

Abstract— This paper addresses the problem of how to

implement a proactive behavior according to a two-tiered (i.e.,
both theoretical and pragmatic) perspective. Theoretically, we
claim that abstraction must be used to render agents able to solve
complex problems. Pragmatically, we illustrate a technique
devised to generate abstract spaces starting from a “ground”
description of the domain being modeled.

I. INTRODUCTION
complex environment is intractable using traditional

planning methods, since the search space can be very
large, even for relatively simple tasks. As intelligent agents
are used in increasingly complex domains, their ability to
decompose problems and to identify abstract aspects becomes
a critical issue. An effective approach used for dealing with
the complexity of planning tasks may consist of building a set
of abstractions for controlling the search.
Typically, abstraction techniques require the original search
space to be mapped into abstract spaces in which irrelevant
details are disregarded at different levels of granularity. Let us
briefly recall some relevant techniques proposed in the
literature: (i) action-based, (ii) state-based, (iii) Hierarchical
Task Networks, and (iv) case-based.

The first combines a group of actions to form macro-
operators [1]. The second exploits representations of the world
given at a lower level of detail; its most significant forms rely
on (a) relaxed models, obtained by dropping operators’
applicability conditions [2], and on (b) reduced models [3],
obtained by completely removing certain conditions from the
problem space. Both models, while preserving the provability
of plans that hold at the ground level, perform a “weakening”
of the original problem space, thus suffering from the
drawback of introducing “false” (i.e., not refinable) solutions
at the abstract levels [4]. In the third (e.g., [5]), problem and
operators are organized into a set of tasks. A high-level task
can be reduced to a set of ordered lower-level tasks, and a task
can be reduced in several ways. Reductions allow specifying
how to obtain a detailed plan from an abstract one. In the
fourth [6], abstract planning cases are automatically learned
from given concrete cases, as done in the PARIS system,

although the user must provide explicit refinement rules
between adjacent levels in the hierarchy.

In the past, abstraction has been widely used to reduce
search in a variety of planning systems (e.g., GPS [7],
ABSTRIPS [2], ABTWEAK [8], PABLO [9], and PRODIGY
[10]). From a general perspective, abstractions might occur on
types, predicates, and operators. Relaxed models are a typical
example of predicate-based abstraction, whereas macro-
operators and HTN-based systems are examples of operator-
based abstraction. In [11] experiments on abstraction on all
these dimensions are shown.

In this paper, a semi-automatic technique for generating
abstract spaces is presented. Abstraction arises from a static
analysis of relevancy relationships among ground operators,
through the pruning of a suitable graph. It is worth pointing
out that studying abstraction may have a great impact on the
“internals” of intelligent agents, since –by definition– an agent
must be able to generate plans in arbitrarily complex domains,
no matter which environment, real (e.g., robotic applications)
or virtual (e.g., Internet, computer games), is being
considered.

This paper is organized as follows: in section 1, abstraction
hierarchies are briefly framed according to a theoretical
perspective. In section 2, a syntactic notation, devised to
support abstraction hierarchies, is summarized. In section 3,
the semi-automatic technique developed for generating
abstract spaces is illustrated. Section 4 illustrates a sample of a
complex domain (suitably devised to stress the proactive
capabilities of intelligent agents) together with the
corresponding abstraction. Finally, conclusions are drawn and
future work is outlined.

II. ABSTRACTION HIERARCHIES
According to [4], an abstraction is a mapping between

representations of a problem. In symbols, an abstraction
f : Σ0 ⇒ Σ1 consists of a pair of formal systems (Σ0, Σ1) with
languages Λ0 and Λ1 respectively, and an effective total
function f0 : Λ0 → Λ1. Extending the definition, an abstraction
hierarchy consists of a list of formal systems (Σ0, Σ1, …, Σn-1)
with languages Λ0, Λ1, …, Λn-1 respectively, and a list of

Generating Abstractions from Static Domain
Analysis

G. Armano, G. Cherchi, and E. Vargiu
DIEE Department of Electrical and Electronic Engineering

University of Cagliari
Piazza d’Armi I-09123 Cagliari

{armano, cherchi, vargiu}@diee.unica.it

A

effective total functions fκ : Λk → Λk+1, (k=0, 1, …, n-2)
devised to perform the mapping between adjacent levels of the
hierarchy.

To deal with different levels of abstraction, a suitable
representation language must be adopted. Nowadays, several
planners adopt the PDDL standard notation [12] as target
language for expressing each Λk (k=0, 1, …, n-1). As for the
mapping functions fκ between abstraction levels, to our
knowledge existing systems adopt their specific notation
without following any standard. Our choice has been to devise
and adopt an extension to PDDL suitable tailored for
hierarchical planning [13].

III. AN EXTENSION TO PDDL FOR DEALING WITH
ABSTRACTION HIERARCHIES

Let us assume that a problem and its corresponding domain
are described in accordance with the standard PDDL 1.2
syntax; i.e., using the “define problem” and “define domain”
statements, respectively. To describe how bi-directional
communication occurs between adjacent levels, the syntactic
construct define hierarchy has been introduced. It
encapsulates an ordered set of domains, together with a
corresponding set of mappings between adjacent levels of

abstraction. The general form of the construct is:

(define (hierarchy <name>)
 (:domains <domain-name>+)
 (:mapping (<src-domain> <dst-domain>)
 [:types <types-def>]
 [:predicates <predicates-def>]
 [:actions <actions-def>])*)

The :types field represents how types are mapped

between adjacent levels; it embodies a list of clauses,
according to the following notation:

(abstract-type ground-type)

Any such clause specifies that ground-type becomes

abstract-type while performing upward translations. To
disregard a ground-type, the following notation is used:

(nil ground-type)

The :predicates field represents how predicates are

mapped between adjacent levels; it embodies a list of clauses,
whose general form is:

((abstract-predicate ?v1 ?v2 …)
 (ground-predicate ?v1 – t1 ?v2 – t2 …))

Table 1 - Heuristics for pruning the operators’ graph.

Type NODE RELATIONSHIPS Supporting Evidence Action

(i) if a = c and b = d there is no supporting
evidence for assuming that A usually precedes
B in a plan, and vice-versa;

remove both edges.

(ii) if a > c there is a high likelihood that A
precedes B; remove top edge. 1

A

<a b>

<c d>
B

(iii) if c > a, there is a high likelihood that B
precedes A. remove bottom edge.

(i) if a > c there is a high likelihood that A
precedes B; remove top edge.

2

A
<a 0>

<c 0>
B

 (ii) if c > a, there is a high likelihood that B
precedes A. remove bottom edge.

3

A
<0 b>

<0 d>
B

A (B) negates one or more preconditions
required by B (A). remove both edges.

4

A
<a 0>

<0 d>
B

B negates one or more preconditions required
by A. remove bottom edge.

5

A
<a b>

<0 d>
B

B negates one or more preconditions required
by A. remove bottom edge.

6

A
<a b>

<c 0>
B

A and B are usually complementary or loosely-
coupled actions. remove both edges.

7

A
<a 0>

<0 0>
B

A precedes B with high likelihood. remove top edge.

8

A
<0 b>

<0 0>
B

A negates one or more preconditions required
by B. remove the top edge.

Any such clause specifies how the ground-predicate

becomes abstract-predicate while performing upward
translations and vice-versa. 1 Note that abstract-
predicate‘s parameters could be a proper subset of
ground-predicate’s parameters.

To disregard a predicate while performing upward
translations, the following notation is used:

(nil (ground-predicate ?v1 – t1 ?v2 – t2 …))

It specifies that ground-predicate is not translated into

any abstract-level predicate.
In addition, abstract-predicate can be expressed as a

logical combination of ground level predicates. For example:

((abs-pred ?v11 ?v21 ?v12 ?v22 …)
 (and (gnd-pred1 ?v11 – t11 ?v21 – t21 …)
 (gnd-pred2 ?v12 – t12 ?v22 – t22 …)))

It specifies that abs-pred is the conjunction of gnd-

pred1 and gnd-pred2.
Similarly, to describe how to build a set of operators for the

abstract domain, in the :actions field four kinds of
mapping can be expressed:

1. an action is removed;
2. an action is expressed as a combination of ground

domain actions;
3. an action remains unchanged or some of its parameters

are disregarded;
4. a new operator is defined from scratch.

IV. GENERATING ABSTRACTIONS
To facilitate the setting of abstract spaces, as an alternative

to the hand-coded approach used in [14], a novel semi-
automatic technique for generating abstraction hierarchies
starting from ground-level domain descriptions has been
devised.

From our particular perspective, performing abstraction
basically involves executing two steps: (i) searching for
macro-operator schemata through a priori or a posteriori
analysis, (ii) selecting some of the schemata evidenced so far
and translating them into abstract operators.

In particular, we concentrate on the task of finding macro-
operator schemata throughout an a-priori analysis performed
on the given domain and problem, rather than adopting the a-
posteriori technique illustrated in [15], headed at finding
macro-operator schemata according to a “post-mortem”
analysis performed on plan “chunks”.
Step (i) is performed by an algorithm for building and then
pruning a directed graph, whose nodes represent operators and
whose edges represent relations between effects of the source
node and preconditions of the destination node. In particular,
for each source node A and for each destination node B,

1 If no differences exist in mapping a predicate between adjacent levels, the

corresponding clause can be omitted.

representing operators defined in the given domain, the
corresponding edge is labeled with a pair of non-negative
numbers, denoted by <a b>. The pair accounts for how many
predicates A can establish (a) and negate (b) that are also
preconditions of B. It is worth noting that source and
destination node may coincide, thus giving rise to a self-
reference. Of course, edges labeled <0 0>, which link together
completely independent operators, are not taken into account.

Pruning is performed according to the domain-independent
heuristics reported in Table 1.

Step (ii) is performed by selecting the most promising
macro-operator schemata from the pruned graph and by
translating them into abstract operators. In the current
implementation of the system, this step has not yet been
completely automated.

As for the most promising macro-operator schemata, they
can be easily extracted from the pruned graph, each path being
related with a candidate macro-operator. Among all existing
paths, only those containing a single occurrence of each
operator are selected.

The simplest way of generating an abstract operator
consists of defining its preconditions and effects as the
preconditions and the effects of the corresponding macro-
operator schema, according to the following definitions:

()

()
()








∪=
∪=

∪=

n

n

n

ωσσσ

ωσσσ

σωσσ

δαδδ
αδαα

ηγγγ

11

11

11

\
\

\

where σ is a macro-operator (expressed as a sequence of
operators ω; i.e.,

nn ωσωωωσ 121 ==), whereas γ, η, α, and
δ are preconditions, effects, add-list, and delete-list, 2
respectively.

It is worth pointing out that several macro-operator could
actually lead to the same abstract-operator (Σa), provided that
each macro-operator is entailed by Σa.

To perform simplification, all predicates that do not
occur among preconditions or effects of any abstract-
operator obtained by inspection of the pruned graph should
be deleted from the abstract level. This process influences
(and is influenced by) the translation rules that apply to
both types and predicates.

The approach described above can be used also for
generating abstractions tailored to a given problem, by simply
adding a dummy operator representing the goal(s) of the
problem itself. This “goal-oriented” operator has only
preconditions (its set of effects being empty), representing a
logic conjunct of predicates that characterize the goal of the
input problem. In this way, all sequences deemed relevant to
solve the problem are easily put into evidence (as they end
with the “goal-oriented” operator).

2 Let us recall that effects can be split into add-list and delete list,

representing positive and negative effects, respectively.

V. EXPERIMENTS WITH THE DRIVERDEPOT DOMAIN
Experimental results have shown that abstraction is more

effective when the complexity of planning problems increases.

To assess the advantages of using this approach, we devised a
suitable complex domain by extending the depot domain taken
from the AIPS 2002 planning competition [16] (see the
Appendix for more details). Fig. 2 shows the graph
corresponding to the driverdepot domain, obtained by
applying the approach described in the previous section.

Bearing in mind that the same mechanism has been applied
to all operators’ pairs, let us concentrate –for instance– on the

walk board

load

lift drop

<1 1>

disembark drive

<1 1>

unload

<1 0>

<1 0>

<1 0>

<1 0>

<1 1>

<1 1>

Fig. 1 - The directed graph (after pruning),
representing static relations between operators of
the driverdepot domain.

walk

board

load

lift drop

<1 0>

<1 1>

<0 1>

<1 1>

<1 1>

<1 0>

disembark

<1 1>

<0 1>

drive

<1 1>

<1 0>

<1 0>

unload

<1 0>

<1 0>

<1 1>

<0 1>

<0 1>

<1 0>

Fig. 2 - The directed graph (before pruning),
representing static relationships among operators of the
driverdepot domain.

Table 2. Selected macro-operator schemata

Macro-Operator Schema Ground
Sequence Preconditions Effects

(DriveUnloadDrop
 ?h – hoist ?t – truck
 ?p1 ?p2 – place ?d – driver
 ?c – crate ?s - surface)

drive;
unload;
drop

(at ?t ?p1)
(driving ?d ?t)
(in ?c ?t)
(at ?s ?p2)
(clear ?s)
(at ?h ?p2)
(available ?h)

(not (at ?t ?p1))
(at ?t ?p2)
(not (in ?c ?t))
(at ?c ?p2)
(not (clear ?s))
(clear ?c)
(on ?c ?s)

(UnloadDrop
 ?h – hoist ?t – truck
 ?p – place ?d – driver
 ?c – crate ?s - surface)

unload;
drop

(at ?t ?p)
(in ?c ?t)
(at ?s ?p)
(clear ?s)
(at ?h p)
(available ?h)

(not (in ?c ?t))
(at ?c ?p)
(not (clear ?s))
(clear ?c)
(on ?c ?s)

(WalkBoard
 ?d – driver ?p1 ?p2 place
 ?t – truck)

walk;
board

(at ?d ?p1)
(at ?t ?p2)
(empty ?t)

(not (at ?d ?p1))
(driving ?d ?t)
(not (empty ?t))

(DriveDisembark
 ?d – driver ?t - truck
 ?p1 ?p2 – place)

drive;
disembark

(at ?t ?p1)
(driving ?d ?t)

(not (driving ?d ?t))
(at ?d ?p2)
(empty ?t)
(at ?t ?p2)
(not (at ?t ?p1))

(LiftLoad
 ?h – hoist ?c – crate
 ?t – truck ?s – surface
 ?p - place)

lift;
load

(at ?h ?p)
(available ?h)
(at ?c ?p)
(on ?c ?s)
(clear ?c)
(at ?t ?p)

(not (at ?c ?p))
(not (clear ?c))
(clear ?s)
(in ?c ?t)
(not (on ?c ?s))

relation that holds between drive (source node) and board
(destination node).

Considering that the effects of the drive operator are:

(not (at ?t ?p1)) (at ?t ?p2)

and that the preconditions of the board operator are:

(at ?t ?p) (at ?d ?p) (empty ?t)

we label the corresponding edge with the pair <1 1>. In

fact, it is apparent that drive establishes one precondition for
board, while negating another.

Fig. 1 shows the resulting graph for the driverdepot domain
after the pruning activity. 3 The resulting macro-operator
schemata are (“;” being used for concatenation):
drive;unload;drop, drive;load;lift, drive;disembark, lift;load,
drop;unload, load;lift, unload;drop, and walk;board.

Among these, load;lift, drive;load;lift, and drop;unload
have been disregarded since they become meaningless when
applied to the same object. For instance, loading a truck with a
crate C and then lifting C back does not alter the state of the
world.

Hence, drive;unload;drop, unload;drop, walk;board,
drive;disembark, and lift;load (see Table 2) are the selected
macro-operator schemata. As for the generation of abstract-
operators, let us note that drive;unload;drop and unload;drop,
can be considered alternative refinements of the same
abstract-operator. Furthermore, let us stress that the lifting
predicate does not appear as precondition or effect in any
abstract operator; hence, it can be removed at the abstract
level.

Since we are interested in abstracting the domain on types,
predicates, and operators, the type hierarchy could be
simplified by deleting –for example- the hoist type. This
choice is feasible because hoists are always available, in every
place (consequently, the available predicate can also be
removed). Moreover, the type hierarchy can be further

3 Since we are interested in finding macro-operators, we do not take into
account self-references.

reduced by considering both distributors and depots as
generic places (see Fig. 3 for the type hierarchy illustrating
both ground and abstract level).

In the Appendix the hierarchy for the driverdepot domain
and the corresponding abstract domain are shown.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a semi-automatic technique for generating
abstract spaces has been proposed. Abstraction arises from a
static analysis of relevancy relationships among ground
operators, through the pruning of a suitable graph. After
briefly discussing the need of resorting to abstraction for
solving complex problems, we illustrated an algorithm able to
generate abstract spaces (i.e., abstractions on operators,
predicates and types) starting from a ground-level description
of the domain.

As for the future work, we are currently addressing the
problem of rendering the generation of abstract spaces fully
automatic.

APPENDIX
The depot domain joins two well-known planning domains:

logistics and blocks-world. They have been combined to form
a domain in which trucks can transport crates around, to be
stacked onto pallets at their destinations. The stacking is
achieved using hoists, so that the resulting stacking problem is
very similar to a blocks-world problem with hands. Trucks
behave like "tables", since the pallets on which crates are
stacked are limited. The proposed domain extends the depot
domain adding to it a driver able to move trucks among places
(see Fig. 4). Note that the driver could simulate the behavior
of an agent able to deliver objects by driving trucks from a
location to another. Fig. 6 shows the hierarchy for the
driverdepot domain, whereas Fig. 5 shows the abstract
domain, obtained by applying the mapping rules in Figure 5 to
the ground domain.

depot distributor surface hoist truck

crate pallet

locatable place

object

driver

surface truck

crate pallet

locatable place

object

driver

(a) (b)

Fig. 3 - Type Hierarchy for the driverdepot ground (a) and (b) abstract domain.

(define (domain DriverDepot-ground)

 (:requirements :strips :typing)

 (:types
 place locatable - object
 depot distributor - place
 driver truck hoist surface - locatable
 pallet crate - surface)

 (:predicates
 (at ?l - locatable ?p - place) (on ?c - crate ?s - surface)
 (in ?c - crate ?t - truck) (lifting ?h - hoist ?c - crate)
 (available ?h - hoist) (clear ?s - surface)
 (driving ?d - driver ?t - truck) (empty ?t - truck))

 (:action Drive
 :parameters (?t - truck ?p1 ?p2 – place ?d - driver)
 :precondition (and (at ?t ?p1) (driving ?d ?t))
 :effect (and (not (at ?t ?p1)) (at ?t ?p2)))

 (:action Lift
 :parameters (?h - hoist ?p – place ?c - crate ?s - surface)
 :precondition (and (at ?h ?p) (available ?h) (at ?c ?p) (on ?c ?s) (clear ?c))
 :effect (and (not (at ?c ?p)) (clear ?s) (lifting ?h ?c)
 (not (clear ?c)) (not (available ?h)) (not (on ?c ?s))))

 (:action Drop
 :parameters (?h - hoist ?c – crate ?s - surface ?p - place)
 :precondition (and (at ?h ?p) (at ?s ?p) (clear ?s) (lifting ?h ?c))
 :effect (and (available ?h) (at ?c ?p)
 (not (lifting ?h ?c)) (not (clear ?s))(clear ?c)(on ?c ?s)))

 (:action Load
 :parameters (?h - hoist ?c - crate ?t – truck p - place)
 :precondition (and (at ?h ?p) (at ?t ?p) (lifting ?h ?c))
 :effect (and (not (lifting ?h ?c)) (in ?c ?t) (available ?h)))

 (:action Unload
 :parameters (?h - hoist ?c - crate ?t - truck ?p - place)
 :precondition (and (at ?h ?p) (at ?t ?p) (available ?h) (in ?c ?t))
 :effect (and (not (in ?c ?t)) (not (available ?h)) (lifting ?h ?c)))

 (:action Board
 :parameters (?d - driver ?t - truck ?p - place)
 :precondition (and (at ?t ?p) (at ?d ?p) (empty ?t))
 :effect (and (not (at ?d ?p)) (driving ?d ?t) (not (empty ?t))))

 (:action Disembark
 :parameters (?d - driver ?t - truck ?p - place)
 :precondition (and (at ?t ?p) (driving ?d ?t))
 :effect (and (not (driving ?d ?t)) (at ?d ?p) (empty ?t)))

 (:action Walk
 :parameters (?d - driver ?p1 ?p2 - place)
 :precondition (and (at ?d ?p1))
 :effect (and (not (at ?d ?p1)) (at ?d ?p2))))

Fig. 4 - The driverdepot domain

(define (domain DriverDepot-abstract)
 (:requirements :strips :typing)
 (:types place locatable - object
 driver truck surface - locatable
 pallet crate - surface)
 (:predicates (at ?l - locatable ?p - place)
 (on ?c - crate ?s - surface)
 (in ?c - crate ?t - truck)
 (clear ?s - surface)
 (driving ?d - driver ?t - truck)
 (empty ?t - truck))
 (:action DriveUnloadDrop
 :parameters (?t - truck ?p1 ?p2 - place ?d - driver ?c - crate ?s - surface)
 :precondition (and (at ?t ?p1) (driving ?d ?t) (in ?c ?t) (at ?s ?p2) (clear ?s))
 :effect
 (and (not (at ?t ?p1)) (at ?t ?p2) (not (in ?c ?t)) (at ?c ?p2) (not (clear ?s))
 (clear ?c) (on ?c ?s)))
 (:action LiftLoad
 :parameters (?c - crate ?t - truck ?s - surface ?p - place)
 :precondition (and (at ?c ?p) (on ?c ?s) (clear ?c) (at ?t ?p))
 :effect
 (and (not (at ?c ?p)) (not (clear ?c)) (clear ?s) (in ?c ?t) (not (on ?c ?s))))
 (:action WalkBoard
 :parameters (?d - driver ?t - truck ?p1 ?p2 - place)
 :precondition (and (at ?t ?p2) (at ?d ?p1) (empty ?t))
 :effect (and (not (at ?d ?p1)) (driving ?d ?t) (not (empty ?t))))
 (:action DriveDisembark
 :parameters (?d - driver ?t - truck ?p1 ?p2 - place)
 :precondition (and (at ?t ?p1) (driving ?d ?t))
 :effect
 (and (not (driving ?d ?t)) (at ?d ?p2) (empty ?t) (not (at ?t p1)) (at ?t ?p2))
 (:action Drive
 :parameters (?t - truck ?p1 ?p2 - place ?d - driver)
 :precondition (and (at ?t ?p1) (driving ?d ?t))
 :effect (and (not (at ?t ?p1)) (at ?t ?p2)))))

Fig. 5 - The driverdepot-abstract domain.

(define (hierarchy DriverDepot)
 (:domains
 DriverDepot-ground
 DriverDepot-abstract)
 (:mapping
 (DriverDepot-ground
 DriverDepot-abstract)
 :types
 ((place depot)
 (place distributor)
 (nil hoist))
 :predicates
 ((nil
 (lifting ?h - hoist ?c - crate))
 (nil
 (available ?h - hoist))
 (nil
 (at ?h - hoist ?p - place)))
 :actions
 ((nil (load ?h ?c ?t ?p))

 (nil (unload ?h ?c ?t ?p)
 (nil (lift ?h ?c ?s ?p))
 (nil (drop ?h ?c ?s ?p))
 (nil (walk ?d ?p1 ?p2))
 (nil (board ?d ?t ?p))
 (nil (disembark ?d ?t ?p))
 (drive-unload-drop
 ?t ?p1 ?p2 ?d ?c ?s)
 (and (drive ?t ?p1 ?p2 ?d)
 (unload ?h ?c ?t ?p2)
 (drop ?h ?c ?s ?p2)))
 ((walk-board ?d ?p1 ?p2 ?t)
 (and (walk ?d ?p1 ?p2)
 (board ?d ?t ?p2)))
 ((drive-disembark ?d ?t ?p1 ?p2)
 (and (drive ?t ?p1 ?p2 ?d)
 (disembark ?d ?t ?p2)))
 ((lift-load ?c ?t ?s ?p)
 (and (lift ?h ?p ?c ?s)
 (load ?h ?c ?t ?p)))))

Fig. 6 - Hierarchy definition for the driverdepot domain.

REFERENCES
[1] R.E. Korf, “Planning as Search: A Quantitative Approach”, Artificial
Intelligence, 33(1), 1987, 65–88.
[2] E.D. Sacerdoti “Planning in a Hierarchy of Abstraction Spaces”. Artificial
Intelligence, 5:115--135, 1974.
[3] C.A. Knoblock. “Automatically Generating Abstractions for Planning”.
Artificial Intelligence, 68(2):243--302, 1994.
[4] F. Giunchiglia, and T. Walsh. “A theory of Abstraction”, Technical Report
9001-14, IRST, Trento, Italy, 1990.
[5] K. Erol, J. Hendler, and D.S. Nau. „HTN Planning: Complexity and
Expressivity”. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI-94), 1123--1128, AAAI Press / MIT Press, Seattle, WA,
1994.
[6] R. Bergmann, and W. Wilke, “Building and Refining Abstract Planning
Cases by Change of Representation Language”, Journal of Artificial
Intelligence Research (JAIR), 1995, 3:53-118.
[7] A. Newell, and H.A. Simon. Human Problem Solving. Prentice Hall,
Englewood Cliffs, NJ, 1972.
[8] Q. Yang, and J. Tenenberg, „Abtweak: Abstracting a Nonlinear, Least
Commitment Planner”. Proceedings of the 8th National Conference on
Artificial Intelligence, 204--209, Boston, MA, 1990.
[9] J. Christensen. Automatic Abstraction in Planning. PhD thesis, Department
of Computer Science, Standford University, 1991.

[10] J. Carbonell, C.A. Knoblock, and S. Minton. “PRODIGY: An integrated
architecture for planning and learning.” In D. Paul Benjamin (ed.) Change of
Representation and Inductive Bias. Kluwer Academic Publisher, 125--146,
1990.
[11] G. Armano, G. Cherchi, and E. Vargiu. “A Parametric Hierarchical
Planner for Experimenting Abstraction Techniques”. Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI’03),
Acapulco, Mexico, August 2003.
[12] D. McDermott, M. Ghallab, A. Howe, C.A. Knoblock, A. Ram, M.
Veloso, D. Weld, and D. Wilkins. “PDDL – The Planning Domain Definition
Language,” Technical Report CVC TR-98-003 / DCS TR-1165, Yale Center
for Communicational Vision and Control, October 1998.
[13] G. Armano, G. Cherchi, and E., “An Extension to PDDL for Hierarchical
Planning”. Workshop on PDDL (ICAPS’03), Trento, Italy, June 2003.
[14] G. Armano, G. Cherchi, and E. Vargiu, “Experimenting the Performance
of Abstraction Mechanisms through a Parametric Hierarchical Planner”.
Proceedings of IASTED International Conference on Artificial Intelligence
and Applications (AIA’2003), Innsbruck, Austria, Febbraio 2003.
[15] G. Armano and E. Vargiu, “An Adaptive Approach for Planning in
Dynamic Environments”. Proceedings of the International Conference on
Artificial Intelligence (IC-AI 2001), Special Session on Learning and
Adapting in AI Planning, pages 987--993, Las Vegas, Nevada, June 2001.
[16] Long, D. Results of the AIPS 2002 planning competition, 2002. [Online].
Available: http://www.dur.ac.uk/d.p.long/competition.html.

