
An Adaptive Approach
for Planning in Dynamic Environments

Giuliano Armano

DIEE
Department of Electrical and Electronic

Engineering
University of Cagliari

Piazza d’Armi, I-09123, Cagliari, Italy

Eloisa Vargiu

CRS4
Center for Advanced Studies, Research and

Development in Sardinia
VI Strada OVEST Z.I.

Macchiareddu, I-09010 Uta (CA), Italy

Abstract
Planning in a dynamic environment is a

complex task that requires several issues to be
investigated in order to manage the associated
search complexity. In this paper, an adaptive
behavior that integrates planning with learning
is presented. The former is performed adopting a
hierarchical approach, interleaved with
execution. The latter, devised to identify new
abstract operators, adopts a chunking technique
on successful plans. Integration between
planning and learning is also promoted by an
agent architecture explicitly designed for
supporting abstraction.

Keywords

Learning Macro Operators, Learning Abstract
Operators, Abstraction, Hierarchical Planning,
Interleaving Planning and Execution.

1 Introduction
It is well known that the AI community has

greatly promoted innovations in the field of
autonomous agents, and that planning,
learning, and reasoning are among the most
important features to be implemented in an
intelligent agent. Conversely, the introduction
of agents has prompted investigations on AI
algorithms and techniques, with the aim of
using them in real-world domains, as the
classical assumptions no longer hold for them.
In particular, real-world domains are usually
not-completely controllable, not-completely
accessible, and dynamic (see, for example,
[20] and [15] for a discussion on this topic).
Furthermore, some additional real-time
constraints may hold.

An “idealized” agent devised for dealing

with these issues should exhibit: (i) suitable
planning complexity, (ii) the capability of
reacting quickly to environmental changes,
and (iii) the ability of adapting itself to the
given environment, as well as to the given
planning problems.

In principle, for a given abstraction
hierarchy, both the Downward and Upward
Solution Properties may hold (DSP and USP
[19]), as the counterpart −within the planning
community− of the soundness and
completeness properties, respectively.

The DSP ensures that, for every abstract
solution, at least one corresponding ground
solution exists, whereas the converse holds for
the USP. Usually, abstraction methods allow
one to assume that only the USP holds, thus
introducing “false” solutions 1 at the abstract
levels [8] (see also [5] and [17] for a
description given from the problem-solving
perspective). Furthermore, when the ratio
between “false” and “true” abstract solutions
becomes too high, exploiting the hierarchy
yields a search that could be less effective
than the one performed at the ground level
only (see, for example, [2] for a thorough
discussion on this topic).

1.1 Dealing with a Dynamic
Environment

The capability of quickly reacting to any
change is a major issue in dynamic
environments; in particular, events that make
the current activity needless, or impossible to

1 Namely, abstract solutions that do not actually lead to

ground solutions.

be completed, must be identified as soon as
possible. To this end, planning and execution
monitoring can be interleaved, thus giving rise
to a powerful control strategy (e.g., IPEM [1]
and Rogue [6]). Another desired property of
planners that act in a dynamic environment is
the capability of avoiding global replanning
when some exogenous conditions collide with
the current plan, this property being
particularly relevant for domains where
additional quasi real-time constraints hold
(e.g., computer games [15]). A further
powerful framework has been investigated by
Nourbakhsh [16], which integrates planning
and execution with multiple abstractions, thus
yielding a hierarchical approach able to
enforce context-dependent control strategies.

1.2 Adaptation as Integration between
Planning and Learning

Generally speaking, all adaptive techniques
devoted to speed up planning fall into the
category of learning control knowledge. For
the sake of brevity, we will only recall some
of the approaches that have been devised and
experimented: a) learning abstractions from
the domain knowledge (e.g., ABSTRIPS [18]),
b) acquisition of heuristics for state-space [13]
or plan-space search [4], c) learning macro-
operators [10], d) use of classical learning
techniques (e.g., explanation-based [7] and
inductive [12] learning), e) learning
abstractions from the problem to be solved
(e.g., ALPINE [9]). The SOAR [11] and
PRODIGY [3] systems, where the capability of
embedding the learning activity within an
adaptive framework that encompasses
planning, learning, and execution is
experimented, also deserve mention.

1.3 Outline of the Paper
In this paper an adaptive mechanism is

proposed, which allows an agent to discover
abstract operators from successful plans. Any
such new operator becomes a candidate for
being embedded into the agent’s hierarchical
planner and made available to the abstract
level for any subsequent planning problem to
be solved. Due to the dependency between
abstract operators and already-solved planning
problems, each agent is able to develop its

own abstract layer, thus promoting an
individual adaptation to the given environment.

The remainder of this paper is organized as
follows: in section 2 , after briefly depicting
the underlying hierarchical interleaving
planning and execution approach, the
proposed learning life-cycle and mechanism
are described, in section 3 experimental
results are discussed, and in section 4
conclusions are drawn and directions for
future work are sketched.

2 A Hierarchical and Adaptive
Approach to Interleaving
Planning and Execution

It is worth pointing out in advance that our
agents must act in a dynamic environment,
which models a real-world domain where
additional “quasi real-time” constraints hold.
To deal with these constraints, a hierarchical
approach has been devised that encompasses
(i) their underlying architecture, (ii) their
proactive and reactive capabilities, and
(iii) their adaptive behavior.

2.1 A Layered Architecture for
Hierarchical Planning

Bearing in mind that agents are aimed at
implementing a goal-oriented behavior in a
dynamic environment, we defined a two-pass
vertically layered architecture that can be
equipped with N layers. Each layer exploits a
local knowledge base (KB), and is numbered
according to its level of abstraction. In the
proposed architecture all layers are –at least
conceptually– identical, each one being able to
embody in the same way reactive, deliberative
and proactive functionality. Only the
responsibilities of a layer change, depending
on the level of abstraction being considered.
According to the basic features characterizing
a two-pass vertically layered architecture, the
information flows from level 0 up to level N-1,
whereas the control flows from level N-1
down to level 0.

As we are concerned with investigating the
relations among abstraction, planning, and
learning in a dynamic environment, for the
sake of simplicity, agents have been equipped

with two layers, i.e., situated and strategic
(see figure 1).

 Level 0

 Level 1

actions inputs

Strategic Layer

Situated Layer

KB

KB

World

Control

Information

 Figure 1 - A layered agent architecture.

2.2 Hierarchical Interleaving Planning
and Execution

To efficiently deal with a dynamic
environment, a hierarchical interleaving
planning and execution approach (HIPE) has
been adopted and customized according to the
underlying architecture. In fact, the situated
and the strategic layer host the ground- and
abstract-level planner, respectively. Both
planners act according to an UCPOP-like
mechanism, although −in principle− this choice
does not affect the overall architecture and
vice versa.

An agent repeatedly performs planning,
executes actions, and monitors any change
occurred in the environment, both at the
situated and strategic layer. Note that the
ground planner is devoted to perform planning
on any goal imposed by the abstract one, so
that “executing” an action at the abstract level
actually means creating a subgoal to be solved
by the ground-level planner.

The overall planning strategy enforces the
following behavior. First an abstract plan is
created at the strategic layer, then the first
(abstract) operator is refined at the situated
layer, thus ending up with a corresponding
plan. At this point, the actions of the ground
plan can be executed, while the abstract
planner concurrently refines the next abstract
operator. When the current plan at the
situated layer has been completed, the next
abstract operator is executed, and so on. The

general form of a layered plan is shown in
figure 2.

Action

Plan
corrispo

Strategic
Level

Situated
Level

Figure 2 - Structure of a hierarchical plan.

It should be stressed that a plan does not need
to be completely refined before starting its
execution, the underlying strategy allowing an
agent to elaborate a plan as a sequence of
abstract operators, whose refinement can be
deferred until actually needed. Note that this
strategy is feasible under the assumption that
no “false” solutions hold at the abstract level,
or –at least– that no irreversible actions can
be performed that prevent the agent from
attaining the current goal.

Being more concerned on avoiding the
introduction of “false” solutions at the abstract
level, we assume that the resulting abstraction
mapping is “sound”, according to the definition
given in [16], whereas no assumption at all is
made on its “completeness”. Of course, the
absence of the latter property implies that not
all ground solutions can be found starting from
a high-level search. Therefore –when a
failure occurs at the abstract level– a global
search must be performed at the ground level,
until a solution is found or the ground-level
search ends with failure.

2.3 Integrating Learning with a HIPE
Approach

To be effective, the proposed HIPE
approach requires an adaptive mechanism to
be enforced, aimed at identifying new abstract
operators (useful for any subsequent search at
the abstract level). To this end, we analyze
successful plans, particularly those for which
the abstract-level planner failed, in search of
relevant sequences that could play the role of

“supporting macro-operators” while devising
new operators at the abstract level.

In this way, the set of “solvable” problems
at the abstract level grows according to the
capability of embodying new solutions into the
domain knowledge, in form of abstract
operators. Thus, in principle, the abstract
mapping could asymptotically become both
“sound” and “complete”, although the well
known utility problem [14] must be taken into
account. In fact, a trade-off between the
desire to extend the “degree of
completeness” 2 of the planner and the
number of operators made available to the
abstract level must be adopted, since
embodying a new operator negatively affects
the branching factor.

2.4 Learning Abstract Operators
Historically, abstract operators can be

obtained by applying two different policies.
One is to form a “relaxed” model by dropping
their applicability conditions (e.g., ABSTRIPS

[18]), the other is to form a “reduced” model
by completely removing certain conditions
from the problem space (e.g., ALPINE [8]).
Both policies perform a “weakening” of the
ground-level problem space, while preserving
the provability of plans that hold at the ground
level but suffering from the problem of
introducing “false” solutions at the abstract
level.

In this paper we adopt a different approach,
being interested in dealing with abstract
operators that are “sound”, in the sense that
for each valid substitution of abstract-level
preconditions and postconditions performed
according to the given domain ontology, at
least a ground plan exists able to refine the
abstract operator.

As formalizing the characteristics of a
domain that allows to guarantee the
“soundness” property is beyond the scope of
this paper, we will simply mention that the
underlying ontology is characterized by is-a

2 For the sake of simplicity, let us denote as “degree of

completeness” of an abstraction mapping the ratio
between the number of problems that can be solved
starting from the abstract level and the total number
of problems.

and part-of relations, together with invariants.

2.5 The Adaptive Behavior Life Cycle
Let us assume that an initial domain

ontology at both levels of granularity is
supplied off-line, although nothing prevents us
from learning abstract operators from scratch.
The domain ontology represents, at different
levels of detail (i) types of objects,
(ii) predicates, and (iii) operators. In principle,
all the above issues could be handled by a
suitable learning algorithm, thus yielding a
powerful, but rather complex, adaptive
behavior.

goal

KB (World Model)

 CHUNKING

AOS REPOSITORY

GOS REPOSITORY

 DOMAIN ONTOLOGY
 REPOSITORY

SCHEMATIZING

ABSTRACTING MO
AND UPDATING
CANDIDATE AOS

REPOSITORY

MOS REPOSITORY

 CANDIDATE AOS
 REPOSITORY

H.I.P.E.

UPDATING
AOS

REPOSITORY

F.F.N.N.

FILTERING

Figure 3 - The adaptive behavior life-cycle.

Less ambitiously, in this paper we are
interested in learning abstract operators, given:
(i) an immutable hierarchy of objects and
predicates that hold at the abstract and ground
level, and (ii) a set of ground operators with
deterministic effects. The learning activity is
driven by a “post-mortem” analysis of
successful plans, aimed at identifying further
abstract operators, to be subsequently
embedded into the planner. To identify
abstract-operators, a “chunking” technique is
exploited, that extracts sequences from
successful plans. Relevant sequences are
identified by a feedforward neural network
(FFNN), fed by a vector of suitable metrics

evaluated for each given sequence. So far, the
following metrics have been defined:
- sequence-length-metrics,

penalizes lengthy sequences, according to a
smoothed shape modeled by a global
parameter that embodies the “preferred”
length for macro-operators;

- preconds-length-metrics,
penalizes sequences with a high number of
preconditions;

- postconds-length-metrics,
penalizes sequences with a high number of
postconditions, according to the ratio
between the number of postconditions and
the length of the sequence;

- establishment-metrics,
promotes sequences where each operator
establishes predicates useful to the rest of
the sequence (see [9] for the definition of
establishment);

- redundancy-metrics,
penalizes sequences where the same
operator occurs repeatedly;

- cost-metrics,
promotes low-cost sequences, the cost of a
sequence being estimated according to the
number of its preconditions and
postconditions;

- weighted-postconds-metrics,
promotes sequences according to their
capability of instantiating effects that occur
frequently as preconditions.

As shown in figure 3, the adaptive life-
cycle consists of repeatedly performing the
following actions:

1. The HIPE planner is activated on the given
goal (let us assume that a suitable solution is
found and executed).
2. Plan subsequences are randomly extracted
from the plan (chunking).
3. Relevant sequences are filtered out by a
suitable FFNN. For every sequence, a
correspondent vector of metrics is evaluated,
to be used as input to the FFNN.
4. Each sequence considered relevant passes
through a schematization process, which
creates a corresponding macro-operator
schema (MO). All MOs are temporarily stored
into the MOS REPOSITORY.
5. Each MO passes through an abstraction

process, which creates a correspondent
abstract-operator schema (AO) out of any
given MO. For every MO, the AO

REPOSITORY is updated (if needed, the newly-
created AO is added to the repository together
with its supporting MO; otherwise the MO is
associated with its corresponding AO already
stored into the repository).
6. When an AO stored into the AO

REPOSITORY becomes “sound”, a suitable
procedure must be invoked that decides
whether or not the AO has to be added to the
set of active AOs (the ones used by the
abstract-level planner), according to a policy
that takes into account the trade-off between
the increase of complexity (due to the
branching-factor) and the augmented
capability of solving problems at the abstract
level.

3 Experimental results
The system has been tested on a prototype

(written in CLOS, Common Lisp Object
System) of a computer game, where each
agent is an avatar that represents a player in
a simulated environment inspired to the real-
world. Through a simple interface, avatars are
given goals to be attained. Quasi real-time
constraints hold, although –fortunately– an
avatar that fails, or that cannot attain a goal in
few seconds, usually does not compromise the
outcome of the game for its player.

So far, we implemented steps 1-5 of the
adaptive life-cycle previously described. As
for step 6, we are currently tackling the
problem of estimating the “degree of
completeness” of the abstract planner, given a
set of abstract operators. In fact, this is a
major point in the problem of deciding whether
making a further operator available to the
abstract planner will be useful or not.

The FFNN adopted to identify relevant
sequences has a single hidden layer (of 8
neurons), and outputs a real number in [0,1]. It
has been trained with 180 sequences (about
60% positive and 40% negative examples)
extracted from successful plans generated by
the HIPE planner. Positive examples were
refinements of abstract operators defined in
an initial hierarchy manually crafted by a

knowledge engineer. A threshold µA has been
used for separating relevant sequences from
non-relevant ones. Being M the metrics-
evaluator vector and fNN the neural classifier,
a sequence s has been considered relevant for
abstraction iff ()() ANN sMf µ≥ . With

650.A =µ , about 97% of the training
sequences have been recognized as belonging
to their proper class (i.e., relevant or not-
relevant). Note that we abandoned the idea
of reaching a recognition rate of 100% on the

training set (not necessary in this case), thus
avoiding problems related to overfitting.

During the experiments carried out, the
FFNN identified several sequences useful for
abstraction but not created as a refinement of
an existing abstract-operator. It is worth
pointing out that all sequences filtered out by
the FFNN were in fact relevant. An example
is given in figure 4 where two macro-
operators, which support the abstract action
“take an object and give it to an agent”,
are shown. For each supporting macro-
operator (i) the sequence of actions; (ii) pre-
and post-conditions; (iii) the vector of metrics;
(iv) and the FFNN output are presented.
Further information (i.e., the abstract-operator
pre- and post-conditions, as well as a
fragment of domain ontology) is reported to let
the reader better understand the underlying
mechanism.

4 Conclusions and Future Work
In this paper, an adaptive mechanism

devised for identifying abstract operators,
within a framework that supports a
hierarchical interleaving planning and
execution approach, has been described.

The overall adaptive life cycle, that
encompasses plan chunking, sequence
filtering, macro- and abstract-operators
generation has been briefly depicted. In

particular, starting from successful plans,
relevant sequences are searched for by
exploiting the capabilities of a feedforward
neural network, trained with suitable positive
and negative examples.

Newly created abstract operators can be
made available to the abstract level for any
subsequent planning problem to be solved,
thus making it possible to evolve individual
abstract operators according to the past
experience of each agent.

As for the future work, we are currently
investigating the problem of estimating the
“degree of completeness” of an abstraction
mapping, to give agents the capability of
automatically updating their own set of
“active” abstract operators. Furthermore, we
are currently investigating under which
constraints the “soundness” property can be

Ground Level
Actions ((open-door door house) (go-inside door house) (move-to-obj key house)

 (take-obj key house) (move-to-obj friend house) (give key friend))
Preconds ((:NOT (opened door house)) (located friend house) (next-to self house)

 (:NOT (blocked road)) (located key house))
Postconds ((owns friend key) (next-to-obj friend) (:NOT (located key house)))
Metrics (0.04 0.28 0.66 0.83 0.83 0.20 0.68 0.62)

Supporting MO - #1

FFNN output 0.84

Actions ((move-to-obj key house) (take-obj key house) (move-to-obj friend house) (give key friend))
Preconds ((located friend house) (inside self house) (:NOT (blocked road)) (located key house))
Postconds ((owns friend key) (next-to-obj friend) (:NOT (located key house)))
Metrics (0.09 0.35 0.57 0.61 0.75 0.26 0.62 0.56)

Supporting MO - #2

FFNN output 0.72
Abstract Level

Preconds ((located agent building) (is-near self building) (located object building) (movable object))
Postconds (owns agent object) (:NOT (located object building)))

Ontology
IS-A (is-a house building) (is-a friend agent) (is-a key object) (is-a next-to is-near) (is-a inside is-near)
Invariants (movable key)

Figure 4 - An example of sequence identified as relevant for abstraction, together with its
corresponding macro- and abstract-operator schemata.

obtained in domain ontologies that allow both
is-a and part-of relations.

References
[1] J. A. Ambros-Ingerson, and S. Steel.
Integrating Planning, Execution and
Monitoring. Proc. of the 7th National
Conference on Artificial Intelligence.
pp. 83-88, 1988.
[2] F. Bacchus, and Q. Yang. Downward
Refinement and the Efficiency of Hierarchical
Problem Solving. Artificial Intelligence.
Vol. 71(1), pp. 41-100, 1994.
[3] J. G. Carbonell, C. A. Knoblock and S.
Minton. PRODIGY: An integrated architecture
for planning and learning. In D. Paul Benjamin
(ed.) Change of Representation and
Inductive Bias. Kluwer Academic Publisher,
pp. 125-146, 1990.
[4] Y. Gil and M.A. Perez. Applying a
general-purpose planning and learning
architecture to process planning. In Planning
and Learning: On to Real Applications:
Papers from the 1994 AAAI Fall
Symposium. AAAI Press. pp. 48-52., 1994.
[5] F. Giunchiglia and T. Walsh. A theory of
Abstraction. Technical Report 9001-14.
IRST, Trento (Italy), 1990.
[6] K. Z. Haigh and M. Veloso. Interleaving
Planning and Robot Execution for
Asynchronous User Requests. Autonomous
Robots. Vol. 5(1), pp. 79-95, March 1998.
[7] S. Katukam and S. Kambhampati.
Learning Explanation-Based Search Control
Rules for Partial Order Planning. In Proc. of
the 12th National Conference on Artificial
Intelligence. AAAI Press. Vol. 1, pp. 582-
587, July 31 – August 4, 1994.
[8] C. A. Knoblock. Automatically
Generating Abstractions for Problem
Solving. Ph.D. Thesis. CS Department.
Carnegie Mellon University, 1991.
[9] C. A. Knoblock. Automatically Generating
Abstractions for Planning. Artificial
Intelligence. Vol. 68(2), 1994.
[10] R.E. Korf. Macro-operators: A weak

method for learning. Artificial Intelligence.
Vol. 26(1), pp. 35-77, 1985.
[11] J.E. Laird, A. Newell, and P.S.
Rosenbloom. SOAR: Architecture for general
intelligence. Artificial Intelligence. Vol. 33,
pp. 1-64, 1987.
[12] C. Leckie and L. Zukerman. Learning
search control rules for planning: An inductive
approach. In Proc. of Machine Learning
Workshop. pp. 422-426, 1991.
[13] R.A. Levinson. Exploiting the physics of
state-space search. In Proc. of AAAI
Symposium on Games:Planning and
Learning. AAAI Press. pp. 157-165, 1993.
[14] S. Minton. Quantitative Results
Concerning the Utility of Explanation-Based
Learning. Artificial Intelligence. Vol. 42(2-
3), pp. 363-391, 1990.
[15] A. Nareyek. A Planning Model for
Agents in Dynamic and Uncertain Real-Time
Environments. In Proc. of the 1998 AIPS
Workshop on Integrating Planning,
Scheduling and Execution in Dynamic and
Uncertain Environments. AAAI Press.
pp. 7-14, 1998.
[16] I. Nourbakhsh. Interleaving Planning
and Execution for Autonomous Robots.
Kluwer Academic Publishers, 1997.
[17] D.A. Plaisted. Theorem proving with
abstraction. Artificial Intelligence. Vol.16(1),
pp. 47-108, 1981.
[18] E.D. Sacerdoti. Planning in a hierarchy
of abstraction spaces. Artificial Intelligence.
Vol. 5, pp. 115-135, 1974.
[19] J.D. Tenenberg. Abstraction in
Planning. Ph.D. thesis, Computer Science
Department, University of Rochester, 1988.
[20] D. Weld. An Introduction to Least
Commitment Planning. AI Magazine. pp. 27-
61, 1994.

