optimisation algorithms will be
proved extremely beneficial in computational engineering design.
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