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Abstract

In a pure exchange smooth economy with fixed total resources, we construct a Riemannian
metric on the equilibrium manifold such that the minimal geodesic connecting two
(sufficiently close) regular equilibria intersects the codimension one stratum of critical
equilibria in a finite number of points.
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1 Introduction

In this paper we construct a Riemannian metric on the equilibrium manifold
with fixed total resources, E(r), when preferences are smooth. This paper
represents the smooth version of Matta (2005), where preferences were as-
sumed to be real analytic. The complications arising from the smoothness
assumption make this paper different both for the result obtained and the
techniques used.

The motivation for our analysis is that of choosing a continuous path
connecting two points (regular equilibria) of the equilibrium manifold, which
enjoys the properties of minimizing distance (Balasko 1988, p. 70) and catas-
trophes (Balasko 1978). We recall that catastrophes can originate when a
path crosses the set of critical equilibria (see Dierker 1982, and Balasko 1988).

The following three features characterize our analysis. First, we will only
be concerned with the codimension one stratum of critical equilibria (S1

henceforth). This means that we want that our path intersects S1 in a finite
number of points. Observe that ignoring the strata of codimension greater
than one is not relevant since S1 is the only stratum which can disconnect
E(r). Second, the endpoints of the path are assumed to be “sufficiently
close” regular equilibria, i.e., equilibria which belong to a geodesic convex
neighborhood (see Proposition 2.5). Third, we content ourselves to consider
the issue of the existence of a metric with desirable economic properties
without investigating the issue of the economic meaning of such a metric.

We tackle the distance-catastrophes minimization problem by showing the
existence of a Riemannian metric on E(r) such that the minimal geodesic
(path) connecting two (sufficiently close) regular equilibria intersects S1 in a
finite number of points (see Theorem 3.2).

The three features mentioned above are reflected in the nature of the
result we have obtained, that can be regarded as a preliminary result: natural
directions of research would be to consider all the strata of critical equilibria,
to allow the endpoints of the path to be arbitrary points of E(r) and to
explore the connections between the Riemannian metric and the economic
meaning of a metric.

This paper is organized as follows. Section 2 recalls the economic setting
and mathematical background. Section 3 contains our main results.
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2 Preliminaries

Balasko (1988) has shown that the equilibrium manifold E is a smooth sub-
manifold of S × Ω globally diffeomorphic to (Rl)m, where l and m represent
the number of goods and consumers, respectively, S = {p = (p1, . . . pl)|pj >
0, j = 1, . . . l, pl = 1} is the set of normalized prices and Ω = (Rl)m is the
space of endowments ω = (ω1, . . . , ωm), ωi ∈ Rl.

An explicit global parametrization of E is given through the map defined
by:

Φ : E → S × Rm × R(l−1)(m−1) ∼= Rlm

(p, ω1, . . . ωm) 7→ (p, p · ω1, . . . , p · ωm, ω̄1, . . . , ω̄m−1), (1)

where ω̄i denotes the vector of Rl−1 defined by the first (l − 1) -coordinates
of ωi.

Let r ∈ Rl denote the vector representing the total resources of the econ-
omy and Ω(r) denote the space of economies associated with the fixed total
resources, i.e., Ω(r) = {ω ∈ (Rl)m|

∑m
i=1 ωi = r}. Define the equilibrium

manifold when total resources are fixed as

E(r) = {(p, ω) ∈ S × Ω(r)|
m∑

i=1

fi(p, p · ωi) = r},

where
∑m

i=1 fi(p, p · ωi) is the aggregate demand function.
The restriction of the map (1) given above to E(r) defines a diffeomor-

phism, still denoted by Φ,

Φ : E(r) → B(r)× R(l−1)(m−1), (2)

where B(r) = {(p, w) ∈ S × Rm|
∑m

i=1 fi(p, wi) = r)}. For (p, w) ∈ B(r),
let F(p,w)(r) be the fiber over (p, w), i.e. the pairs (p, ω) ∈ E(r) such that
p · ωi = wi.

The set of critical equilibria when total resources are fixed is denoted
Ec(r). The structure of Ec(r) is described in the following theorem where we
summarize some results due to Balasko (1979, 1988).

Theorem 2.1 (Balasko). Ec(r) is a disjoint union of closed smooth sub-
manifolds Si, i = 1, . . . , inf(l − 1,m − 1) of E(r). The manifold Si has
dimension l(m− 1)− i2 and Si = ∅ for i > inf(l − 1,m− 1).
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Remark 2.2. Observe that for each i = 1, . . . , inf(l−1,m−1), the dimension
of each Si is strictly less than the dimension of E(r) and therefore Ec(r) =
∪iSi has measure zero in E(r) (see Balasko 1992).

Remark 2.3. Each manifold Si could not be connected. For later use, we
write S1, the stratum we are concerned with, as the countable union of its
connected components Sj

1 , i.e., S1 = ∪+∞
j=1S

j
1 . Observe also that each Sj

1 is a
closed, connected, codimension 1 smooth submanifold of E(r).

For proofs and details of the following mathematical preliminaries we
refer the reader to Chapters 1, 2, 3, 6 of Do Carmo (1992), unless otherwise
specified.
A Riemannian metric g on a smooth k-dimensional manifold X ⊂ Rn is a
family of inner products gx on TxX, x ∈ X, varying smoothly with x. This
means that for every local parametrization ψ : U ⊂ Rk → X and v1, v2 ∈ Rk,
ψ(u) = x, the following map

u 7→ gx(dψu(v1), dψu(v2))

is smooth on U . A smooth manifold with a Riemannian metric is called
a Riemannian manifold. We denote by gcan the Euclidean metric on Rn,
i.e., the metric defined by gcan(v1, v2) = v1 · v2, where v1 · v2 denotes the
standard inner product in Rn. If X is a smooth submanifold of a Riemannian
manifold (Y, h), we can define a Riemannian metric g on X by restricting h
to TX, the tangent bundle of X. Therefore every manifold X ⊂ Rn admits
a Riemannian metric, obtained by restricting gcan to TX. Let Φ : X → Y
be a diffeomorphism. A Riemannian metric h on Y induces a Riemannian
metric on X, called the pull-back metric, which we denote by Φ∗(h). This is
defined by:

(Φ∗(h))x(v, w) = hΦ(x)(dΦx(v), dΦx(w)),∀x ∈ X,∀v, w ∈ TxX. (3)

Two Riemannian manifolds (X, g) and (Y, h) are isometric if there exists
a diffeomorphism Φ : X → Y such that g = Φ∗(h). The map Φ is then called
an isometry between (X, g) and (Y, h). The Cartesian product X × Y of
two Riemannian manifolds (X, g) and (Y, h) can be endowed with a natural
metric g ⊕ h called the product metric (see Do Carmo 1992, Example 2.7 p.
42).

A smooth curve γ : I → X on a Riemannian manifold (X, g) is a geodesic
if the component of the acceleration γ

′′
(t) on the tangent space Tγ(t)X of X

is zero for all t.
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A geodesic is uniquely determined by its initial conditions, namely its
starting point and its tangent vector at this point as expressed by the fol-
lowing proposition (see Do Carmo 1992, Proposition 2.5 p. 64).

Proposition 2.4. Given x ∈ X and v ∈ TxX, there exists a unique geodesic
γ such that x = γ(t0) and v = γ

′
(t0), for some t0 ∈ I.

A submanifold C of a Riemannian manifold (X, g) is totally geodesic if
every geodesic of C is a geodesic of X.

An important property of the geodesic is that it minimizes the distance
between two nearby points of X (see Do Carmo 1992, Section 3 p. 67). In
other words, given a point x in X there exists a sufficiently small neighbor-
hood U of x such that for every point y in this neighborhood there exists a
geodesic γ on X joining x to y and such that its length equals d(x, y). We
call such a geodesic a minimal geodesic between the points x and y. Observe
that this is not always true if the two points are not sufficiently close. Ob-
serve also that the minimal geodesic joining two points on U is in general
not unique and, even worse, it does not belong to U . Nevertheless one can
prove the following fundamental result (Do Carmo 1992, Section 4 p. 74).

Proposition 2.5. Let (X, g) be a Riemannian manifold. Every point of X
has an open neighborhood U such that for any pair of points x and y on U
there exists a unique minimal geodesic joining them and lying entirely on U .
The set U is called a geodesic convex neighborhood.

We often use the following characterization of totally geodesic submani-
folds whose proof follows by Proposition 2.4.

Proposition 2.6. A submanifold C of a Riemannian manifold (X, g) is
totally geodesic if and only if for every x ∈ C and v ∈ TxC the geodesic
γ : [0, 1] → X, such that γ(0) = x and γ′(0) = v, is a geodesic of C.

Example 2.7. Let (X, g) and (Y, h) be two Riemannian manifolds. Then
(X, g) and (Y, h) are totally geodesic submanifolds of (X × Y, g⊕ h) (see Do
Carmo 1992, Exercise 1 p. 139).

Our interest for totally geodesic submanifolds is due to the following lemma.

Lemma 2.8. Let (C, h) be a closed and totally geodesic submanifold of a
Riemannian manifold (X, g). Then any geodesic of X joining two points x
and y in the complement of C in X intersects C in a finite number of points.

4



Proof: Let γ : [0, 1] → X be any geodesic joining x and y in X \ C,
i.e. γ(0) = x and γ(1) = y. We need to prove that Im γ = {γ([0, 1])}
intersects C transversally and hence in a finite number of points. Assume,
by contradiction, that there exists a point x0 = γ(t0) ∈ Im γ ∩ C, t0 ∈ (0, 1)
such that dim(Tx0(Im γ) ∩ Tx0C) = 1. This implies that the vector v =
γ

′
(t0) belongs to Tx0C. Since, by assumption, (C, h) is totally geodesic in

(X, g), it follows that Im γ is forced to be entirely contained in C which gives
the desired contradiction since the points x and y do not belong to C by
hypothesis. Therefore the set C ∩ γ([0, 1]) consists of isolated points which
are forced to be finite for the compactness of C ∩ γ([0, 1]). �
We conclude this section with the following result of general topology (see
e.g. Guillemin and Pollack 1974, Exercises 16 and 18 on p. 76 and 106,
respectively).

Lemma 2.9. Let X ⊂ Rn be a closed, connected codimension 1 smooth
submanifold of Rn. Then there exists a closed neighborhood T of X in Rn

diffeomorphic to X × [−δ, δ], for some δ > 0.

3 Main results

Let Φ : E(r) → B(r)×R(l−1)(m−1) ∼= Rl(m−1) be the diffeomorphism given by
formula (2) above. Define

gΦ = Φ∗(gcan), (4)

where gcan denotes the Euclidean metric on Rl(m−1) (see equation 3 for the
definition of Φ∗(gcan)).

The economic and mathematical properties of gΦ are summarized in the
following theorem, which also gives a partial solution to the problem raised
in the Introduction (see property 4) below).

Theorem 3.1. The metric gΦ satisfies the following properties:

1) given two points in E(r), there exists a unique minimal geodesic joining
them;

2) the fiber F(p,w)(r), (p, w) ∈ B(r), is totally geodesic in (E(r), gΦ) and
therefore the geodesic joining two points on the same fiber lies on this
fiber;

3) the geodesic joining two points not belonging to the same fiber intersects
each fiber in a finite number of points;
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4) let x and y be two regular equilibria and let γ be the (minimal) geodesic
joining them. Then, there exists a smooth curve σ joining x and y,
arbitrarily close to γ, which intersects S1 in a finite number of points.

Proof: Property 1) is a straightforward consequence of the fact that
(E(r), gΦ) is isometric to (Rl(m−1), gcan). For (p, w) ∈ B(r), the image of the
fiber F(p,w)(r) via Φ is equal to Φ(F(p,w)(r)) = {(p, w)}×R(l−1)(m−1) which is
totally geodesic in (Rl(m−1), gcan) by Example 2.7 and this proves property 2).
Property 3) follows by Lemma 2.8. Finally, property 4) follows from Theorem
2.1 and transversality theory (see e.g. Guillemin and Pollack 1974). Indeed,
any curve, and in particular our geodesic γ, can be deformed by an arbitrary
small perturbation to a smooth curve σ intersecting Ec(r) in a finite number
of points. �

As we can observe, gΦ does not represent a definitive solution to the minimiza-
tion problem raised in the introduction: its geodesic needs to be perturbed
in order to intersect S1 in a finite number of points. The following theorem
represents our main result.

Theorem 3.2. There exists a Riemannian metric g on E(r) which coincides
with gΦ outside an arbitrary small neighborhood of S1 in E(r) and satisfies
the following properties:

1. A geodesic joining any two regular equilibria (if it exists!) intersects S1

in a finite number of points;

2. Every regular equilibrium admits an open neighborhood U , disjoint from
Ec(r), such that every pair of regular equilibria in U can be joined by
a unique and minimal geodesic which lies entirely on U .

3. Every critical equilibrium belonging to S1 admits an open neighborhood
V such that every pair of regular equilibria in V can be joined by a
unique and minimal geodesic lying on V and intersecting S1 in at most
one point.

Proof: Write S1 = ∪+∞
j=1S

j
1 . For each j = 1, . . ., let hj be the metric on

Sj
1 given by the restriction of gΦ to Sj

1 and let Tj be a closed neighborhood
of Sj

1 in E(r) diffeomorphic to Sj
1 × [−δj, δj], via a diffeomorphism

Tj : Tj → Sj
1 × [−δj, δj],
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whose existence is guaranteed by Lemma 2.9 (here δj are suitable strictly
positive real numbers). Without loss of generality, by shrinking the Tj if
necessary, we can assume Tj ∩ Tk = ∅, ∀j, k = 1, . . .. Let kj = hj ⊕ gδj

be the product metric on Sj
1 × [−δj, δj], where gδj

denotes the canonical
metric on [−δj, δj] and let g̃j = T ∗j (kj) be the pull-back metric on Tj. Let

0 < εj < δj and let Tj(εj) = T−1
j (Sj

1 × [−εj, εj]) and consider a partition of
unity λj

α : E(r) → [0, 1], α = 1, 2, subordinate to the open cover of E(r) given
by two open sets U j

1 = E(r)\Tj(εj) and U j
2 = Int Tj (the interior of Tj). This

means to take two smooth real valued functions λj
α : E(r) → [0, 1], α = 1, 2,

such that:

� λj
1(x) + λj

2(x) = 1, ∀x ∈ E(r);

� suppλj
α ⊂ U j

α, α = 1, 2, namely each λj
α vanishes outside a closed

subset contained in U j
α for all α = 1, 2.

Consider now the Riemannian metric g on E(r) given by

gj = λj
1gΦ ⊕ λj

2g̃j

on Tj and equal to gΦ outside ∪jTj. Since we can choose the δ′js arbitrary
small, the metric g coincides with gΦ outside an arbitrary small neighborhood
of S1. In order to prove property 1, observe first that, by Lemma 2.7, (Sj

1 , hj)
is totally geodesic in (Int Tj(εj), g̃j), where Int Tj(εj) = T−1

j (Sj
1 × (−εj, εj)).

On the other hand, the metric g coincides with g̃j on the open set Int Tj(εj).
Hence (Sj

1 , hj) is totally geodesic also in (E(r), g). Therefore property 1
follows by applying Lemma 2.8. Property 2 follows by taking a geodesic
convex neighborhood U (see Proposition 2.5) around the regular equilibrium
x such that U does not intersect Ec(r) (U exists since E(r) is closed). Finally,
let V be a geodesic convex neighborhood around a critical equilibrium y ∈ Sj

1

such that V ∩Sk
1 = ∅, ∀k 6= j. Let γ be the (unique) minimal geodesic joining

two regular equilibria γ(t1) = x1 ∈ V , γ(t2) = x2 ∈ V , t1, t2 ∈ [0, 1]. Suppose,
by contradiction, that γ intersects Sj

1 in more than one point. By property 1,
γ must intersect Sj

1 in a finite number of points, say {y1, . . . yk}, k ≥ 2. Let
γ(t) = x be a point in γ([0, 1]), t1 < t < t2, such that γ([t1, t])∩Sj

1 = {y1, y2}.
Let σ : [0, 1] → Sj be the minimal geodesic of Sj

1 joining y1 = γ(s1) and
y2 = γ(s2), t1 < s1 < s2 < t2. Since Sj

1 is totally geodesic in E(r), σ is also
a geodesic of E(r). But then we have σ([0, 1]) = γ([s1, s2]) because V is a
geodesic convex neighborhood. This gives the desired contradiction since Sj

1

is totally geodesic in E(r) (see Lemma 2.8). �
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