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ABSTRACT

This paper deals with the experimental determination of the elastic moduli
of composite materials by means of dynamic analysis in resonance. Mechanical im-~
pedance measurements are carried out on a circular filament wound composite
motiel in the frequency range 0-6000 cps. A detailed description of the experi-
mental procedure and the measuring technique, based on a fast data acquisition
system, is furnished. The main aim of the experimental work is the extension of
the driving point impedance method for the determination of complex elastic mod-
uli to circular filament wound composite specimens. The experimental resonant
frequency values are compared with analytical results cbtained by means of the
- finite element method for different values of the radial and circumferential E
elastic moduli. The comparison allowed to determine E, and Eg values of the
material. Extensive experimental work is foreseen in order to check the applica-
bility and reliability of the technique for filament wound composite materials.
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1. INTRODUCTION

The determination of elastic properties of composite materials often poses
particular problems due to the anisotropic structure of these materials and to
the practical difficulties involved in extending the classical methods used in
testing metallic materials to composites. The possibility of adopting tradition-
al testing techniques for pmeasuring elastic moduli is connected with the ability
to manufacture specimens suitable for such tests. For materials with a substan-
tial degree of anisotropy it is sometimes impossible to obtain tensile, compres-
sion or torsion specimens which represent in a statistically acceptable manner
the strain behaviour for all directions and stress levels of interest. In this
regard particular attention should be given to filament wound composite struc-
tures or machine members such as pipes, discs, shells of revolution, which are
gaining ever-increasing importance in the mechanical and aerospace industries.
Specimen manufacturing is in many cases 'a technological process distinct from
machine member construction. One of the most significant features of composite
materials is their behaviour under dynamic loading which can summarily be de-
fined as "viscoelastic". Elastic moduli can no longer be defined as "constants"
since they depend on dynamic loading frequency and are in general represented
as complex quantities in order to account for the effect of internal damping.
The complex Young's modulus is usually expressed in the following way [1]:

E* =E {1 + i§ ) :
W W E, W
where E,r SE,w depend on the frequency ® of the dynamic load applied.

Several ﬁechniques which utilize specimens of various shapes excited to vi-
brate within a certain frequency range, have been proposed for the measurement
of dynamic moduli. For a detailed description of such technigues the reader is
referred for instance to [é]. The specimens are generally beam-shaped with rec-
tangular cross section. The excitation point can be either at the midpoint or at
one end of the beam. In the present and previous papers, the dynamic resonance
technique was applied to circular filament wound thin specimens excited to wvi-
brate in their centre,

In order to recall the main features of resonance techniques for elastic
moduli determination, let us consider the simple system of Fig.l where a mass M
is connected to the base by means of an elastic element which plays the role of
spring of the classical one d.o.f. model. The elastic forces can be expressed as
KEhT where the asterisk denotes a complex quantity. If the system is excited to
vibrate by the sinusocidal oscillation of its basé, the mechanical driving point
impedance of the system can be written [1]:
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For materials commonly used in mechanical members the variatien of Ey, with
frequency is very small and for practical purposes can be neglected. The expres-

sion of the normalized driving point impedance shows that for w = wo
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From the latter expression the loss factor 6E,w can be derived through-
the measurement of the normalized driving point impedance in rescnance. The mea-
surement of the resonant frequency w, entails the evaluation of the elastic
modulus Eo since mé! = KEO/M. Thus from the resonant frequency u, and ampli
tude of the driving point measurements one can evaluate the elastic modulus E_
and the loss factor SE. In vractical applications to flexural vibraticns of
beam-shaped specimens the expression of the driving point impedance is of the
type (valid for a free-free beam) [1]:
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b I 1 sin h(n*a}‘coa(n*a)+ cos h(n*a)'sin(n’a)
o
*
1M n a 1 + cos h(p*a}-cos(n*a)
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Since the values of n*; at resonances and antiresonances of the beam can
be easily calculated, one can, alternatively, determine the corresponding values
of resonant frequencies W, or if these quantities are measured experimentally
arrive at the determination of the Young's modulus E, . Once again the loss co-
efficient SE,w can be derived from the measurement of the amplitude of the dri-
ving point impedance in resonance or through the well-known resonance bandwidth
method |21.

For cylindrically orthotropic plates a c¢losed form solution of the motion
equations is very difficult to cbtain and the problem of natural fteqﬁency deter
mination is usually solved by approximate methods (Rayleigh-Ritz, or finite ele-
ments) [3]. The finite element method was used in the case at hand to obtain the
natural axisymmetrical frequencies of the plate. A bending axisymmetrical ele-
ment with three d.o.f. per node was employed and the effect of rotary inertia
was taken into account [4]. Resonant frequencies were calculated for a wide
range of values of the elastic moduli Eg, E, in order to demonstrate the de-
pendence of natural frequencies on the elastic meduli.

Two approximations were introduced in this first stage of the analysis. The
real part of the modulus was assumed to be independent of freguency. This assump
tion does not lead to any appreciable error in modulus determination, due to the
fact that for most plastics and composite materials at room temperature frequen-
cy exerts only a very slight influence on modulus [1] .

A seccendary influence which was also neglected was the effect of damping on
resonant frequencies. It is well known that compared with the corresponding no-
damping values a shift in such frequencies does occur. Since in the_analytical
determination of frequencies damping was not considered, experimental damped fre
quencies were compared with analytical undamped .ones. Such an approximation did
induce an error in modulus determination but for materials such as epoxy based
composites characterized by GE £ 0,1 the variation of natural frequency values
due to the presence of internal damping is generally quite small. This does not
mean that the determination of the loss factor is insignificant for engineering
purposes; on the contrary this latter quantity is an indication of the capacity
to absorb shocks and dynamic stress.

A further approximation consisted in neglecting the effect of impedance
head mass on the values of resonant and antiresonant frequencies. A detailed ex-
perimental study has been conducted on this subject by Ziolkowsky [5] who poiht—
ed out that an additional mass on the centre of a free-free beam affects the val
ues of resonant and antiresonant frequencies and the magnitude of the driving
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point impédance. Howeﬁer, the extent of this influence differs substantially for
resonant and antiresonant frequencies. In fact resonant frequencies correspond
to maximum amplitudes at the disc centre whilst in antiresonance this can ke con
sidered a modal point. For this reason the effect of the additional mass on fre-
quencies and driving point impedances in antiresonance can be neglected.

Z. IMPEDANCE MEASUREMENTS

The experimental set-up was based on a fast data acgquisition system connect
ed to a mini computer by means of an analog-to-digital converter. The analogic
signals generated by the acceleration and force transducers were accessed to
computer memory and then entered in FORTRAN program for signal analysis angd im—
pedance measurement. The maximum scanning speed on a single channel was about
17 KHz. For this reason, in order to avoid aliasing of input signals, a low pass
filter was inserted into the measuring chain before the analog-to-digital con-
verter (Fig.2).

The model used was a circular filament wound composite annular disc excited
on its centre by a B & K electrodynamic exciter. Excitation force and vibration
velocity were measured on the driving
point by means of piezoelectric trans-
ducers. Force and vibration velocity ACCEL.
data, converted into digital form were DISC - ] AMPLIFIER
used by a FORTRAN subroutine to obtain FORCE TR. I
impedance values for every step of ex-
citation frequency. Figure 3 repre-
sents the normalized driving peint
Z/iwM in logarithmic scale for the or

EXCITER

ADC

——

REAL
TIME"
dinates for frequencies ranging from INTERFACE

0 to 3.0 ¥Hz. Figure 3 clearly shows
resonant and antiresonant frequencies

of the disc corresponding respectively ' COMPUTER
to minimum and maximum impedance val-
ues. For elastic moduli determination CRT [:] EE—
the first three antiresonant freguen-—

cies were considered with 0,1,2 nodal
circles. The elastic modulus determi- : 1
nation is summarized in Fig.4 where '

the lines corresponding to the first Fig.2

three antiresonances are drawn with

different graphics. The scales for these three frequencies are displaced so as
to represent the three frequency values with a single horizontal line. In this
way one can determine the moduli Ep, E,. as those values which pertain to
lines intersecting the horizental line. This condition is only approximately

" verified because the first two frequencies indicate a modulus Eg of 37000 N/mm
(point A in Fig.5), the first and third Eg = 37200 N/mm {near point B in Fig.
5) and the second and third a value of Eg near 39000 N/mm?. The corresponding
value of Er is about 2000 N/mmz, surprisingly low for filament wound compo-
sites. However, considering that previous research work brought to light the
bresence of defects and delaminations in the same material, this value could be
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realistic. A comprehensive study of several models of the same matexials will
however provide some elucidation in this respect. -

A few consideratlions are expedient in order to comment the results presen-
ted herein. Uncertainties in modulus determination may arise from two main sour-
ces, namely the inadequacy or approximation of the mathematical model used,
which unfortunately cannot be evaluated "a priori", and the experimental test
conditions which are affected by a number of disturbing factors in the analyti-
cal frequency determination. Por this reason the finite element program was ex-
tensively tested on models of isotropic materials such as steel and plastic
thin circular discs, thin conical shells, etc. In this instance analytical solu-
tions were available for natural'frequencies and normal modes and the verifica-
tion of finite element results was facilitated. Furthermore, the elastic moduli
of the materials were known with a good level of confidence and they were used
as reference values for checking the reliability of the method. Results were
generally good for all models tested but highlighted the fact that the higher
the freqguency order used for modulus determination, the poorer the accuracy of
the results. This fact would seem to be attributable to the effect of shear,
which increases with frequency.

In the experimental work on the anisotropic disc specimen, the thickness-
to-radius ratio was maintained at a value of about 0.06 in order to keep shear
effect to within negligible limits. For the same reason only the first three
frequencies were utilized for modulus determination. '
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3. CONCLUSIONS

The results cbtained with a filament wound composite disc would seem to

justify, though with a certain measure of caution, a more concentrated research
effort into the possibilities of using the dynamic method for determining ela-

stic

constants of composite materials. In future work an analytical solution to

dynamic equilibrium equations will be sought in order to eliminate the uncer-
tainties inherent in approximate numerical methods employed for finding the
natural frequencies of the plate. A more extensive experimental study is also
foreseen in order to check the reliability of the present results.

LIST OF SYMBOLS
¥
Ew Complex Young's modulus
Ew Real part of complex modulus
) Loss damping factor
E,w
W Circular frequency
x
Z Conmplex impedance
2 2
n= (W p)/Ew « ¥ ) Frequency parameter
r = 1/A Radius of giration of cross-section of beam
a Half length of beam
M Mass
o) Material mass density
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