
  
Abstract— This paper addresses the problem of how to 

implement a proactive behavior according to a two-tiered (i.e., 
both theoretical and pragmatic) perspective. Theoretically, we 
claim that abstraction must be used to render agents able to solve 
complex problems. Pragmatically, we illustrate a technique 
devised to generate abstract spaces starting from a “ground” 
description of the domain being modeled. 
 

I. INTRODUCTION 
complex environment is intractable using traditional 

planning methods, since the search space can be very 
large, even for relatively simple tasks. As intelligent agents 
are used in increasingly complex domains, their ability to 
decompose problems and to identify abstract aspects becomes 
a critical issue. An effective approach used for dealing with 
the complexity of planning tasks may consist of building a set 
of abstractions for controlling the search.  
Typically, abstraction techniques require the original search 
space to be mapped into abstract spaces in which irrelevant 
details are disregarded at different levels of granularity. Let us 
briefly recall some relevant techniques proposed in the 
literature: (i) action-based, (ii) state-based, (iii) Hierarchical 
Task Networks, and (iv) case-based. 

The first combines a group of actions to form macro-
operators [1]. The second exploits representations of the world 
given at a lower level of detail; its most significant forms rely 
on (a) relaxed models, obtained by dropping operators’ 
applicability conditions [2], and on (b) reduced models [3], 
obtained by completely removing certain conditions from the 
problem space. Both models, while preserving the provability 
of plans that hold at the ground level, perform a “weakening” 
of the original problem space, thus suffering from the 
drawback of introducing “false” (i.e., not refinable) solutions 
at the abstract levels [4]. In the third (e.g., [5]), problem and 
operators are organized into a set of tasks. A high-level task 
can be reduced to a set of ordered lower-level tasks, and a task 
can be reduced in several ways. Reductions allow specifying 
how to obtain a detailed plan from an abstract one. In the 
fourth [6], abstract planning cases are automatically learned 
from given concrete cases, as done in the PARIS system, 
 
 

although the user must provide explicit refinement rules 
between adjacent levels in the hierarchy.  

In the past, abstraction has been widely used to reduce 
search in a variety of planning systems (e.g., GPS [7], 
ABSTRIPS [2], ABTWEAK [8], PABLO [9], and PRODIGY 
[10]). From a general perspective, abstractions might occur on 
types, predicates, and operators. Relaxed models are a typical 
example of predicate-based abstraction, whereas macro-
operators and HTN-based systems are examples of operator-
based abstraction. In [11] experiments on abstraction on all 
these dimensions are shown. 

In this paper, a semi-automatic technique for generating 
abstract spaces is presented. Abstraction arises from a static 
analysis of relevancy relationships among ground operators, 
through the pruning of a suitable graph. It is worth pointing 
out that studying abstraction may have a great impact on  the 
“internals” of intelligent agents, since –by definition– an agent 
must be able to generate plans in arbitrarily complex domains, 
no matter which environment, real (e.g., robotic applications) 
or virtual (e.g., Internet, computer games), is being 
considered. 

This paper is organized as follows: in section 1, abstraction 
hierarchies are briefly framed according to a theoretical 
perspective. In section 2, a syntactic notation, devised to 
support abstraction hierarchies, is summarized. In section 3, 
the semi-automatic technique developed for generating 
abstract spaces is illustrated. Section 4 illustrates a sample of a 
complex domain (suitably devised to stress the proactive 
capabilities of intelligent agents) together with the 
corresponding abstraction. Finally, conclusions are drawn and 
future work is outlined.  

 

II. ABSTRACTION HIERARCHIES 
According to [4], an abstraction is a mapping between 

representations of a problem. In symbols, an abstraction 
f : Σ0 ⇒ Σ1 consists of a pair of formal systems (Σ0, Σ1) with 
languages Λ0 and Λ1 respectively, and an effective total 
function f0 : Λ0 → Λ1. Extending the definition, an abstraction 
hierarchy consists of a list of formal systems (Σ0, Σ1, …, Σn-1) 
with languages Λ0, Λ1, …, Λn-1 respectively, and a list of 
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effective total functions fκ : Λk → Λk+1, (k=0, 1, …, n-2) 
devised to perform the mapping between adjacent levels of the 
hierarchy. 

To deal with different levels of abstraction, a suitable 
representation language must be adopted. Nowadays, several 
planners adopt the PDDL standard notation [12] as target 
language for expressing each Λk (k=0, 1, …, n-1). As for the 
mapping functions fκ between abstraction levels, to our 
knowledge existing systems adopt their specific notation 
without following any standard. Our choice has been to devise 
and adopt an extension to PDDL suitable tailored for 
hierarchical planning [13]. 

 

III. AN EXTENSION TO PDDL FOR DEALING WITH 
ABSTRACTION HIERARCHIES 

Let us assume that a problem and its corresponding domain 
are described in accordance with the standard PDDL 1.2 
syntax; i.e., using the “define problem” and “define domain” 
statements, respectively. To describe how bi-directional 
communication occurs between adjacent levels, the syntactic 
construct define hierarchy has been introduced. It 
encapsulates an ordered set of domains, together with a 
corresponding set of mappings between adjacent levels of 

abstraction. The general form of the construct is: 
 
(define (hierarchy <name>) 
  (:domains <domain-name>+) 
  (:mapping (<src-domain> <dst-domain>) 
   [:types <types-def>] 
   [:predicates <predicates-def>] 
   [:actions <actions-def>])*) 
 
The :types field represents how types are mapped 

between adjacent levels; it embodies a list of clauses, 
according to the following notation: 

 
(abstract-type ground-type) 

  
Any such clause specifies that ground-type becomes 

abstract-type while performing upward translations. To 
disregard a ground-type, the following notation is used: 

 
(nil ground-type) 

 
The :predicates field represents how predicates are 

mapped between adjacent levels; it embodies a list of clauses, 
whose general form is: 

 
((abstract-predicate ?v1 ?v2 …) 
 (ground-predicate ?v1 – t1 ?v2 – t2 …)) 

 
Table 1 - Heuristics for pruning the operators’ graph. 

 
Type NODE RELATIONSHIPS Supporting Evidence Action 

(i) if a = c and b = d there is no supporting 
evidence for assuming that A usually precedes 
B in a plan, and vice-versa;  

remove both edges. 

(ii) if a > c there is a high likelihood that A 
precedes B; remove top edge. 1 

 
 

 
A

<a b> 

<c d> 
B

 
(iii) if c > a, there is a high likelihood that B 
precedes A. remove bottom edge. 

(i) if a > c there is a high likelihood that A 
precedes B; remove top edge. 

2 
 

A
<a 0> 

<c 0> 
B

 (ii) if c > a, there is a high likelihood that B 
precedes A. remove bottom edge. 

3 
 

A
<0 b> 

<0 d> 
B

 

A (B) negates one or more preconditions 
required by B (A). remove both edges. 

4 
 

A
<a 0> 

<0 d> 
B

 

B negates one or more preconditions required 
by A. remove bottom edge. 

5 
 

A
<a b> 

<0 d> 
B

 

B negates one or more preconditions required 
by A. remove bottom edge. 

6 
 

A
<a b> 

<c 0> 
B

 

A and B are usually complementary or loosely-
coupled actions. remove both edges. 

7 
 

A
<a 0> 

<0 0> 
B

 
A precedes B with high likelihood. remove top edge. 

8 
 

A
<0 b> 

<0 0> 
B

 

A negates one or more preconditions required 
by B. remove the top edge. 

 
 
 



 
Any such clause specifies how the ground-predicate 

becomes abstract-predicate while performing upward 
translations and vice-versa. 1 Note that abstract-
predicate‘s parameters could be a proper subset of 
ground-predicate’s parameters. 

To disregard a predicate while performing upward 
translations, the following notation is used: 

 
(nil (ground-predicate ?v1 – t1 ?v2 – t2 …)) 
 
It specifies that ground-predicate is not translated into 

any abstract-level predicate.  
In addition, abstract-predicate can be expressed as a 

logical combination of ground level predicates. For example: 
 
((abs-pred ?v11 ?v21 ?v12 ?v22 …) 
  (and (gnd-pred1 ?v11 – t11 ?v21 – t21 …) 
       (gnd-pred2 ?v12 – t12 ?v22 – t22 …))) 
 
It specifies that abs-pred is the conjunction of gnd-

pred1 and gnd-pred2.  
Similarly, to describe how to build a set of operators for the 

abstract domain, in the :actions field four kinds of 
mapping can be expressed: 

1. an action is removed; 
2. an action is expressed as a combination of ground 

domain actions; 
3. an action remains unchanged or some of its parameters 

are disregarded; 
4. a new operator is defined from scratch. 
 

IV. GENERATING ABSTRACTIONS 
To facilitate the setting of abstract spaces, as an alternative 

to the hand-coded approach used in [14], a novel semi-
automatic technique for generating abstraction hierarchies 
starting from ground-level domain descriptions has been 
devised.  

From our particular perspective, performing abstraction 
basically involves executing two steps: (i) searching for 
macro-operator schemata through a priori or a posteriori 
analysis, (ii) selecting some of the schemata evidenced so far 
and translating them into abstract operators. 

In particular, we concentrate on the task of finding macro-
operator schemata throughout an a-priori analysis performed 
on the given domain and problem, rather than adopting the a-
posteriori technique illustrated in [15], headed at finding 
macro-operator schemata according to a “post-mortem” 
analysis performed on plan “chunks”. 
Step (i) is performed by an algorithm for building and then 
pruning a directed graph, whose nodes represent operators and 
whose edges represent relations between effects of the source 
node and preconditions of the destination node. In particular, 
for each source node A and for each destination node B, 

 
1 If no differences exist in mapping a predicate between adjacent levels, the 

corresponding clause can be omitted. 

representing operators defined in the given domain, the 
corresponding edge is labeled with a pair of non-negative 
numbers, denoted by <a b>. The pair accounts for how many 
predicates A can establish (a) and negate (b) that are also 
preconditions of B. It is worth noting that source and 
destination node may coincide, thus giving rise to a self-
reference. Of course, edges labeled <0 0>, which link together 
completely independent operators, are not taken into account.  

Pruning is performed according to the domain-independent 
heuristics reported in Table 1.  

Step (ii) is performed by selecting the most promising 
macro-operator schemata from the pruned graph and by 
translating them into abstract operators. In the current 
implementation of the system, this step has not yet been 
completely automated.  

As for the most promising macro-operator schemata, they 
can be easily extracted from the pruned graph, each path being 
related with a candidate macro-operator. Among all existing 
paths, only those containing a single occurrence of each 
operator are selected. 

The simplest way of generating an abstract operator 
consists of defining its preconditions and effects as the 
preconditions and the effects of the corresponding macro-
operator schema, according to the following definitions: 
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where σ is a macro-operator (expressed as a sequence of 
operators ω; i.e., 

nn ωσωωωσ 121 .... == ), whereas γ, η, α, and 
δ are preconditions, effects, add-list, and delete-list, 2 
respectively.  

It is worth pointing out that several macro-operator could 
actually lead to the same abstract-operator (Σa), provided that 
each macro-operator is entailed by Σa. 

To perform simplification, all predicates that do not 
occur among preconditions or effects of any abstract-
operator obtained by inspection of the pruned graph should 
be deleted from the abstract level. This process influences 
(and is influenced by) the translation rules that apply to 
both types and predicates.  

The approach described above can be used also for 
generating abstractions tailored to a given problem, by simply 
adding a dummy operator representing the goal(s) of the 
problem itself. This “goal-oriented” operator has only 
preconditions (its set of effects being empty), representing a 
logic conjunct of predicates that characterize the goal of the 
input problem. In this way, all sequences deemed relevant to 
solve the problem are easily put into evidence (as they end 
with the “goal-oriented” operator). 

 
2 Let us recall that effects can be split into add-list and delete list, 

representing positive and negative effects, respectively. 



V. EXPERIMENTS WITH THE DRIVERDEPOT  DOMAIN 
Experimental results have shown that abstraction is more 

effective when the complexity of planning problems increases. 

To assess the advantages of using this approach, we devised a 
suitable complex domain by extending the depot domain taken 
from the AIPS 2002 planning competition [16] (see the 
Appendix for more details). Fig. 2 shows the graph 
corresponding to the driverdepot domain, obtained by 
applying the approach described in the previous section.  
 

Bearing in mind that the same mechanism has been applied 
to all operators’ pairs, let us concentrate –for instance– on the 
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Fig. 1 - The directed graph (after pruning), 
representing static relations between operators of 
the driverdepot domain. 
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Fig. 2 - The directed graph (before pruning), 
representing static relationships among operators of the 
driverdepot domain. 

Table 2. Selected macro-operator schemata 
 

Macro-Operator Schema Ground 
Sequence Preconditions Effects 

(DriveUnloadDrop 
  ?h – hoist ?t – truck  
  ?p1 ?p2 – place ?d – driver  
  ?c – crate ?s - surface) 

drive; 
unload; 
drop 

(at ?t ?p1) 
(driving ?d ?t) 
(in ?c ?t) 
(at ?s ?p2) 
(clear ?s) 
(at ?h ?p2) 
(available ?h) 

(not (at ?t ?p1)) 
(at ?t ?p2) 
(not (in ?c ?t)) 
(at ?c ?p2) 
(not (clear ?s)) 
(clear ?c) 
(on ?c ?s) 

(UnloadDrop 
  ?h – hoist ?t – truck  
  ?p – place ?d – driver  
  ?c – crate ?s - surface) 

unload; 
drop 

(at ?t ?p) 
(in ?c ?t) 
(at ?s ?p) 
(clear ?s) 
(at ?h p) 
(available ?h) 

(not (in ?c ?t)) 
(at ?c ?p) 
(not (clear ?s)) 
(clear ?c) 
(on ?c ?s) 

(WalkBoard 
  ?d – driver ?p1 ?p2 place 
  ?t – truck) 

walk; 
board 

(at ?d ?p1) 
(at ?t ?p2) 
(empty ?t) 

(not (at ?d ?p1)) 
(driving ?d ?t) 
(not (empty ?t)) 

(DriveDisembark 
  ?d – driver ?t - truck 
  ?p1 ?p2 – place)    

drive; 
disembark 

(at ?t ?p1) 
(driving ?d ?t) 

(not (driving ?d ?t)) 
(at ?d ?p2) 
(empty ?t) 
(at ?t ?p2) 
(not (at ?t ?p1)) 

(LiftLoad  
  ?h – hoist ?c – crate  
  ?t – truck ?s – surface  
  ?p - place) 

lift; 
load 

(at ?h ?p) 
(available ?h) 
(at ?c ?p) 
(on ?c ?s) 
(clear ?c) 
(at ?t ?p) 

(not (at ?c ?p)) 
(not (clear ?c)) 
(clear ?s) 
(in ?c ?t) 
(not (on ?c ?s)) 

 



relation that holds between drive (source node) and board 
(destination node). 

Considering that the effects of the drive operator are: 
 

(not (at ?t ?p1)) (at ?t ?p2) 
 
and that the preconditions of the board operator are: 
 

(at ?t ?p) (at ?d ?p) (empty ?t) 
 
we label the corresponding edge with the pair <1 1>. In 

fact, it is apparent that drive establishes one precondition for 
board, while negating another.  

Fig. 1 shows the resulting graph for the driverdepot domain 
after the pruning activity. 3 The resulting macro-operator 
schemata are (“;” being used for concatenation): 
drive;unload;drop, drive;load;lift, drive;disembark, lift;load, 
drop;unload, load;lift, unload;drop, and walk;board. 

Among these, load;lift, drive;load;lift, and drop;unload 
have been disregarded since they become meaningless when 
applied to the same object. For instance, loading a truck with a 
crate C and then lifting C back does not alter the state of the 
world.  

Hence, drive;unload;drop, unload;drop, walk;board, 
drive;disembark, and lift;load (see Table 2) are the selected 
macro-operator schemata. As for the generation of abstract-
operators, let us note that drive;unload;drop and unload;drop, 
can be considered alternative refinements of the same 
abstract-operator. Furthermore, let us stress that the lifting 
predicate does not appear as precondition or effect in any 
abstract operator; hence, it can be removed at the abstract 
level. 

Since we are interested in abstracting the domain on types, 
predicates, and operators, the type hierarchy could be 
simplified by deleting –for example- the hoist type. This 
choice is feasible because hoists are always available, in every 
place (consequently, the available predicate can also be 
removed). Moreover, the type hierarchy can be further 
 

3 Since we are interested in finding macro-operators, we do not take into 
account self-references. 

reduced by considering both distributors and depots as 
generic places (see Fig. 3 for the type hierarchy illustrating 
both ground and abstract level). 

In the Appendix the hierarchy for the driverdepot domain 
and the corresponding abstract domain are shown. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, a semi-automatic technique for generating 
abstract spaces has been proposed. Abstraction arises from a 
static analysis of relevancy relationships among ground 
operators, through the pruning of a suitable graph. After 
briefly discussing the need of resorting to abstraction for 
solving complex problems, we illustrated an algorithm able to 
generate abstract spaces (i.e., abstractions on operators, 
predicates and types) starting from a ground-level description 
of the domain.  

As for the future work, we are currently addressing the 
problem of rendering the generation of abstract spaces fully 
automatic. 

APPENDIX 
The depot domain joins two well-known planning domains: 

logistics and blocks-world. They have been combined to form 
a domain in which trucks can transport crates around, to be 
stacked onto pallets at their destinations. The stacking is 
achieved using hoists, so that the resulting stacking problem is 
very similar to a blocks-world problem with hands. Trucks 
behave like "tables", since the pallets on which crates are 
stacked are limited. The proposed domain extends the depot 
domain adding to it a driver able to move trucks among places 
(see Fig. 4). Note that the driver could simulate the behavior 
of an agent able to deliver objects by driving trucks from a 
location to another. Fig. 6 shows the hierarchy for the 
driverdepot domain, whereas Fig. 5 shows the abstract 
domain, obtained by applying the mapping rules in Figure 5 to 
the ground domain. 
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Fig. 3 - Type Hierarchy for the driverdepot ground (a) and (b) abstract domain. 

 



 

(define (domain DriverDepot-ground) 
 
  (:requirements :strips :typing) 
 
  (:types  
    place locatable - object 
    depot distributor - place 
    driver truck hoist surface - locatable 
    pallet crate - surface) 
 
  (:predicates  
    (at ?l - locatable ?p - place) (on ?c - crate ?s - surface) 
    (in ?c - crate ?t - truck) (lifting ?h - hoist ?c - crate) 
    (available ?h - hoist) (clear ?s - surface) 
    (driving ?d - driver ?t - truck) (empty ?t - truck)) 
 
  (:action Drive 
    :parameters (?t - truck ?p1 ?p2 – place ?d - driver)  
    :precondition (and (at ?t ?p1) (driving ?d ?t)) 
    :effect (and (not (at ?t ?p1)) (at ?t ?p2))) 
 
  (:action Lift 
     :parameters (?h - hoist ?p – place ?c - crate ?s - surface) 
     :precondition (and (at ?h ?p) (available ?h) (at ?c ?p) (on ?c ?s) (clear ?c)) 
     :effect (and (not (at ?c ?p)) (clear ?s) (lifting ?h ?c) 
                  (not (clear ?c)) (not (available ?h)) (not (on ?c ?s))))  
 
  (:action Drop  
    :parameters (?h - hoist ?c – crate ?s - surface ?p - place) 
    :precondition (and (at ?h ?p) (at ?s ?p) (clear ?s) (lifting ?h ?c)) 
    :effect (and (available ?h) (at ?c ?p) 
                 (not (lifting ?h ?c)) (not (clear ?s))(clear ?c)(on ?c ?s))) 
 
  (:action Load 
    :parameters (?h - hoist ?c - crate ?t – truck p - place) 
    :precondition (and (at ?h ?p) (at ?t ?p) (lifting ?h ?c)) 
    :effect (and (not (lifting ?h ?c)) (in ?c ?t) (available ?h))) 
 
  (:action Unload  
    :parameters (?h - hoist ?c - crate ?t - truck ?p - place) 
    :precondition (and (at ?h ?p) (at ?t ?p) (available ?h) (in ?c ?t)) 
    :effect (and (not (in ?c ?t)) (not (available ?h)) (lifting ?h ?c))) 
 
  (:action Board 
    :parameters (?d - driver ?t - truck ?p - place) 
    :precondition (and (at ?t ?p) (at ?d ?p) (empty ?t)) 
    :effect (and (not (at ?d ?p)) (driving ?d ?t) (not (empty ?t)))) 
 
  (:action Disembark 
    :parameters (?d - driver ?t - truck ?p - place) 
    :precondition (and (at ?t ?p) (driving ?d ?t)) 
    :effect (and (not (driving ?d ?t)) (at ?d ?p) (empty ?t))) 
 
  (:action Walk 
    :parameters (?d - driver ?p1 ?p2 - place) 
    :precondition (and (at ?d ?p1)) 
    :effect (and (not (at ?d ?p1)) (at ?d ?p2)))) 

Fig. 4 - The driverdepot domain 



(define (domain DriverDepot-abstract) 
  (:requirements :strips :typing) 
  (:types place locatable - object 
          driver truck surface - locatable 
          pallet crate - surface) 
  (:predicates (at ?l - locatable ?p - place)  
               (on ?c - crate ?s - surface) 
               (in ?c - crate ?t - truck) 
               (clear ?s - surface) 
               (driving ?d - driver ?t - truck) 
               (empty ?t - truck)) 
 (:action DriveUnloadDrop 
    :parameters (?t - truck ?p1 ?p2 - place ?d - driver ?c - crate ?s - surface)  
    :precondition (and (at ?t ?p1) (driving ?d ?t) (in ?c ?t) (at ?s ?p2) (clear ?s)) 
    :effect  
      (and (not (at ?t ?p1)) (at ?t ?p2) (not (in ?c ?t)) (at ?c ?p2) (not (clear ?s))   
           (clear ?c) (on ?c ?s))) 
  (:action LiftLoad 
    :parameters (?c - crate ?t - truck ?s - surface ?p - place) 
    :precondition (and (at ?c ?p) (on ?c ?s) (clear ?c) (at ?t ?p)) 
    :effect  
      (and (not (at ?c ?p)) (not (clear ?c)) (clear ?s) (in ?c ?t) (not (on ?c ?s)))) 
  (:action WalkBoard 
    :parameters (?d - driver ?t - truck ?p1 ?p2 - place) 
    :precondition (and (at ?t ?p2) (at ?d ?p1) (empty ?t)) 
    :effect (and (not (at ?d ?p1)) (driving ?d ?t) (not (empty ?t)))) 
  (:action DriveDisembark 
    :parameters (?d - driver ?t - truck ?p1 ?p2 - place) 
    :precondition (and (at ?t ?p1) (driving ?d ?t)) 
    :effect  
      (and (not (driving ?d ?t)) (at ?d ?p2) (empty ?t) (not (at ?t p1)) (at ?t ?p2)) 
  (:action Drive 
    :parameters (?t - truck ?p1 ?p2 - place ?d - driver)  
    :precondition (and (at ?t ?p1) (driving ?d ?t)) 
    :effect (and (not (at ?t ?p1)) (at ?t ?p2))))) 

Fig. 5 - The driverdepot-abstract domain. 

(define (hierarchy DriverDepot) 
  (:domains  
    DriverDepot-ground  
    DriverDepot-abstract) 
  (:mapping 
    (DriverDepot-ground  
     DriverDepot-abstract) 
    :types 
      ((place depot) 
       (place distributor) 
       (nil hoist)) 
    :predicates 
      ((nil  
         (lifting ?h - hoist ?c - crate)) 
       (nil  
         (available ?h - hoist)) 
       (nil  
         (at ?h - hoist ?p - place))) 
    :actions 
      ((nil (load ?h ?c ?t ?p)) 

    
     (nil (unload ?h ?c ?t ?p) 
     (nil (lift ?h ?c ?s ?p)) 
     (nil (drop ?h ?c ?s ?p)) 
     (nil (walk ?d ?p1 ?p2)) 
     (nil (board ?d ?t ?p)) 
     (nil (disembark ?d ?t ?p)) 
     (drive-unload-drop  
           ?t ?p1 ?p2 ?d ?c ?s) 
        (and (drive ?t ?p1 ?p2 ?d)  
             (unload ?h ?c ?t ?p2) 
             (drop ?h ?c ?s ?p2))) 
     ((walk-board ?d ?p1 ?p2 ?t) 
        (and (walk ?d ?p1 ?p2)  
             (board ?d ?t ?p2))) 
     ((drive-disembark ?d ?t ?p1 ?p2) 
        (and (drive ?t ?p1 ?p2 ?d) 
             (disembark ?d ?t ?p2))) 
     ((lift-load ?c ?t ?s ?p) 
        (and (lift ?h ?p ?c ?s)  
             (load ?h ?c ?t ?p))))) 

Fig. 6 - Hierarchy definition for the driverdepot domain. 
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