
A Quad-Tree Based Phase Unwrapping Algorithm

A. Baldi, F. Bertolino, F. Ginesu

Department of Mechanical Engineering, University of Cagliari
Piazza D’armi, 1 – 09123 Cagliari, Italy

e-mail: baldi@iris.unica.it

Abstract

One problem to be tackled when using interferometric phase shifting technology, is how the
phase can be reconstructed. On account of the fact that an arc tan function appears in the
formulation, the final data is not the phase, but the phase modulo 2π. In this paper the authors
present a new phase unwrapping algorithm based on a two-step procedure. In the first step,
the digital image to be analysed is divided into patches using a Quad-Tree like recursive
procedure, in the second step the single patches are joined together to obtain larger,
continuous ones. The basic idea of the procedure is to simplify the problem by factoring the
complete image into “homogeneous areas” (i.e. areas where each pixel phase differs by less
than π from its neighbours) so that only interfaces need to be dealt with. On account of the
consistency of the data, the macro-areas assembled in this way are also homogeneous, so the
procedure ends up with a fully unwrapped representation of the image.

After a complete description of the algorithm, some examples of its use on
synthesised digital images, with and without noise, are illustrated. Images derived from
experimental data are also shown. Lastly the solution time has been examined. As the
algorithm combines the local and global approach, it has proved to be fast and reliable.

1. INTRODUCTION

Reconstructing the correct phase field from a grid of modulo 2π data is the final step in many
algorithms for digital image analysis. Most interferometric techniques generate a fringe
pattern—a cosinusoidal phase function modulated by the physical quantity being measured—
for which only the main values, lying in the [-π,π) interval, are known. Because trigonometric
functions are used in the analysis procedure, a final step, known as “phase unwrapping”, must
be performed on the experimental data to obtain indirectly the original continuous field by
removing the 2π discontinuities.

The phase unwrapping problem can be easily solved for phase maps obtained from
good quality fringe data. If there is no aliasing problem, all the absolute phase differences are
less than π except for the expected 2π discontinuities. Thus, starting from an image corner, it
is possible to follow each row/column adding/subtracting 2π every time a jump greater than -
π/π is detected. This procedure can fail if noise is present: a mis-detected jump sometimes

propagates through the rest of the image producing a completely wrong result. In this case a
much more robust algorithm needs to be used.

Over the past years much work has been done to improve the noise immunity of
unwrapping algorithms and several authors have proposed solutions: the algorithms can be
grouped into four classes: 1) path-dependent algorithms, 2) path-independent algorithms,
3) tile/regions combining algorithms and 4) global algorithms.

All the algorithms belonging to the first class (linear scanning, spiral scanning,
multiple scan directions…)[1] use an a-priori-defined search path. They are usually very fast,
but unable to handle noisy images because of the fixed data evaluation order. The fixed path
limitation is overcome by the 2nd class algorithms[2–6]: again they work on a sequential base,
but the unwrapping order is established by the pixel reliability. In this way the analysis of
unreliable data can be postponed and error propagation probability is minimised. They
perform well, even if they are computationally and algorithmically intensive.

The algorithms in the 3rd class[7–8] adopt a completely different approach dividing the
data field into homogeneous areas which are subsequently re-assembled so as to minimise the
phase differences at their interfaces. How these areas are identified varies: the regions family
generates homogeneous areas based on phase gradients while the tile family divides the
original image into a grid of smaller areas which are unwrapped using a simpler algorithm
(usually a path dependent one). Both families are known to be very robust even if the image
division procedure can be difficult, computationally intensive and error prone (an interrupted
fringe could generate just one region where two should be present).

The algorithms in the 4th class formulate the unwrapping problem in terms of the least
square minimisation of a global functional[9–16]. While the error function is quite similar for
all the methods, the “normal equation” solution algorithm differs, ranging from an algebraic
solution[9–10], to a simulated annealing method[11] to a discrete transform method[12–13,15]. This
class usually includes the cellular automata method[16][1] even if it has no conceptual relation
with the others. All the algorithms of this class are computationally intensive but their global
approach compensates for the longer execution time.

In the following we will describe a new unwrapping algorithm which could be
classified in the region/tile family. Similarly to the tile algorithm it divides the original data
into square sets, but these sub-areas are internally homogeneous and assembled in a region
algorithm like way.

2. THE QUAD-TREE UNWRAPPING ALGORITHM

As previously mentioned, the relation between the wrapped phase ()ji,ϕ and the unwrapped

phase ()ji,ψ is quite simple:

 () () ()jinjiji ,2,, πϕψ += (1)

where ()jin , , an integer multiplier field, should be chosen in such a way as to minimise the

phase error ε over the full MN × domain:

[]
[]
() () ()()∑∑∑

= = =

++−=

−−−=
−−−=

N

i

M

j k
yx

y

x

kjkiji
1 1

8

1

,,

0,1,1,1,0,1,1,1

1,1,0,1,1,1,0,1

δδψψε

δ
δ

 (2)

where terms outside the working domain do not contribute to the summation. Within an
homogeneous areas—a *i , *j not simply connected sub-domain, where /,* jjii ∈∈∀

() () πϕϕ <±±− 1,1, jiji — all ()jin , will be the same, so that only a global n that

minimises phase differences at the interfaces has to be chosen. This is the basic concept of
the region algorithms, but it is evident that in presence of noise, the region identification is a
difficult and error prone procedure, usually handled by statistical methods[7].

The tile method, based on the assumption that smaller areas should be easier to
unwrap, by-passes the region identification problem using a simpler unwrapping algorithm to
artificially generate square homogeneous areas. This procedure does away with the region
identification step and simplifies the evaluation of interfaces energy, but binds the overall
performance to the low level unwrapping algorithm and to the user defined tile size.

The region method uses an advancing front algorithm to identify homogeneous areas:
starting from a pixel, it analyses the relation between the boundary pixels and their external
neighbours, evaluating the probability that a pixel belongs to the current area on the base of
both phase jumps and number of current class neighbours. It is evident that this algorithm is
complex (one must maintain multiple lists to describe region boundaries) and that two areas
could coalesce in the case of missing fringes.

To overcome these problems one could adopt a bottom-up approach: noting that a
single pixel is obviously homogeneous, one can build a 22× homogeneous area just
checking the “interfaces” of these 4 areas; a 44× area can be built using four 22× macro-
pixels, a 88× area can be built using four 44× macro-pixels and so on. The procedure
terminates with a single unwrapped region resulting from the combination of 4 square
homogeneous sub-regions. Using this approach, region identification is not a problem and
there is no dependency on tile unwrapping method and size. On the other hand one has to
perform interface checking even in homogeneous areas because of the bottom-up approach.

However, the same algorithm can be implemented by checking the full image for
phase jumps and if necessary dividing it. By recursively performing the same checks on each
sub-image (and dividing it, if necessary), one can identify, at the end of the division
procedure, four homogeneous, square, sub-areas (at the most 4 pixels), that can be assembled
using the previously described algorithm. This homogeneous area can then be combined with
its three same-size neighbours (eventually resulting from a similar process) to generate a
larger, almost homogeneous area. The latter can be assembled with its neighbours to generate
an even larger area, and so on up to the full image. In particular the algorithm works as
described below:

a) For each pixel within a working area, check all the neighbours for phase jumps; if there is
no πϕ >∆ then return. else

b) Divide current area into 4 sub-areas,
c) for each sub-area recursively call the unwrapping algorithm,
d) assemble the 4 homogeneous areas minimising phase jumps at the interfaces only.
e) return.

Note that a single pixel always succeeds at step a) and that, on account of the recursive call at
c),all the sub-areas are homogeneous once we arrive at step d): in fact either they are
homogeneous (return from step a) or they result from a deeper level combination (step e).

Using this algorithm the initial image is divided into square, variable size tiles. Each
tile is homogeneous and can easily be combined with neighbours of the same size by
checking phase jumps at the interfaces only.

The tile sizing problem and the dependency on the low level unwrapping algorithm of
the tile method are completely solved. The homogeneous area identification problem of the
region algorithm is also solved, while the misidentification problem of homogeneous areas in
presence of missing fringe is only partially solved. In any case, even if a tile can be
erroneously assumed to be homogeneous by the dividing algorithm, the recombination
method, which at each step compares the interfaces of 4 areas, intrinsically limits the error
propagation probability; moreover, since each tile, once assembled, forms part of a larger
one, it moves with it, so that the overall result is almost always correct and the errors remain
local.

A minor drawback of the Quad-Tree algorithm is that it requires square images with a
power of two size. Although this could appear to be a serious problem this is not so because
of the weighting procedure (described below) which allows to disable added borders.

2.1. Tile combining algorithm

The above algorithm can be viewed as a two step method: the dividing step, to identify
homogeneous areas in the original image, and the recombining step, to generate a larger,
homogeneous area. Although this classification is somewhat artificial—image tessellation
and tile recombination are not sequential but intermixed—these operations are nevertheless
essentially different. In the first step, the algorithm checks for phase jumps looking for
homogeneous areas; in the second step these areas are combined to obtain larger ones.

The area recombination step attempts to minimise the phase jumps at the interfaces,
that is it attempts to find, for each sub-area, a global n (n1, n2, n3, n4) so as to minimise

∑∆ϕ .

Since we are not concerned with external interfaces, we have to take care of relative
position only, so n1 can safely be assumed to be null. By contrast n2, n3 and n4 can in
principle be any integer value as any sub-area is processed separately, so we chose an
incremental approach:

a) put N2 = N3 = N4 = 0;
b) for each []1,1,0,, 432 −∈nnn , calculate ()∑ +++∆= 443322 ,, NnNnNnE ϕ ;

c) if the E minimising combination is not n2 = n3 = n4 = 0 then
d) add n2, n3, n4 to N2, N3, N4;
e) goto b;

f) add N2 (N3, N4) to each n(i,j) of the sub-area.

Note that since each ni can take one of three possible values, we have to perform 27 (33)
phase jump evaluations at step b), which is therefore one of the most time consuming phases
of the Quad-Tree algorithm.

2.2. Improving unwrapping by weighting

Experimental images often show low modulation/highly noisy areas so that a pixel disabling
procedure is necessary. The procedure is easily implemented by means of a phase weighting
matrix W(i,j).Since the unwrapping process is driven by the minimisation of phase jumps at
sub-areas interfaces, the use of a nil pixel weight automatically nullifies its contribution to the
summation. Given () () ()()jjiijjiiWji ++++= 0000 ,,, ψϑ , we obtain

∑

∑

∑

−

=

−

=

=
















 +−






 ++






 ++−























 +−






 ++






 ++−























 +−






+






 +−








+
+
=

1

1

1

1

1

,1
2

1,
2

1,1
2

,
2

1
2

,
2

,11
2

,1
2

,

,1
2

,
2

1
2

,
2

,

N

j

N

i

N

k

j
N

j
N

j
N

j
N

N
i

N
i

N
i

N
i

k
N

k
NN

k
N

k

E

θθθθ

ϑθϑθ

θθθθ

 (3)

where N is the size of the area to be assembled and i0, j0 are the co-ordinates of its origin.
Note that a) by defining an appropriate weighting mask it is possible to isolate one (or

more) area from the others and b) inside a completely masked out area there will be no
unwrapping since all the sub-area configurations will give a null E.

The weighting matrix can be used to improve unwrapping too. If phase reliability data
are available, it is possible to use a continuously varying weight, rather than a digital one, to
drive the unwrapping process. Numerical experiments show that a good weight can be
obtained combining phase modulation γ(i,j) and local phase regularity:

 () ()
() () ()()















 ++−
−=

∑ =

π

δδϕϕ
γ

2

,,
1,,

8

18
1

k yx kjkiji
jijiW (4)

Since ϕ and γ result from the same calculation, an erroneous phase is sometimes coupled with
an erroneous modulation. This formulation requires a high γ in a locally regular area thus
balancing both errors. Note that the geometrical term in (4) needs to be calculated twice: if
the pixel to be weighted is near a 2π discontinuity, there will be a large gap between pixel
phase and mean local phase even if we analyse a noise free image. To avoid this problem it
suffices to add π to all phases, thus shifting phase discontinuities, and re-calculate W. Of the
two possible results, the greatest will obviously be used.

2.3. Implementation Notes

The performance of the Quad-Tree unwrapping algorithm described in the previous sections
can be easily optimised. The attention should be focused on two main points:

1) during the division step, the algorithm carries out redundant homogeneity tests. Suppose
we analyse a 128128× image. A phase discontinuity between pixel (2,2)-(2,3) will be
checked during the 1st pass (causing a recursive call), then during the analysis of the (1,1-
-64,64) sub-image, during the analysis of the (1,1--32,32) sub-image and so on up to the
(1,1--2,2) sub-area.

2) During each (sub)assembling step, the algorithm performs several interface “energy”
evaluations, each requiring significative computation time due to phase jumps calculation
and data retrieval.

Concerning the first point, it should be observed that, although the algorithm requires
the detection of phase jumps to correctly unwrap the phase field, a knowledge of the effective
jumps, once they are known to be larger than π, is useless. For each point, it suffices to know
which of the eight neighbours cannot be grouped with the current one without phase
correction. This information can be efficiently stored in a byte matrix C(i,j), which can be

initialised before the recursive step. In this way, to conduct the homogeneity check it suffices
to verify that () 0, ≠jiC , inside the working area, while on the boundaries, a slightly more

complex analysis, ()() 0&, ≠skjiC , must be performed (ks is a constant bit mask depending
on working side and data encoding).

Interface energy evaluation cannot be optimised in the same way because phase jumps
must be known. However, for each assembly, it is possible to store phase values in local
arrays. This data indexing simplification, coupled with careful coding, greatly enhances code

2. NUMERICAL AND EXPERIMENTAL RESULTS

Let us start with a simple synthetic image: in figure 1 and 2 we show a 256256× sinc()
function:

1. Wrapped sinc function 2. Unwrapped sinc function

we did not add any noise to the phase modulo 2π since our aim was to show the theoretical
correctness of the algorithm. Nevertheless the test is significant because of the variable fringe
densities.

Adding some noise to the image (figure 3) does not noticeably alter the previous result:
there are some small errors near the sinc top (figure 4), but they are only deviations from the
overall trend. This behaviour is typical of the Quad-Tree algorithm because of the method
used to assemble the tiles.

3. Wrapped noisy sinc function 4. Unwrapped noisy sinc function

Figure 5 shows an experimental fringe field of a mirror surface. This was obtained using a
Twiman-Green interferometer, a He-Ne laser (λ = 632.8 nm) and a 4 images, π /2 phase
shifting algorithm.

5. Mirror surface fringe system 6. Unwrapped mirror surface

The unwrapped result (figure 6) is fairly good even compared with the original wrapped
phase.

2. SOME CONSIDERATIONS ON TIME AND CONCLUSIONS

Short solution time is a minor requirement for unwrapping algorithms. Nevertheless the
Quad-Tree algorithm uses a unique recursive approach, requiring little analysis to be
performed.

As mentioned previously, each tile is divided during the homogeneity-test step until
all phase differences are less than π. This means that, even in the same image, the end-of-
recursion tile dimensions are not the same since they obviously depend on signal-to-noise
ratio and fringe density. Figure 7 shows the Quad-Tree generated when analysing the mirror
surface. The image side has been expanded to fulfil algorithm requirements, nevertheless the
expansion procedure is clearly not a problem. On the contrary, the fringe density and the
signal-to-noise ratio can significantly affect the execution speed. Even if tree depth can never
be greater than log2(n) (n is the size of image side) it expands and shrinks several times
depending on phase smoothness, so that it is not possible to predict execution time without
input data analysis

7. Quad-Tree generated during mirror surface analysis

Unwrapping time for the mirror image (356477× pixel, mapped to a 512512×
square) was about 1.2~sec. on a K6/300 MHz processor, compared to 1.95 sec required for a
single iteration of the Ghiglia and Morero DCT method[13], using the same machine.

We have presented a two-dimensional phase unwrapping algorithm based on a two-
step procedure: a) the division of higher fringe density/noisy areas into smaller, almost
homogeneous parts and b) their recombination using global minimisation at the interfaces.
Preliminary numerical experiments show the new algorithm to be very fast and robust: its
performances on images with low and medium noise level are very good; comparative studies
with other algorithms for highly noisy images are in progress.

REFERENCES

[1] D. W. Robinson “Phase unwrapping methods” in Interferogram analysis: Digital
Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid Eds.,
pp. 194–229, Institute of Physics Publishing, Bristol and Philadelphia, 1993.

[2] J. M. Huntley “Noise immune phase unwrapping algorithm” Applied Optics 28 (15)
pp. 3268–3270, 1989.

[3] N. H. Ching, D. Rosenfeld and M. Braun “Two-dimensional phase unwrapping using a
minimum spanning tree algorithm” IEEE Trans. Image process.1 pp. 355–365, 1992.

[4] J. M. Huntley and H. Saldner “Temporal phase unwrapping algorithm for automatic
interferogram analysis” Applied Optics 32 pp. 3047–3052, 1993.

[5] R. Cusack, J. M. Huntley and H. T. Goldrein “Improved noise-immune phase
unwrapping algorithm” Applaid Optics 28 pp. 781–789, 1995.

[6] M. Takeda and T. Abe “Phase unwrapping based on maximum cross-amplitude
spanning tree algorithm: a comparative study” in Interferometry VII: Techniques and
Analysis M. Kujawinska, R. J. Pryputniewicz and M. Takeda Eds., Proc. SPIE 2544
pp. 122–129, 1996.

[7] J. J. Gierloff “Phase unwrapping by regions” in Current Development in Optical
engineering II, R. E. Fischer and W. J. Smith Eds., Proc. SPIE 818, pp. 2–9, 1987.

[8] K. M. Hung and T. Yamada “Phase unwrapping by regions using least-square
approach” Optical Eng. 37(11),pp. 2965–2970, 1998.

[9] B. R. Hunt “Matrix formulation of the reconstruction of phase values from phase
differences” J. Opt. Soc. Am. 69pp. 393–399, 1979.

[10] H. Takajo and T. Takahashi “Noniterative method for obtaining the exact solution for
the normal equation in least square phase estimation from phase difference” J. Opt.
Soc. Am. A 5, pp. 1818–1827, 1988.

[11] L. Guerriero, G. Nico, G. Pasquariello and S. Stramaglia “New regularization scheme
for phase unwrapping” Applied Optics 37 (14) pp. 3053–3058, 1998.

[12] G. Fornaro, G. Franceschetti, R. Lanari and E. Sansosti “Robust phase-unwrapping
techniques: a comparison” J. Opt. Soc. Am. A 13, pp. 2355–2366, 1996.

[13] D. C. Ghiglia and L. A. Romero “Robust two-dimensional weighted and unweighted
phase unwrapping that uses fast transforms and iterative methods” J. Opt. Soc. Am. A
11, pp. 107–117, 1994.

[14] M. Servin, J. L. Marroquin, D. Malacara and F. J. Cuevas “Phase unwrapping with a
regularized phase-tracking system” Applied Optics 37(10), pp. 1917–1923, 1998.

[15] G. H. Kaufmann, G. E. Galizzi and P. D. Ruiz “Evaluation of a preconditioned
conjugate-gradient algorithm for weighted least-square unwrapping of digital speckle-
pattern interferometry phase maps” Applied Optics 37 (14), pp. 3076–3084, 1998.

[16] D. C. Ghiglia, G. A. Mastin and L. A. Romero “Cellular-automata method for phase
unwrapping” J. Opt. Soc. Am. A 4 (1), pp. 267–280, 1987.

