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Abstract

One problem to be tackled when using interferorogthiase shifting technology, is how the
phase can be reconstructed. On account of thettfattan arc tan function appears in the
formulation, the final data is not the phase, betphase modulor2 In this paper the authors
present a new phase unwrapping algorithm basedtam-atep procedure. In the first step,
the digital image to be analysed is divided intdcpas using a Quad-Tree like recursive
procedure, in the second step the single patchesjcamed together to obtain larger,
continuous ones. The basic idea of the procedur@ samplify the problem by factoring the
complete image into “homogeneous areas” (i.e. andase each pixel phase differs by less
thanTt from its neighbours) so that only interfaces neede dealt with. On account of the
consistency of the data, the macro-areas assermbths way are also homogeneous, so the
procedure ends up with a fully unwrapped represemaf the image.

After a complete description of the algorithm, soreeamples of its use on
synthesised digital images, with and without no@es illustrated. Images derived from
experimental data are also shown. Lastly the smiutime has been examined. As the
algorithm combines the local and global approadhmas proved to be fast and reliable.

1 INTRODUCTION

Reconstructing the correct phase field from a gfichodulo Ztdata is the final step in many
algorithms for digital image analysis. Most intedeetric techniques generate a fringe
pattern—a cosinusoidal phase function modulatethbyphysical quantity being measured—
for which only the main values, lying in thetr) interval, are known. Because trigonometric
functions are used in the analysis procedure,a $§itep, known as “phase unwrapping”, must
be performed on the experimental data to obtaiirenty the original continuous field by
removing the & discontinuities.

The phase unwrapping problem can be easily soleegliase maps obtained from
good quality fringe data. If there is no aliasimglgem, all the absolute phase differences are
less thamrtexcept for the expectedt2liscontinuities. Thus, starting from an image eoyrit
is possible to follow each row/column adding/suttirey 2t every time a jump greater than -
TUTT is detected. This procedure can fail if noisersspnt: a mis-detected jump sometimes



propagates through the rest of the image produziogmpletely wrong result. In this case a
much more robust algorithm needs to be used.

Over the past years much work has been done tooirapthe noise immunity of
unwrapping algorithms and several authors haveqgseg solutions: the algorithms can be
grouped into four classeq) path-dependent algorithmg) path-independent algorithms,
3) tile/regions combining algorithms adyiglobal algorithms.

All the algorithms belonging to the first classnéar scanning, spiral scanning,
multiple scan directions. ) use an a-priori-defined search path. They arellysuery fast,
but unable to handle noisy images because of el filata evaluation order. The fixed path
limitation is overcome by the"class algorithm&®: again they work on a sequential base,
but the unwrapping order is established by thelpiekability. In this way the analysis of
unreliable data can be postponed and error projpag@irobability is minimised. They
perform well, even if they are computationally agorithmically intensive.

The algorithms in the'3clas$® adopt a completely different approach dividing the
data field into homogeneous areas which are subséigue-assembled so as to minimise the
phase differences at their interfaces. How thesasaare identified varies: thegionsfamily
generates homogeneous areas based on phase gradielat thetile family divides the
original image into a grid of smaller areas whick anwrapped using a simpler algorithm
(usually a path dependent one). Both families aw@nn to be very robust even if the image
division procedure can be difficult, computatiogatitensive and error prone (an interrupted
fringe could generate just one region where twaikhbe present).

The algorithms in the'4class formulate the unwrapping problem in termthefleast
square minimisation of a global functiofiaf. While the error function is quite similar for
all the methods, the “normal equation” solutionoaitipm differs, ranging from an algebraic
solutior, to a simulated annealing metHdtito a discrete transform metid"®*®! This
class usually includes thellular automata methdd™ even if it has no conceptual relation
with the others. All the algorithms of this clage aomputationally intensive but their global
approach compensates for the longer execution time.

In the following we will describe a new unwrappirdgorithm which could be
classified in theegion/tile family. Similarly to thetile algorithmit divides the original data
into square sets, but these sub-areas are intelm@hogeneous and assembled iregion
algorithmlike way.

2. THE QUAD-TREE UNWRAPPING ALGORITHM
As previously mentioned, the relation between thepped phase¢(i, j) and the unwrapped
phasey(i, j) is quite simple:

wli.i)= ¢ j)+2mli, j) D)

where n(i, j), an integer multiplier field, should be chosersuth a way as to minimise the
phase errog over the fullN x M domain:
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where terms outside the working domain do not doutte to the summation. Within an
homogeneous areas—ia, j not simply connected sub-domain, wheeOi", jOj/

6, j)-¢(+1j+1)<7— all n(,]j) will be the same, so that only a globalthat

minimises phase differences at the interfaces tdxe tchosen. This is the basic concept of
theregion algorithmsbut it is evident that in presence of noise,rdgion identification is a
difficult and error prone procedure, usually haddby statistical methods

The tile method based on the assumption that smaller areas shmldasier to
unwrap, by-passes the region identification problexsimg a simpler unwrapping algorithm to
artificially generate square homogeneous areas piticedure does away with the region
identification step and simplifies the evaluatidhimterfaces energy, but binds the overall
performance to the low level unwrapping algorithma & the user defined tile size.

Theregion methodises an advancing front algorithm to identify hoetgpus areas:
starting from a pixel, it analyses the relationven the boundary pixels and their external
neighbours, evaluating the probability that a pixelongs to the current area on the base of
both phase jumps and number of current class neighblt is evident that this algorithm is
complex (one must maintain multiple lists to ddserfegion boundaries) and that two areas
could coalesce in the case of missing fringes.

To overcome these problems one could adopt a batrapproach: noting that a
single pixel is obviously homogeneous, one candbail2x2 homogeneous area just
checking the “interfaces” of these 4 area%t»@4 area can be built using fo@x 2 macro-
pixels, a8x8 area can be built using foutx4 macro-pixels and so on. The procedure
terminates with a single unwrapped region resultirign the combination of 4 square
homogeneous sub-regions. Using this approach, medentification is not a problem and
there is no dependency on tile unwrapping methatl sare. On the other hand one has to
perform interface checking even in homogeneoussareaause of the bottom-up approach.

However, the same algorithm can be implemented Hycking the full image for
phase jumps and if necessary dividing it. By reiwetg performing the same checks on each
sub-image (and dividing it, if necessary), one ddentify, at the end of the division
procedure, four homogeneous, square, sub-aretge(atost 4 pixels), that can be assembled
using the previously described algorithm. This hgereous area can then be combined with
its three same-size neighbours (eventually regulffiom a similar process) to generate a
larger, almost homogeneous area. The latter cass®mbled with its neighbours to generate
an even larger area, and so on up to the full imaggarticular the algorithm works as
described below:

a) For each pixel within a working area, check all tiegghbours for phase jump§there is
no |Ag| > 77 then return.else

b) Divide current area into 4 sub-areas,

c) for each sub-area recursively call the unwrapplggraghm,

d) assemble the 4 homogeneous areas minimising plags jat the interfaces only.
e) return.

Note that a single pixel always succeeds atatemd that, on account of the recursive call at
c),all the sub-areas are homogeneous once we aativdepd): in fact either they are
homogeneous (return from stapor they result from a deeper level combinatidegs).

Using this algorithm the initial image is divideto square, variable size tiles. Each
tile is homogeneous and can easily be combined witighbours of the same size by
checking phase jumps at the interfaces only.



The tile sizing problem and the dependency ondhelével unwrapping algorithm of
the tile methodare completely solved. The homogeneous area fabamiton problem of the
region algorithmis also solved, while the misidentification prablef homogeneous areas in
presence of missing fringe is only partially solvdd any case, even if a tile can be
erroneously assumed to be homogeneous by the mividigorithm, the recombination
method, which at each step compares the interfacdsareas, intrinsically limits the error
propagation probability; moreover, since each tilece assembled, forms part of a larger
one, it moves with it, so that the overall resslaimost always correct and the errors remain
local.

A minor drawback of the Quad-Tree algorithm is tih@a&quires square images with a
power of two size. Although this could appear toabserious problem this is not so because
of the weighting procedure (described below) wtattbws to disable added borders.

2.1. Tilecombining algorithm

The above algorithm can be viewed as a two stefadetthedividing step, to identify
homogeneous areas in the original image, and@dhembiningstep, to generate a larger,
homogeneous area. Although this classificationoismievhat artificial—image tessellation
and tile recombination are not sequential but mteed—these operations are nevertheless
essentially different. In the first step, the algon checks for phase jumps looking for
homogeneous areas; in the second step these egeammbined to obtain larger ones.

The area recombination step attempts to minimiseptimse jumps at the interfaces,
that is it attempts to find, for each sub-areaab@ n (n;, n;, N3, N;) SO as to minimise

D Ap.

Since we are not concerned with external interfaseshave to take care of relative
position only, son; can safely be assumed to be null. By contrasing and ns can in
principle be any integer value as any sub-areardegssed separately, so we chose an
incremental approach:

a) puth =N3=N; =0;
b) for eachn,,n,,n, 0[01-1], calculateE = > |Ag(n, + N,,n, + N, n, +N,);
c) if the E minimising combination is nat, = n3 =ng = 0 then
d) addny, ng, ng to Ny, N3, Ng;
e) goto b;
f) addN (N3, N4) to eacn(i,j) of the sub-area.

Note that since each can take one of three possible values, we hayegettorm 27 (§)
phase jump evaluations at ste)p which is therefore one of the most time consunphases
of the Quad-Tree algorithm.

2.2. Improving unwrapping by weighting

Experimental images often show low modulation/hyghbisy areas so that a pixel disabling
procedure is necessary. The procedure is easillemgnted by means of a phase weighting
matrix W(i,j).Since the unwrapping process is driven by the misation of phase jumps at
sub-areas interfaces, the use of a nil pixel weagihdmatically nullifies its contribution to the
summation. Giverd(i, j) =W(i, +i, j, + j ((i, +i, j, + j)), we obtain
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whereN is the size of the area to be assembled@iylare the co-ordinates of its origin.

Note thata) by defining an appropriate weighting mask it @sgible to isolate one (or
more) area from the others abjl inside a completely masked out area there willnbe
unwrapping since all the sub-area configuratiorisgite a nullE.

The weighting matrix can be used to improve unwiragppoo. If phase reliability data
are available, it is possible to use a continuoualying weight, rather than a digital one, to
drive the unwrapping process. Numerical experimesftsw that a good weight can be
obtained combining phase modulatignj) and local phase regularity:
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(4)

W(i, j) = v,

Since¢ andy result from the same calculation, an erroneousesmsometimes coupled with
an erroneous modulation. This formulation requiekighy in a locally regular area thus
balancing both errors. Note that the geometricathtn (4) needs to be calculated twice: if
the pixel to be weighted is near & @iscontinuity, there will be a large gap betweétep
phase and mean local phase even if we analysesa free image. To avoid this problem it
suffices to addtto all phases, thus shifting phase discontinuitesl re-calculat®V. Of the
two possible results, the greatest will obvioustyused.

2.3.  Implementation Notes

The performance of the Quad-Tree unwrapping algoritescribed in the previous sections
can be easily optimised. The attention should baded on two main points:

1) during the division step, the algorithm carries mdundant homogeneity tests. Suppose
we analyse d28x128 image. A phase discontinuity between pixel (223) will be
checked during the*Ipass (causing a recursive call), then during tiadyais of the (1,1-
-64,64) sub-image, during the analysis of the (B2,32) sub-image and so on up to the
(1,1--2,2) sub-area.

2) During each (sub)assembling step, the algorithnfop®s several interface “energy”
evaluations, each requiring significative compuatatime due to phase jumps calculation
and data retrieval.

Concerning the first point, it should be observeat.talthough the algorithm requires
the detection of phase jumps to correctly unwrappthase field, a knowledge of the effective
jumps, once they are known to be larger tiais useless. For each point, it suffices to know
which of the eight neighbours cannot be groupecd wite current one without phase
correction. This information can be efficiently gd in a byte matrixC(i,j), which can be



initialised before the recursive step. In this wiyconduct the homogeneity check it suffices
to verify thatC(i, j);t 0, inside the working area, while on the boundarg&slightly more
complex analysis(C(i, j) & k,) # 0, must be performedis a constant bit mask depending

on working side and data encoding).

Interface energy evaluation cannot be optimisetiensame way because phase jumps
must be known. However, for each assembly, it issflibe to store phase values in local
arrays. This data indexing simplification, coupleith careful coding, greatly enhances code

2. NUMERICAL AND EXPERIMENTAL RESULTS

Let us start with a simple synthetic image: in fgd and 2 we show 256x 256 sinc()
function:

1. Wrapped sinc function 2. Unwrapped sinc function

we did not add any noise to the phase moduigi@ce our aim was to show the theoretical
correctness of the algorithm. Nevertheless theigesgnificant because of the variable fringe
densities.

Adding some noise to the image (figure 3) doesnaticeably alter the previous result:
there are some small errors near the sinc topréigy but they are only deviations from the
overall trend. This behaviour is typical of the QuEree algorithm because of the method
used to assemble the tiles.

3. Wrapped noisy sinc function 4. Unwrapped noisg function



Figure 5 shows an experimental fringe field of ararisurface. This was obtained using a
Twiman-Green interferometer, a He-Ne laser=632.8 nm) and a 4 images,/2 phase
shifting algorithm.

5. Mirror surface fringe system 6. Unwrapped misorface

The unwrapped result (figure 6) is fairly good eveampared with the original wrapped
phase.

2. SOME CONSIDERATIONSON TIME AND CONCLUSIONS

Short solution time is a minor requirement for uapwing algorithms. Nevertheless the
Quad-Tree algorithm uses a unique recursive approeequiring little analysis to be
performed.

As mentioned previously, each tile is divided dgrthe homogeneity-test step until
all phase differences are less tlanThis means that, even in the same image, theoend-
recursion tile dimensions are not the same sineg tbviously depend on signal-to-noise
ratio and fringe density. Figure 7 shows the QueekTgenerated when analysing the mirror
surface. The image side has been expanded todidfirithm requirements, nevertheless the
expansion procedure is clearly not a problem. Gnabntrary, the fringe density and the
signal-to-noise ratio can significantly affect #weecution speed. Even if tree depth can never
be greater than lgfn) (n is the size of image side) it expands and shregeral times
depending on phase smoothness, so that it is rssilpe to predict execution time without
input data analysis
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7. Quad-Tree generated during mirror surface aiglys

Unwrapping time for the mirror image4{7x356 pixel, mapped to &12x512
square) was about 1.2~sec. on a K6/300 MHz processmpared to 1.95 sec required for a
single iteration of the Ghiglia and Morero DCT medf®, using the same machine.

We have presented a two-dimensional phase unwrg@gorithm based on a two-
step procedurea) the division of higher fringe density/noisy areiaso smaller, almost
homogeneous parts at) their recombination using global minimisationté interfaces.
Preliminary numerical experiments show the new rtlgm to be very fast and robust: its
performances on images with low and medium noigel lere very good; comparative studies
with other algorithms for highly noisy images ameprogress.



REFERENCES

[1]

[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

D. W. Robinson “Phase unwrapping methods” lierferogram analysis: Digital
Fringe Pattern Measurement Technigud3. W. Robinson and G.T. Reid Eds.,
pp. 194-229, Institute of Physics Publishing, Btisind Philadelphia, 1993.

J. M. Huntley “Noise immune phase unwrappirigoaithm” Applied Optics28 (15)
pp. 3268-3270, 1989.

N. H. Ching, D. Rosenfeld and M. Braun “Two-dinmsional phase unwrapping using a
minimum spanning tree algorithm” IEEE Trans. Impgecessl pp. 355-365, 1992.

J. M. Huntley and H. Saldner “Temporal phaseviapping algorithm for automatic
interferogram analysisApplied Optics32 pp. 3047-3052, 1993.

R. Cusack, J.M. Huntley and H.T. Goldreinmfiroved noise-immune phase
unwrapping algorithmApplaid Optics28 pp. 781-789, 1995.

M. Takeda and T.Abe “Phase unwrapping based nmeximum cross-amplitude
spanning tree algorithm: a comparative studylnterferometry VII: Techniques and
AnalysisM. Kujawinska, R. J. Pryputniewicz and M. TakeddsEProc. SPIE2544
pp. 122-129, 1996.

J. J. Gierloff “Phase unwrapping by regions” @urrent Development in Optical
engineering I) R. E. Fischer and W. J. Smith Ed®oc. SPIE818, pp. 2-9, 1987.

K.M. Hung and T.Yamada “Phase unwrapping lBgions using least-square
approach’Optical Eng.37(11),pp. 2965-2970, 1998.

B. R. Hunt “Matrix formulation of the reconstition of phase values from phase
differences”J. Opt. Soc. An69pp. 393-399, 1979.

H. Takajo and T. Takahashi “Noniterative metHor obtaining the exact solution for
the normal equation in least square phase estimétion phase differencel. Opt.
Soc. Am. /A, pp. 1818-1827, 1988.

L. Guerriero, G. Nico, G. Pasquariello andS8amaglia “New regularization scheme
for phase unwrappingdpplied Optics37 (14) pp. 3053-3058, 1998.

G. Fornaro, G. Franceschetti, R. Lanari andS&nsosti “Robust phase-unwrapping
techniques: a comparisod” Opt. Soc. Am. A3, pp. 2355-2366, 1996.

D. C. Ghiglia and L. A. Romero “Robust twastknsional weighted and unweighted
phase unwrapping that uses fast transforms aratiitermethods’d. Opt. Soc. Am. A
11, pp. 107-117, 1994.

M. Servin, J. L. Marroquin, D. Malacara andJF.Cuevas “Phase unwrapping with a
regularized phase-tracking systeApplied Optics37(10), pp. 1917-1923, 1998.

G. H. Kaufmann, G.E. Galizzi and P.D. Ruigvaluation of a preconditioned
conjugate-gradient algorithm for weighted leastasguunwrapping of digital speckle-
pattern interferometry phase mapggiplied Optics37 (14), pp. 3076-3084, 1998.

D. C. Ghiglia, G. A. Mastin and L. A. Romer&éllular-automata method for phase
unwrapping”J. Opt. Soc. Am. A(1), pp. 267-280, 1987.



