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We study usage automata, a formal model for specifying policies on the usage of

resources. Usage automata extend finite state automata with some additional features,

parameters and guards, that improve their expressivity. We show that usage automata

are expressive enough to model policies of real-world applications. We discuss their

expressive power, and we prove that the problem of telling whether a computation

complies with a usage policy is decidable. The main contribution of this paper is a model

checking technique for usage automata. The model is that of usages, i.e. basic processes

that describe the possible patterns of resource access and creation. In spite of the model

having infinite states, because of recursion and resource creation, we devise a

polynomial-time model checking technique for deciding when a usage complies with a

usage policy.

1. Introduction

One of the standard approaches to enforce security policies in computer systems is ac-

cess control [Samarati & de Capitani di Vimercati 2001, Sandhu & Samarati 1994], the

process of monitoring the run-time accesses to resources in order to guarantee that all

and only the authorized accesses can take place. Modern security-aware programming

languages place some form of access control mechanism in their run-time environment.

These mechanisms can be coupled with static analysis techniques, which can leverage

the overhead of dynamic monitoring, and can also enforce certain classes of security poli-

cies that are otherwise impossible to achieve by dynamic monitoring alone [Banerjee &

Naumann 2004, Fournet & Gordon 2003].

Devising expressive, flexible and efficient mechanisms to control the usage of resources

is a major challenge in the design and implementation of security-aware programming
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by Aut. Region of Sardinia under grants L.R.7/2007 CRP2-120 (Project TESLA) and CRP-17285
(Project TRICS).
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languages. The problem becomes crucial by the current programming practice, where it

is common to pick from the Web some scripts, or plugins, or code snippets, and assemble

them into a bigger program, with little or no control about the security of the whole.

A classical approach is that of using an execution monitor to enforce a global invariant

that must hold at any point of the execution. This involves monitoring the execution of

a program, and taking actions to prevent it from violating the prescribed policy. The

events observed by these monitors are accesses to sensible resources, e.g. opening socket

connections, reading/writing files, allocating/deallocating memory, etc.

Although several models for execution monitors have been proposed over the years,

e.g. [Abadi & Fournet 2003, Bauer, Ligatti & Walker 2002, Edjlali, Acharya & Chaudhary

1999, Schneider 2000, Skalka & Smith 2004, Martinelli & Mori 2007], current mainstream

programming languages only offer basic and ad-hoc mechanisms to specify and enforce

custom policies on the usage of resources. For instance, Java and C♯ feature a stack-based

access control mechanism, while support for more expressive (history-based) mechanisms

is not provided. This makes the functional aspects difficult to keep apart from security,

in contrast with the principle of separation of concerns. Indeed, a common programming

practice is to implement the enforcement mechanism by explicitly inserting the needed

checks into the code. Since forgetting even a single check might compromise the security

of the whole application, programmers have to inspect their code very carefully. This may

be cumbersome even for small programs, and it may also lead to unnecessary checking.

A relevant issue is finding a good compromise between the expressiveness of policies and

the efficiency of the enforcement mechanism. It is also important that the enforcement

mechanism can be implemented transparently to programmers, and with a small run-time

overhead. Static analysis techniques may be needed to make this overhead tolerable.

Contributions of the paper. In this paper we study usage automata, a pure formalism

for defining and enforcing policies on the usage of resources. Usage automata extend finite

state automata, by allowing edges to carry variables and guards. Variables represent

existentially quantified resources, to be instantiated with actual resources chosen from

an infinite set. Usage automata are then suitable for expressing policies with parameters

ranging over infinite domains (much alike the parameters of a procedure, see e.g. [Shemesh

& Francez 1994]). For instance, a usage automaton might state that “for all files x, you

can read or write x only if you have opened x, and not closed it in the meantime”. Guards

represent conditions among variables and resources, e.g. “a file y cannot be read if some

other file x 6= y has been read in the past”.

The main contribution of this paper is a model checking technique for usage automata.

The structure under consideration is that of usages, which are basic processes that

describe patterns of resource access and creation. We have shown in previous papers,

e.g. [Bartoletti, Degano & Ferrari 2006, Bartoletti, Degano & Ferrari 2009, Bartoletti,

Degano, Ferrari & Zunino 2009], how to statically analyse a program to infer a usage that

correctly over-approximates its possible run-time traces. Here, we devise a model checking

algorithm to decide whether a usage respects a given policy, expressed as a usage automa-

ton. When a program passes this static check, the run-time monitor can be disposed, so
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leveraging the overhead of access control (see e.g. [Erlingsson & Schneider 1999, Wallach,

Appel & Felten 2001] for some statistics on the overhead of stack-based mechanisms).

The model checking problem is not completely trivial, since usages are infinite state

systems. Actually, they have two different sources of non-finiteness: first, they have a

recursion construct; second, they can generate an unbounded number of fresh resources.

The proposed technique correctly and completely handles the case in which the number

of fresh resources generated by the usage has no bound known at static time. We solve

this problem by suitably abstracting resources, so that only a finite number of witnesses

needs to be considered.

Our model checking algorithm runs in polynomial time on the size of the usage, with

an exponential factor in the number of variables in the usage automaton. However, the

exponential should not be significant in practice, since many policies, also from real-world

applications, have a small number of variables (e.g. this is the case for the policies typi-

cally found in bulletin board systems like phpBB [Bartoletti, Costa, Degano, Martinelli

& Zunino 2009]).

Our technique scales to the case where, instead of a single global policy that spans over

the whole program, one has to check the usage against a set of local policies [Bartoletti,

Degano, Ferrari & Zunino 2009]. Local policies generalise both history-based global poli-

cies and local checks spread over program code. They exploit a scoping mechanism to

allow the programmer to “sandbox” arbitrary program fragments. Local policies are

particularly relevant in Service-Oriented Computing, since they smoothly allow for safe

composition of services (possibly involving mobile code) with different security require-

ments [Bartoletti et al. 2006, Bartoletti, Degano, Ferrari & Zunino 2008b]. As a pragmatic

support for our approach, we have designed and implemented a tool, named LocUsT for

“local usage policy tool”, for model checking usage policies [Bartoletti, Caires, Lanese,

Mazzanti, Sangiorgi, Vieira & Zunino 2011] according to the theoretical results presented

here.

Overview of the paper. We illustrate our proposal with the help of a simple example.

Consider an infinite set of objects r1, r2, . . ., that can be dynamically created, accessed

and disposed through the actions new, read and dispose, respectively. For instance, the

following sequence of events models an execution trace (in this paper we neglect the

actual programs that generate traces):

η0 = new(r1) read(r1) read(r1)new(r2) dispose(r2)

A relevant policy disciplinating the usage of such objects prescribes that disposed ob-

jects can no longer be accessed (or disposed); similarly, objects must have been created

before they can be accessed or disposed. Additionally we require that, whenever you are

accessing an object, it has to be the only one alive (i.e. all the other created objects have

been disposed).

This policy is specified through the usage automaton ϕ in Fig. 1. It is a sort of finite

state automaton, where the variables x, y in the edges can be instantiated to actual

objects, and the guard y 6= x enables the edge from q1 to fail. A trace violates the policy

specified by ϕ if an instantiation of ϕ exists which leads to the state fail. For instance,
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q1
new(x)

q0

dispose(x)
read(x)

read(y) : y 6= x

dispose(x)

fail

Fig. 1. A usage automaton ϕ.

the trace η0 above complies with the policy, as well as its extension η0 dispose(r1), while

the following traces violate the policy:

η1 = η0 read(r2 ) because r2 has been disposed

η2 = η0 new(r3 )read(r1 ) because both r1 and r3 are alive

Usage automata will be formally introduced in Section 2, where we also show some

further examples. Policy compliance will be defined by instantiating a usage automaton

to (an infinite set of) finite state automata. Note that we follow a default-allow approach,

that is an event is permitted whenever not explictly forbidden. When we instantiate a

usage automaton, we therefore add to all states a self-loop for each non-forbidden event.

A trace violates a policy ϕ iff it belongs to the language of some instantiations of ϕ. In

Section 3 we will prove policy compliance decidable: indeed, it suffices to consider a finite

set of such instantiations. In Section 4 we study some expressiveness issues. The main

result there is that the expressive power of usage automata increases with the number of

variables occurring therein.

The basic calculus of usages is introduced in Section 5. It is a nominal calculus without

synchronization. For instance:

U0 = µh.
(

ε+ νn.new(n) · read(n) · dispose(n) · h
)

is a usage representing traces of the form:

new(r1) read(r1) dispose(r1) new(r2) read(r2) dispose(r2) · · ·

Above, µh stands for recursion, ν is a name binder à la π-calculus [Milner, Parrow

& Walker 1992], ε is the empty usage, + is non-deterministic choice, · is sequential

composition.

The model checking problem is specified as follows. Given a usage U and a usage au-

tomaton ϕ, decide whether all the traces denoted by U comply with ϕ (in model checking

terminology, the structure is U and the property is ϕ). Our model checking technique

follows in Section 6, together with our main results, i.e. its correctness and polynomial

time complexity. The algorithm consists of several steps. Let W = {#1, . . . ,#k} be the

finite set of witnesses, where k is the number of variables in ϕ. Then:

1 map the usage U into a Basic Process Algebra term BW(U) (Def. 20)

2 construct a finite set A1
ϕ, . . . , A

n
ϕ of instantiations of ϕ (Def. 3)

3 construct the finite state automata A1
ϕ WAW , · · · , An

ϕ WAW (Defs. 34, 31)
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4 model check B(U) against each of the Ai
ϕ WAW .

The goal of the transformation of the usage U into a Basic Process Algebra process [Bergstra

& Klop 1985] is to bound the number of resources in the traces of BW(U) to a constant,

depending on the number of variables occurring in ϕ. The crucial point is preserving

policy compliance: the traces of U comply with ϕ if and only if the traces of BW(U) do

(Theorem 35). The “only if” part is guaranteed by construction; for the “if” part we

resort to an additional technical construction, i.e. we massage the instantions of ϕ to

prevent the same witness to be created twice (this is accomplished by the unique witness

automaton AW , composed with Ai
ϕ through the weak until operator W ). The last step

can be performed by standard techniques [Esparza 1994].

For instance, our technique correctly detects that (all the traces of) the usage U0 above

complies with ϕ. As further examples, let:

U1 = µh.
(

ε+ νn.new(n) · (µh′. ε+ read(n) · h′) · dispose(n) · h
)

U2 = µh.
(

ε+ νn.new(n) · (µh′. dispose(n) + read(n) · h′) · dispose(n) · h
)

U3 = µh.
(

ε+ νn.new(n) · (µh′. ε+ dispose(n) + read(n) · h′) · h
)

The usage U1 is similar to U0, but now each object can be read multiple times (modelled

by the inner recursion µh′). In U2, each object is illegally disposed twice, by the last step

of the inner recursion and by the dispose in the outer recursion. In U3, the dispose can be

skipped, so an object can be illegally read when another object is still alive. Our model

checking technique correctly detects that U1 complies with ϕ, and that U2 and U3 do

not. Our LocUsT tool supports these facts.

In Section 7 we extend our techniques to the case of local policies. There, we reduce

the problem of model checking local policies to the problem of checking global policies,

so making it possible to reuse the machinery developed in Section 6.

In Section 8 we discuss some related work, and in Section 9 we conclude.

All the proofs of our statements are contained either in the main body of the paper,

or in Appendix A.

2. Usage automata

We start by introducing the needed syntactic categories and some notation in Table 1.

Some of the symbols defined therein will only be used later on.

We assume a denumerable set Res of resources, partitioned as follows:

— Ress is the (finite) set of static resources, i.e. those resources that are already available

in the environment.

— Resd is the (infinite) set of dynamic resources, i.e. those resources that will be freshly

created at run-time.

— {#i}i∈N is the set of witness resources.

— is the dummy resource.

Static resources are kept distinct from dynamic ones, as this slightly increases the

expressiveness of usage automata (see Proposition 6). The witness resources and the

dummy will only be exploited later on by our model checking machinery, to abstract
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r, r′, . . . ∈ Res resources, disjoint union of:

Ress static resources

Resd dynamic resources

{#i}i∈N witness resources

dummy resource

R a set of resources

α, α′,new, . . . ∈ Act actions (a finite set)

α(~r), . . . ∈ Ev = Act× Res
∗ events, with |α| = k if ~r = (r1, . . . , rk)

η, η′, . . . ∈ Ev
∗ traces (ε is the empty one, εη = η = ηε)

x, x′, . . . ∈ Var variables

ξ, ξ′, . . . ∈ Res ∪ Var resources or variables

g, g′, . . . ∈ G guards

ϕ,ϕ′, . . . usage automata, with arity |ϕ| = |var(ϕ)|

var(g), var(ϕ) set of variables in guards / usage automata

res(η), res(ϕ) set of resources in traces / usage automata

R(η, ϕ) set of resources res(η) ∪ res(ϕ) ∪ {#1, . . . ,#|ϕ|} \ { }

σ, σ′, . . . mapping from variables to resources

Aϕ(σ,R) finite state automaton, instantiation of ϕ

η ⊳Aϕ(σ,R) η is not in the language of Aϕ(σ,R)

η |= ϕ η respects ϕ

κ, κ′, . . . collapsing (function from Resd to {#i}i∈N ∪ { })

Table 1. Notation for usage automata

from the actual identity of dynamic resources. The reason for introducing dummy/witness

resources at this point is purely technical: it allows our definitions and statements to be

precise about the range of resource metavariables.

Resources can be used through events of the form α(r1, . . . , rk) ∈ Ev, where α ∈ Act is

an action (of arity |α| = k), fired on the target resources r1, . . . , rk ∈ Res. We assume a

special action new (of arity 1), that represents the creation of a fresh resource. This means

that for each dynamically created resource r, the event new(r) must precede any other

action with r among its targets. For notational convenience, when the target resources

of an action α are immaterial, we stipulate that α acts on some special (static) resource,

and we write just α for such an event.

A trace η ∈ Ev
∗ is a finite sequence of events, which abstractly represent the usage

of resources in a computation. A usage policy is a set of traces, which represent those

computations that respect some safe pattern of resource usage.

We specify usage policies through usage automata, which extend finite state automata

(FSA) to deal with infinite alphabets. The labels on the edges of usage automata may con-

tain variables and guards. Variables represent existentially quantified resources; guards

represent conditions among variables and resources.

Before introducing usage automata, we formally define the syntax and semantics of

guards.

Definition 1 (Guards). Let ξ, ξ′ ∈ Ress∪Var. We inductively define the set G of guards
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as follows:

G ::= true
∣

∣ ξ = ξ′
∣

∣ ¬G
∣

∣ G ∧ G

For all guards g and substitutions σ : var(g) → Res (where var(g) is the set of variables

occurring in g), we say that σ satisfies g, in symbols σ |= g, when:

— g = true, or

— g = (ξ = ξ′) and σ(ξ) = σ(ξ′), or

— g = ¬g′ and it is not the case that σ |= g′, or

— g = g′ ∧ g′′, and σ |= g′ and σ |= g′′.

Note that dynamic resources cannot be mentioned in guards (and in usage automata

as well), as they are unknown at static time: actually, they will be dealt with suitable

instantiations of the variables in ~ξ. We feel free to write ξ 6= ξ′ for ¬(ξ = ξ′), and g ∨ g′

for ¬(¬g ∧ ¬g′).

We now define the syntax of usage automata. They are similar to FSAs, but with an

infinite alphabet and a different acceptance condition. Instead of plain symbols, an edge

of a usage automaton is labelled by an event α(~ξ) and by a guard g. As for guards, the

elements of the target vector ~ξ can either be static resources or variables.

Definition 2 (Usage automata). A usage automaton ϕ is a 5-tuple 〈S,Q, q0, F, E〉

where:

— S ⊆ Act× (Ress ∪ Var)∗ is the alphabet, such that |α| = |~ξ| for all 〈α, ~ξ〉 ∈ S,

— Q is a finite set of states,

— q0 ∈ Q is the start, initial state,

— F ⊂ Q is the set of final “offending” states,

— E ⊆ Q× S × G×Q is a finite set of edges.

Graphically, we write an edge E = 〈q, 〈α, ~ξ〉, g, q′〉, as follows:

q
α(~ξ) : g
−−−−⊸ q′

We denote with |ϕ| the arity of ϕ, i.e. the number of variables occurring in ϕ. In the

graphical representation of usage automata, we stipulate that the symbol ◦ without

incoming edges marks a state as initial; a double circle marks a state as final. Below in

this section we will show several examples of usage automata.

Once the variables in a usage automaton are instantiated to actual resources, it can

be used to accept the traces respecting a usage policy. Unlike FSAs, the final states in

usage automata denote rejection, i.e. violation of the policy. The formal definition of

acceptance will follow in a while. Note that at this point we have two different ways

of specifying policies: set-theoretically or by usage automata. While the first is not an

executable specification, the decidability of policy compliance (Theorem 5) makes usage

automata effective as execution monitors.

To define the usage policy denoted by a usage automaton, we must instantiate the

variables occurring on its edges. Given a set of resources R, we shall consider all the
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possible instantiations of the variables of ϕ to resources in R. This operation yields a

(possibly infinite) set of automata which have a finite number of states and a possibly

infinite number of edges. The usage policy denoted by ϕ is then the union of the (com-

plemented) languages recognized by the automata resulting from the instantiation of ϕ.

The complement (w.r.t. Ev∗) is needed because the final states of a usage automaton ϕ

denote a violation.

Definition 3 (Compliance). Let ϕ = 〈S,Q, q0, F, E〉 be a usage automaton, let R ⊆

Res, and let σ : var(ϕ) → R \ { }. We define the automaton Aϕ(σ,R) = 〈Σ, Q, q0, F, δ〉

as follows:

Σ = {α(~r) | α ∈ Act and ~r ∈ R|α| }

δ = X ∪ complete(X ,R)

where the sets of edges X and complete(X ,R) are defined as follows:

X = { q
α(~ξσ)
−−−→ q′ | q

α(~ξ): g
−−−−⊸ q′ ∈ E and σ |= g }

complete(X ,R) = { q
α(~r)
−−−→ q | α ∈ Act, ~r ∈ R|α|, and ∄q′ ∈ Q : q

α(~r)
−−−→ q′ ∈ X }

Given a trace η ∈ Ev
∗, we say that:

— η ⊳Aϕ(σ,R), when there are no runs of Aϕ(σ,R) on η leading to a final state.

— η respects ϕ (in symbols, η |= ϕ) when, for all σ : var(ϕ) → Res \ { }, we have that

η ⊳Aϕ(σ,Res).

— η violates ϕ (in symbols, η 6|= ϕ) when it is not the case that η respects ϕ.

The usage policy defined by ϕ is the set of traces { η | η |= ϕ }.

To graphically stress the difference between usage automata and their instantiations,

we render the transitions of the first by −⊸, while for instantiations we use arrows →,

like for FSAs. Whenever unambiguous, we use ϕ for the usage policy it defines.

Example 1. For all k ≥ 0, let DIFF(k) be the usage policy stating that the action α (of

arity 1) can be fired at most on k different resources, while α can be fired many times

on the same resource.

DIFF(k) = Ev
∗ \ { η0 α(r0) η1 · · · ηk α(rk) ηk+1 | ∀i 6= j ∈ 0..k : ri 6= rj }

The usage automaton ϕDIFF(k) in Figure 2 specifies the policy DIFF(k).

To show that { η | η |= ϕ } ⊆ DIFF(k), we proceed contrapositively. We pick up η =

η0 α(r0) η1 · · · ηk α(rk) ηk+1 6∈ DIFF(k), and we instantiate ϕ with σ = {r0/x0, · · · , rk/xk},

and an offending run is found because ∀i 6= j ∈ 0..k : ri 6= rj . To show the converse,

assume η 6|= ϕ. Then, η must be of the form η0 α(r0) η1 · · · ηk α(rk) ηk+1 with all the re-

sources pairwise distinct. Then, a run on η leading to the state qk+1 is obtained through

be the same σ as above. �

Note that usage automata can be non-deterministic, in the sense that for all states q

and input symbols α(~ξ), the set of states:
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q0 q1 q2
α(x0) α(x1) : x1 6= x0 α(xk) : xk 6= xk−1 ∧ · · · ∧ xk 6= x0

qk+1

Fig. 2. The usage automaton ϕDIFF(k).

{ q′ | q
α(~ξ): g
−−−−⊸ q′ }

is not required to be a singleton. Indeed, Definition 3 requires that all the paths of the

instances Aϕ(σ,R) driven by a given trace η comply with ϕ, i.e. they all lead to a non-

final state. This is a form of diabolic non-determinism, because one run leading to a final

state is enough to classify a trace as offending.

Since we used final states to represent violations to the policy, usage automata actually

adhere to the “default-accept” paradigm. An alternative approach would be the “default-

deny” one, that allows for specifying the permitted usage patterns, instead of the denied

ones. Both approaches have known advantages and drawbacks. On the one hand, the

default-deny approach is considered safer, because unpredicted traces are always forbid-

den. On the other hand, the default-accept approach seems to us more suitable for open

systems, where the possible traces are not always known in advance, and the designer

only needs to specify the forbidden behaviour. Indeed, we argue that our form of diabolic

non-determinism is particularly convenient when specifying policies, since one can focus

on the sequences of events that lead to violations, while neglecting those that do not af-

fect the compliance to the policy. All the needed self loops are added by complete(X ,R)

in Definition 3. This is indeed a crucial task, since it is not possible in general to make

all the self loops explicit in the edges E (see e.g. Example 8).

Note that an automaton Aϕ(σ,R) always has a finite number of states, but it may

have infinitely many transitions. In particular, Aϕ(σ,R) always has a finite number of

non-self loop transitions, while the number of self loops is infinite whenever the set R is

such. Indeed, while instantiating ϕ, the relation:

{ q
α(~ξσ)
−−−→ q′ | q

α(~ξ): g
−−−−⊸ q′ ∈ E and σ |= g }

only contains finitely many transitions, because such is the set of variables occurring in ϕ,

and because the static resources are not affected by the substitution σ. The completion

operation adds self loops for all the events not explicitly mentioned in the policy, by

instantiating the variables in all possible ways: these self loops are infinitely many if and

only if R is infinite.

To illustrate our model, we present below some examples.

Example 2 (Safe iterators). Consider the implementation of a list datatype which

allows for iterating over the elements of the list. In this scenario, a relevant usage policy

is one that prevents list modifications when the list is being iterated. The relevant events

are start(l), for starting the iterator of the list l, next(l), for retrieving the next element of

l, and modify(l), that models adding/removing elements from l. For simplicity, we assume

that the iterator is always correctly initialised, i.e. we do not require that a next(l) is
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next(l0)
start(l0)
start(l1)
next(l1)
modify(l1)

start(l0)
modify(l0)
start(l1)
next(l1)
modify(l1)

start(l0)
next(l0)
modify(l0)
start(l1)
next(l1)
modify(l1)

(a) (b)

q1q0
next(l0)modify(l0)

fail

start(l0)

q0 q1
modify(x)

fail
next(x)

start(x)

Fig. 3. (a) The usage automaton ϕList. (b) The FSA AϕList({x 7→ l0}, {l0, l1}).

preceded in the trace by an event start(l). The usage policy is then defined as follows:

List = Ev
∗ \ { η0 modify(l) η1 next(l) η2 | start(l) 6∈ η1 }

The usage automaton ϕList recognizing this policy is depicted in Figure 3(a). The automa-

ton ϕList has three states: q0, q1, and fail . In the state q0 both modifications of the list and

iterations are possible. However, a modification (i.e. an add or a remove) done in q0 will

lead to q1, where it is no longer possible to iterate on l, until a start(l) resets the situation.

Consider now: η = start(l0)next(l0) start(l1)next(l1)modify(l1)modify(l0)next(l0). The

trace η violates the policy List, because the last event attempts to iterate on the list l0,

after l0 has been modified. To check that ϕList correctly models this behaviour, consider

the instantiation A0 = AϕList
({x 7→ l0}, {l0, l1}) depicted in Figure 3(b). When supplied

with the input η, the FSA A0 reaches the offending state fail , therefore by Definition 3

it follows that η 6|= ϕList. �

Example 3. Consider the policy FRESH requiring that the action α (of arity 1) cannot

be fired twice on the same resource:

FRESH = Ev
∗ \ { η0 α(r) η1 α(r) η2 | r ∈ Res \ { }, η0, η1, η2 ∈ Ev

∗ }

The usage policy FRESH is modelled by the usage automaton ϕFRESH, with states

{q0, q1, q2}, initial state q0, offending state q2, and edges:

E = {q0
α(x)
−−−⊸ q1, q1

α(x)
−−−⊸ q2}

For instance, the trace α(r1)α(r2)α(r3) respects ϕFRESH whenever the three resources

r1, r2, r3 are distinct. �

Example 4 (Chinese Wall). The Chinese Wall policy [Brewer & Nash 1989] is a

classical security policy used in commercial and corporate business services. In such

scenarios, it is usual to assume that all the objects which concern the same corpo-

ration are grouped together into a company dataset, e.g. bankA, bankB , oilA, oilB , etc.

A conflict of interest class groups together all company datasets whose corporations

are in competition, e.g. Bank containing bankA, bankB and Oil containing oilA, oilB .

The Chinese Wall policy then requires that accessing an object is only permitted in

two cases. Either the object is in the same company dataset as an object already ac-

cessed, or the object belongs to a different conflict of interest class. E.g., the trace

read(oilA, Oil) read(bankA, Bank) read(oilB , Oil) violates the policy, because reading an
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q0
y conflict of interest class

ϕCW

x, x′ company datasetsq1
read(x′, y) : x 6= x′read(x, y)

fail

Fig. 4. The usage automaton ϕCW (Chinese Wall).

f file
a, a′ applets

ϕACnew(f, a)
q0 q1

read(f, a)

write(f, a)

read(f, a′) : a 6= a′

write(f, a′) : a 6= a′

fail

Fig. 5. The usage automaton ϕAC (Applet Confinement).

object in the dataset oilB is not permitted after having accessed oilA, which is in the

same conflict of interests class Oil. The Chinese Wall policy is specified by the usage

automaton ϕCW in Figure 4. The edge from q0 to q1 represents accessing the company

dataset x in the conflict of interests class y. The label read(x′, y) : x 6= x′ on the edge

leading from q1 to the offending state fail means that a dataset x′ different from x has

been accessed in the same conflict of interests class y. �

As we will show later on in this paper, polyadic usage automata, i.e. having more than

one variable, are more expressive than monadic ones. For instance, the Chinese Wall

policy in Figure 4 cannot be expressed by any usage automata with a single variable.

As a matter of fact, we will prove in Section 4 that the expressivity of usage automata

increases with the number of its variables.

Example 5 (Applet confinement). Consider a Web browser which can run applets.

Assume that an applet needs to create files on the local disk, e.g. to save and retrieve

status information. Direct information flows are avoided by denying applets the right

to access local files. Also, to avoid interference, applets are not allowed to access files

created by other applets. This behaviour is modelled by the policy ϕAC in Figure 5. The

edge from q0 to q1 represents the applet a creating a file f . Accessing f is denied to any

applet a′ other than a, and this is expressed by the condition a 6= a′ guarding both the

read and the write actions. When the guard is true, the automaton goes from state q1
to the offending state fail . The edge from q0 to fail prohibits accessing local files. �

Example 6 (Editor service). Consider a cloud service that allows for editing docu-

ments, storing them on a remote site, and sharing them with other users. The front-end

of the editor is run by the Web browser. The user can tag any of her documents as

private. To avoid direct information flows, the policy requires that private files cannot be

sent to the server in plain text, yet they can be sent encrypted. This (monadic) policy is

modelled by the automaton ϕIF in Figure 6(a). After having tagged the file x as private

(edge from q0 to q1), if x were to be sent to the server (edge from q1 to fail), then the

policy would be violated. Instead, if x is encrypted (edge from q1 to q2), then x can be
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q′3q2

q0 q1
private(x)

encrypt(x) send(x)

ϕCCϕIF

q′0

encrypt(y)send(y)

read(x)

q′2

q′1

(a) (b)

fail fail

private(x)

Fig. 6. (a) The usage automaton ϕIF (Information Flow). (b) The usage automaton ϕCC

(Covert Channels).

freely transmitted: indeed, the absence of paths from q2 to an offending state indicates

that once in q2 the policy will not be violated on file x.

A further policy is applied to our editor, to avoid information flow due to covert chan-

nels. It requires that, after reading a private file, any other file must be encrypted before

it can be transmitted. This is modelled by the (diadic) automaton ϕCC in Figure 6(b).

A violation occurs if after some private file x is read (path from q′0 to q′2), then some file

y is sent (possibly, with y = x, edge from q′2 to the offending state fail). �

The following example shows a usage automaton where the final state is not a sink,

i.e. it can be left through a suitable event. Indeed, the compliance relation η |= ϕ is not

prefix-closed, so we can define policies which, like in this example, permit to recover from

bad states.

Example 7. Consider the usage automaton ϕLoan, that prevents anyone from taking

out a loan if their account is in the red. It is specified as follows:

〈{red , black}, {q0, q1}, q0, {q1}, {q0
red
−−⊸ q1, q1

black
−−−⊸ q0}〉

We have that red black |= ϕLoan, while red 6|= ϕLoan. This technical example shows a

policy (ϕLoan) which is not prefix-closed. �

Example 8. Consider the policy “an object x cannot be read if some other object y 6= x

has been read in the past”. This is modelled by the usage automaton in Figure 7(a), which

classifies, e.g., η0 = read(r0)write(r1)write(r2)read(r1) as offending, while it considers

η1 = read(r0)write(r0)read(r0) as permitted. In order to correctly classify the above

traces, we rely on complete(X ,R) in Definition 3, which adds the needed self loops,

among which those labelled write(r) for all states and resources r.

Now, let us attempt to make all the self loops explicit, without resorting to complete(X ,R).

A plausible way to do that is the usage automaton in Figure 7(b). However, this is a

failing attempt, because e.g. it incorrectly classifies the trace η0 as permitted. There is

no way to instantiate z2 so that the edge write(z2) matches both write(r1) and write(r2),

therefore the automaton will get stuck on η0 at some point. As a matter of fact, any at-

tempt to make all the self loops explicit will fail, because it would require an unbounded

number of variables in the edges whenever R is an infinite set. �

As a further reality-check, in [Bartoletti, Costa, Degano, Martinelli & Zunino 2009]
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q1q0 q1

write(z3)
read(z4)

fail

write(z2)
read(y)

write(z1)
read(x)

read(y)
q0

read(x) : x 6= yread(y) read(x) : x 6= y
fail

(a) (b)

Fig. 7. (a) A usage automaton. (b) A wrong attempt to expose its self-loops.

we have specified and enforced through usage automata the policies of a typical bulletin

board system, taking inspiration from phpBB, a popular Internet forum.

3. Decidability of enforcement

According to Definition 3, to decide if a trace respects a policy we should instantiate a

possibly infinite number of automata, one for each substitution σ : var(ϕ) → Res \ { }.

These automata have a finite number of states, but they may have infinitely many tran-

sitions.

However, the compliance of a trace w.r.t. a usage automaton is a decidable property:

Theorem 5 below shows that checking η |= ϕ can be done using a finite set of finite state

automata.

To prove that, we first establish a technical result about usage automata.

Notation. Recall that res(η) is the set of resources which occur in η, and that η ⊳

Aϕ(σ,R) if no runs of Aϕ(σ,R) on η lead to a final state (Definition 3). Hereafter,

for all traces η and for all usage automata ϕ, we will denote by R(η, ϕ) the set of

resources
(

res(η)∪ res(ϕ)∪{#i}i∈1..|ϕ|

)

\{ }, and we assume that the witness resources

#1, . . . ,#|ϕ| do not occur in η.

Lemma 4. For all usage automata ϕ, for all traces η, and for all substitutions σ :

var(ϕ) → Res \ { }:

∃R ⊇ res(η) : η ⊳Aϕ(σ,R) =⇒ ∀R′ ⊇ res(η) : η ⊳Aϕ(σ,R
′)

The underlying intuition is more evident if the statement of Lemma 4 is read contrapos-

itively. If η is recognized as offending by some instantiation Aϕ(σ,R
′) with R′ ⊇ res(η),

then η will be offending for all the instantiations Aϕ(σ,R), with R ⊇ res(η). In other

words, the only relevant fact about the set R used in instantiations is that R ⊇ res(η),

which is always a finite set.

The following theorem establishes the decidability of checking whether a trace η re-

spects a policy ϕ. It states that, rather than checking η⊳Aϕ(σ,Res) for all σ : var(ϕ) →

Res \ { } as prescribed by Definition 3, we can restrict ourselves to checking η with

respect to a finite set of FSAs Aϕ(σ,R). In particular, we can choose R = res(η), which

makes the Aϕ(σ,R) a FSA, and we can only consider the substitutions σ with codomain

R(η, ϕ). Policy compliance is then decidable, because there is only a finite number of

such substitutions.
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q0

q1
α(r)

q1
α(r)

q2q0 q0 q2

α(r)

α(r)

α(r) α(r)

q1
α(x)α(r)

q2

(a) (b) (c)

α(#1)

Fig. 8. (a) The usage automaton ϕ. (b) The FSA Aϕ({x 7→ #1}, {r}). (c) The FSA

Aϕ({x 7→ r}, {r}).

Theorem 5. For all traces η and for all usage automata ϕ, η |= ϕ iff:

∀σ : var(ϕ) → R(η, ϕ) : η ⊳Aϕ(σ, res(η))

Example 9. This technical example is intended to justify the extra resources #i used

in Theorem 5. Let ϕ be the usage automaton in Figure 8(a). Consider the trace η =

α(r)α(r). By Definition 3, it must be η 6|= ϕ, because η is in the language of the FSA

Aϕ({x 7→ #1}, {r}), displayed in Figure 8(b). Note that Theorem 5 correctly prescribes

that the substitution σ = {x 7→ #1} has be taken into account.

Were Theorem 5 not allowing the range of σ to include any resource except for those

in res(η) = {r}, then there would exist a single choice for σ, i.e. σ = {x 7→ r}. Now,

η is not in the language of the FSA Aϕ({x 7→ r}, {r}), displayed in Figure 8(c), and so

η ⊳ Aϕ({x 7→ r}, {r}). Since there are not further substitutions to consider, we would

incorrectly infer that η |= ϕ. �

4. Expressiveness results

We start by considering three restricted forms of usage automata, some of which have

been put forward in [Bartoletti, Degano & Ferrari 2005]. First, we consider usage au-

tomata without static resources, and then those without guards. In both cases, we show

these restricted forms less expressive than unrestricted ones. Finally, we restrict the

events α(~ξ) on the edges of usage automata to act on a single resource, i.e. | ~ξ | = 1.

Unlike in the previous case, this restriction does not affect the expressive power of usage

automata.

Proposition 6. Removing static resources decreases the expressive power of usage au-

tomata.

Proof. There exists no usage automaton without static resources that recognizes the

policy specified as follows:

〈{α(ri) | ri ∈ Res }, {q0, fail , q1}, q0, {fail}, {q0
α(x)
−−−⊸ fail , fail

α(r0)
−−−⊸ q1}〉

Indeed, the fail state cannot be left if static resources cannot be mentioned in the out-

coming edge.
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Proposition 7. Removing guards decreases the expressive power of usage automata.

Proof. There exists no usage automaton without guards that recognizes the policy

DIFF(1) from Example 1. See Appendix A for more details.

Proposition 8. Decreasing the arity of events does not decrease the expressive power

of usage automata.

We now introduce the notion of collapsing. Given a set R of dynamic resources, a

collapsing κ of R maps the resources in R into a set of witnesses, while coalescing all the

other dynamic resources into the dummy resource . Also, κ acts as the identity on the

static resources.

The notion of collapsing will be crucial for our model checking technique. Since a

usage automaton ϕ of arity k can only distinguish among k dynamic resources, to check

if a trace η complies with ϕ we can safely abstract the dynamic resources in η through

an injective collapsing to a set of k witnesses (plus the dummy resource ). Indeed,

an injective collapsing maps distinct resources in R to distinct witnesses, while all the

other dynamic resources become undistinguishable. Reducing the number of resources to

a finite set (the static ones, the k witnesses and the dummy) will be one of the key ideas

for proving the decidability of model checking.

Definition 9 (Collapsing). For all R ⊆ Resd and for all W ⊆ {#i}i∈N, we say that

κ : Res → Res is a collapsing of R onto W whenever:

κ(R) = W

κ(Resd \ R) = { }

κ is the identity on Res \ Resd

Moreover, when κ is injective on R, we say it is an injective collapsing.

Sometimes, we will not be interested in the set R, in the set W, or in both. In such

cases, we will call κ, respectively, a collapsing onto W, a collapsing of R, or simply a

collapsing.

Hereafter, we shall write ηκ to denote the homomorphic extension of the function κ

to the trace η.

The following lemma shows that the actual identity of the witnesses used by a collaps-

ing is immaterial. One can freely rename them, without affecting policy compliance.

Lemma 10. For traces η, for all collapsings κ, and for all permutations π of witnesses,

η κ |= ϕ if and only if η κ π |= ϕ.

The following lemma states that if η violates ϕ, then there exists an injective collapsing

κ such that also ηκ violates ϕ. Furthermore, κ only needs to collapse a set of |ϕ| dynamic

resources to obtain the violation.
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Lemma 11. Let η be a trace, let ϕ be a usage automaton, and let K be the set of

injective collapsing such that |κ(Resd)| = |ϕ|+ 1. Then:

(∀κ ∈ K : ηκ |= ϕ) =⇒ η |= ϕ

The following lemma states that if there exists an injective collapsing κ such that

ηκ violates ϕ, then it is also the case that η violates ϕ. The only mandatory condition

required about κ (in addition to injectivity) is that it collapses at least |ϕ| dynamic

resources to obtain the violation.

Lemma 12. Let η be a trace, let ϕ be a usage automaton, and let K̄ be the set of

injective collapsings such that |κ(Resd)| ≥ |ϕ|+ 1 for all κ ∈ K̄. Then:

η |= ϕ =⇒ (∀κ ∈ K̄ : ηκ |= ϕ)

The following theorem puts together the statements of Lemmata 11 and 12. As we

shall see in Section 6, it provides us with the basis for constructing our model checking

technique for usage policies.

Theorem 13. Let η be a trace, let ϕ be a usage automaton, and let K be the set of

injective collapsings such that |κ(Resd)| = |ϕ|+ 1. Then:

η |= ϕ ⇐⇒ (∀κ ∈ K : η κ |= ϕ)

Theorem 13 can be also exploited as a proof technique to show that some policies are

not expressible by any usage automata. An example follows.

Example 10. For all traces η and all actions α, let η↓α be the subtrace of η containing

only events of the form α(r), for some r. Let:

GEQ = Ev
∗ \ { η β η′ | | η↓β | ≥ |res(η↓α)| }

Intuitively, you can fire as many β as the number of different resources on which you

have previously fired α. For instance, we have that:

α(r)β ∈ GEQ α(r)ββ 6∈ GEQ

α(r)α(r′)ββ ∈ GEQ α(r)α(r′)α(r)βββ 6∈ GEQ

We now prove that GEQ cannot be recognized by any usage automata. By contra-

diction, assume that there exists ϕ such that ϕ recognizes GEQ, and let n = |ϕ|. Let

η = α(r1) · · ·α(rn+1)β
n, with ri ∈ Resd for all i ∈ 1..n+ 1, and ri 6= rj for all i 6= j. Let

η0 = ηβ. Clearly, η0 ∈ GEQ, so by hypothesis we have that η0 |= ϕ. By Theorem 13, it

must be that η0κ |= ϕ for all injective collapsings κ onto n witnesses #1, . . . ,#n. But

this is a contradiction, because |res((ηκ)↓α)| = n = |(ηκ)↓β|, and so η0κ 6∈ GEQ. �

We will now show that each increment of the arity of usage automata widens the set of

usage policies they can recognize. To prove that, we shall exploit Theorem 13 for showing

that the policy DIFF(n) of Example 1 cannot be expressed by any usage automata with

arity n′ < n.
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Proposition 14. The expressive power of usage automata increases with arity.

Proof. Consider the policy DIFF(n) of Example 1. By contradiction, assume that there

exists ϕ with arity n′ < n such that η |= ϕ if and only if η ∈ DIFF(n), for all η. W.l.o.g.

we can assume that res(ϕ) = ∅. Let:

η = α(r0)α(r1) · · ·α(rn) with ri 6= rj ∈ Resd for all i 6= j ∈ 0..n

For all injective collapsings κ onto n′ witnesses, |res(ηκ)| = n′ < n, and so ηκ |= ϕ. By

Theorem 13, this implies that η |= ϕ. But this is a contradiction, because |res(η)| = n+1,

and so η 6∈ DIFF(n). Therefore, DIFF(n) cannot be expressed by any usage automaton

with arity less then n.

5. A calculus of usages

We now present a basic calculus of usages. We assume a countable set Nam of names,

ranged over by n, n′, . . ., such that Nam ∩ (Res ∪ Var) = ∅. Usages U,U ′, . . . include

ε, representing the empty trace, events α(~ρ) (where ~ρ may include both resources and

names), resource creation νn.U , sequencing U ·U ′, non-deterministic choice U +U ′, and

recursion µh.U . In νn. U , the free occurrences of the name n in U are bound by ν;

similarly, µh binds the free occurrences of the variable h in U . The actual definition

follows.

Definition 15 (Usages). Let EvNam = {α(~ρ) ∈ Act× (Res ∪Nam)∗ | |α| = |~ρ| } be the

set of events having targets ranging over names and resources. Usages are inductively

defined as follows:

U, V ::= ε empty

h variable

α(~ρ) event, where α(~ρ) ∈ EvNam and α 6= new

U · V sequence

U + V choice

µh.U recursion

νn. U resource creation

We stipulate that sequencing · binds more strongly than choice +, that in turn has prece-

dence over resource creation νn and recursion µh. Free and bound names and variables

are as expected.

We say that a usage is:

- closed, when it has no free names and no free variables,

- initial, when closed and without dynamic, witness, and dummy resources.

Usages are a polyadic extension of history expressions [Bartoletti et al. 2005], that in

turn extend those in [Skalka & Smith 2004]. History expressions have been used, e.g.

in [Bartoletti, Degano & Ferrari 2009, Bartoletti et al. 2006, Bartoletti, Degano, Ferrari

& Zunino 2009], to statically approximate the behaviour of terms in λ-calculi extended

with primitives for history-based access control. The static analyses developed there take
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n, n′, . . . ∈ Nam names

ρ, ρ′, . . . ∈ Res ∪ Nam resources or names

α(~ρ), . . . ∈ EvNam events, with α(~ρ) ∈ Act× (Res ∪ Nam)∗ and |α| = |~ρ|

U,U ′, . . . usages

res(U) set of resources occurring in U

R(U,ϕ) set of resources res(U) ∪ res(ϕ) ∪ {#1, . . . ,#|ϕ|} \ { }

P, P ′, Q, . . . Basic Process Algebra (BPA) processes

BW(U)Θ BPA process extracted from U

AW Unique Witness automaton for witnesses W

W Weak until automaton

Table 2. Additional notation for usages and model checking

the form of type and effect systems, which associates each typeable λ-term with a history

expression which safely over-approximates the set of traces obtainable at run-time.

Note that usages share much of their constructs with Basic Process Algebras (BPAs)

[Bergstra & Klop 1985]. In particular, both formalisms feature actions, sequential com-

position, non-deterministic choice, and recursion. The main differences between usages

and BPAs are the following:

— Atomic actions in usages may have parameters, which indicate the resources upon

which the action is performed. Atomic actions are essentially the events of Section 2,

possibly containing names among their targets.

— Unlike BPAs, usages feature resource creation νn. U , borrowing from name restriction

à la π-calculus.

— Recursive usages are constructed through the binder µ, while recursive BPAs are

obtained through an environment of definitions (see Definition 18).

The semantics of usages is specified through a labelled transition system. The configu-

rations of the transition system are pairs U,R, where U is a usage, and R ⊆ Resd is the

(finite) set of dynamic resources generated so far.

Definition 16 (Semantics of usages). For all closed usages U , for all R ⊆ Resd, we

denote with JUKR the set of traces η = a1 · · · ai (i ≥ 0) such that:

∃U ′,R′ : U,R
a1−→ · · ·

ai−→ U ′,R′

The transition relation
a
−→, where a ∈ Ev∪{ε}, is the least relation satisfying the axioms

and the inference rule in Table 3.

The rules of the operational semantics are pretty standard, except for the one dealing

with resource creation. The set R in configurations accumulates the resources created at

run-time so far. Firing a νn amounts to pick up a new dynamic resource not in R, and in

binding it to the name n. The side condition ensures that no resource can be “created”

twice. The label new(r) records in the trace the creation of the resource r.



Model checking Usage Policies 19

ε · U, R
ε
−→ U, R α(~r), R

α(~r)
−−−→ ε, R µh. U, R

ε
−→ U{µh. U/h}, R

U, R
a
−→ U ′, R′

U · V, R
a
−→ U ′ · V, R′

U0, R
a
−→ U ′

0, R
′

U0 + U1, R
a
−→ U ′

0, R
′

U1, R
a
−→ U ′

1, R
′

U0 + U1, R
a
−→ U ′

1, R
′

νn. U, R
new(r)
−−−−→ U{r/n}, R∪ {r} if r ∈ Resd \ R

Table 3. Labelled transitions semantics of usages

Example 11. Let U = µh. νn. (ε+α(n) ·h). For all R, the traces in JUKR are the strings

of the form η = new(r1)α(r1) · · · new(rk) or η α(rk) for all k ≥ 0 and pairwise distinct

resources ri such that ri 6∈ R. �

We introduce below some requirements on traces, that characterize when they faithfully

reflect well-formed computations.

Definition 17 (Well-formed traces). A trace is well-formed when it is never the case

that one of the following holds:

1 a static resource r is the target of a new(r) event.

2 for some resource r, the new(r) event is fired more than once.

3 an event α(~r), with r′ ∈ ~r ∩ Resd and α 6= new, is fired before a new(r′).

Hereafter, we shall only consider usages U which denote well-formed traces. Indeed, the

operational semantics in Definition 16 guarantees all the items required by Definition 17.

6. Model checking usage policies

The run-time enforcement of usage policies may reduce the overall performance of sys-

tems. Static analysis may allow to dispose of the run-time monitor, thus reducing such

overhead, see e.g. [Erlingsson & Schneider 1999, Wallach et al. 2001]. The static analysis

we are proposing requires a couple of steps, informally described below, and made precise

in the rest of this section.

To statically verify whether a usage U respects a usage policy ϕ, we first transform U

into a Basic Process Algebra term. Then, we model-check the resulting BPA against a

finite set of FSAs, obtained by suitable instantiations of ϕ.

The problem of checking that the traces of a BPA P are included in the language

accepted by a FSA A is known to be decidable [Esparza 1994]. The decision procedure

amounts to first transform P into a pushdown automaton AP , to construct then the

intersection AP ×Ā of AP and the complement Ā of A, and finally to check the emptiness

of the language accepted by AP × Ā, which is still a pushdown automaton. Since such

a language is context-free, checking its emptiness is decidable. Several algorithms and

tools show this approach feasible, see e.g. [Baier & Katoen 2008].

Note that the above-mentioned decision procedure cannot be directly applied to us-

ages. Indeed, when resource creation occurs within the body of a recursion, like e.g.
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in U = µh. νn. α(n) · h, the resulting traces will have an unbounded number of re-

sources. According to Theorem 5, one should then consider every possible substitution

σ : var(ϕ) → R(η, ϕ), for all η ∈ JUK∅. The number of such substitutions grows un-

boundedly as new resources are created in η: thus, we would have to intersect an infinite

number of FSAs, which is clearly unfeasible.

To solve this problem, in Definition 20 below we shall define a mapping from usages

to BPAs that collapses the dynamic resources, while preserving policy compliance. The

intuition is that any usage automaton ϕ can only distinguish among the resources that

will be bound to the variables of ϕ. Thus, it is sound to consider only |ϕ| + 1 classes

of representatives of dynamic resources: the resources {#i}i∈1..|ϕ|, that are witnesses for

the dynamic resources bound to the variables in var(ϕ), and the dummy resource that

is the witness for all the other dynamic resources.

Theorems 28 and 30 will establish the soundness and completeness of our translation.

We shall then exploit Theorem 13 to show that such a translation also preserves policy

compliance. The overall result about our technique for model checking usage policies is

stated in Theorem 35. We now proceed with the needed definitions.

The BPA processes contain the terminated process 0, events β, the operators · and +

that denote sequential composition and (non-deterministic) choice, and variablesX,Y, . . ..

To allow for recursion, a BPA is then defined as a process p and a set of definitions ∆

for the variables X that occur therein.

Definition 18 (Syntax of Basic Process Algebras). A BPA process is given by the

following syntax, where β ∈ EvNam:

p, q ::= 0
∣

∣ β
∣

∣ p · q
∣

∣ p+ q
∣

∣ X

A BPA definition has the form X , p. A set ∆ of BPA definitions is coherent when

(X , p) ∈ ∆ and (X , p′) ∈ ∆ imply p = p′.

A BPA is a pair 〈p,∆〉 such that (i) ∆ is finite and coherent, and (ii) for all X occurring

in p or ∆, there exists some q such that X , q ∈ ∆.

We write ∆ +∆′ for ∆ ∪∆′, when coherent (otherwise, ∆ +∆′ is undefined).

Let P = 〈p,∆〉 and P ′ = 〈p′,∆′〉. We write P · P ′ for 〈p · p′,∆ + ∆′〉, and P + P ′ for

〈p + p′,∆ + ∆′〉. We assume that + is commutative and associative, and so we write
∑

i∈I Pi for the choice among a finite set of BPAs (0 if I = ∅).

BPA processes up to α-conversion of their variables are identified.

The semantics of BPAs is given by the labelled transition system in Definition 19. Note

that there is no need to consider infinite computations, because if a trace η violates a

usage policy ϕ, then there exists a finite prefix of η which violates ϕ, too.

Definition 19 (Semantics of Basic Process Algebras). The semantics JP K of a

BPA P = 〈p0,∆〉 is the set of the traces labelling finite computations:

{ η = a1 · · · ai | p0
a1−→ · · ·

ai−→ pi and i ≥ 0 }
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0 · p
ε
−→ p β

β
−→ 0

p
a
−→ p′

p · q
a
−→ p′ · q

p0
a
−→ p′0

p0 + p1
a
−→ p′0

p1
a
−→ p′1

p0 + p1
a
−→ p′1

X , p ∈ ∆

X
ε
−→ p

Table 4. Labelled transition semantics of BPAs

BW (ε)Θ = 〈0, ∅〉 BW (h)Θ = 〈Θ(h), ∅〉 BW (α(~ρ))Θ = 〈α(~ρ), ∅〉

BW (U · V )Θ = BW (U)Θ · BW (V )Θ BW (U0 + U1)Θ = BW (U0)Θ + BW (U1)Θ

BW (νn.U)Θ = new( ) · BW (U{ /n})Θ +
∑

#i∈W

new(#i) · BW\{#}i
(U{#i/n})Θ

BW (µh.U)Θ = 〈X,∆ ∪ {X , p}〉 where 〈p,∆〉 = BW (U)Θ{X/h}, X 6∈ dom(∆)

Table 5. Mapping usages to BPAs

where the relation
a
−→, for a ∈ EvNam ∪ {ε}, is inductively defined in Table 4.

We now specify a tranformation from usages into BPAs.

Definition 20. Let U be a usage, let W ⊂ {#i}i∈N be a finite set of witnesses, and

let Θ be a mapping from usage variables to BPA processes such that dom(Θ) contains

the free variables of U . We inductively define the BPA BW(U)Θ in Table 5. Hereafter,

we shall omit Θ when empty.

Events, variables, concatenation and choice are mapped into the corresponding BPA

counterparts. A usage µh.U is mapped to a fresh BPA variable X, bound to the transla-

tion of U in the set of definitions ∆. The crucial case is that of resource creation νn. U ,

for which we generate a choice between two BPA processes. In the first branch of the

choice, the name n is replaced by the dummy resource . In the second branch, a choice

itself, n is replaced in each sub-branch by the witness resource #i, for all witnesses in

W. The item #i is then removed from W, meaning that we have already witnessed it.

When there are no witnesses left, only is used.

Our next step is proving the correspondence between usages and BPAs. We shall prove

that the traces of a usage are all and only those strings that label the computations of

the associated BPA, under a suitable collapsing of resources. Some auxiliary definitions

and results are needed.

The following two definitions are quite standard.

Definition 21 (Simulation). Let S be a binary relation over BPAs. We say that S is

a simulation if and only if, whenever P S Q:

— if Q
a
−→ Q′, then there exists P ′ such that P

a
−→ P ′ and P ′ S Q′

— if Q 6−→, then P 6−→
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We say that P simulates Q (P ≻ Q in symbols) when there exists a simulation S such

that P S Q.

Definition 22 (Bisimulation). Let S be a binary relation over BPAs. We say that S

is a bisimulation if and only if, whenever P S Q:

— if P
a
−→ P ′, then there exists Q′ such that Q

a
−→ Q′ and P ′ S Q′, and

— if Q
a
−→ Q′, then there exists P ′ such that P

a
−→ P ′ and P ′ S Q′.

We say that P is bisimilar to Q (P ∼ Q in symbols) when there exists a bisimulation S

such that P S Q.

Definition 23 (Coherent renaming). Let ζ be a substitution from BPA variables to

BPA variables, and let P = 〈p,∆〉 be a BPA. We say that ζ is a coherent renaming of P

when ∆ζ is coherent.

Lemma 24. Let ζ be a coherent renaming of a BPA P . Then, P ∼ Pζ.

Proof. It is straightforward to check that the relation { 〈P, Pζ〉 | P is a BPA } is a

bisimulation.

We now state a lemma which, roughly, allows substitution of usages for recursion

variables to commute with the mapping B(U)Θ. More precisely, given a substitution

U{U ′/h′}, it allows to move the BPA associated to U ′ to the environment Θ. This will

be crucial in the proofs later on, when dealing with the case U ′ = µh.U .

Lemma 25. For allW, U, U ′, h′ and Θ, there exists a coherent renaming ζ of BW(U{U ′/h′})Θ
such that ζ is the identity on the BPA variables in Θ, and:

BW(U{U ′/h′})Θ ζ = BW(U)Θ{BW(U ′)Θ/h′}

where BW(U)Θ{〈p′,∆′〉/h′} stands for 〈p,∆+∆′〉 if BW(U)Θ{p′/h′} = 〈p,∆〉.

Example 12. To illustrate the need for the coherent renaming ζ in Lemma 25, let

U = h′ · h′ and U ′ = µh. α · h. We have that:

BW(U{U ′/h′})Θ = 〈X · Y, {X , α ·X,Y , α · Y }〉

BW(U)Θ{BW(U ′)Θ/h′} = 〈X ·X, {X , α ·X}〉

To recover the equality stated in the lemma, it suffices to choose the renaming ζ = {Y 7→

X}, which is coherent for {X , α ·X,Y , α · Y }. �

The following lemma states that if you feed BW(U) with more witnesses, you obtain

a BPA that simulates the original one. This fact will be needed in the proofs later on,

when dealing with the inductive case U0 · U1.

Lemma 26. For all usages U , and for all W,W ′,Θ:

W ⊇ W ′ =⇒ BW(U)Θ ≻ BW′(U)Θ
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The following lemma is the basic building block for showing the soundness of the

transformation BW(U). It states that, for all suitable injective collapsings κ, a transition
a
−→ performed by a usage U can be replayed by the BPA BW(U), modulo κ. The set W

must include all the witnesses used by κ to collapse the dynamic resources not generated

yet. Hereafter, given a BPA P and a collapsing κ, the BPA Pκ will denote P under the

homomorphic extension of κ to BPAs.

Lemma 27. Let U be a closed usage, let R ⊂ Resd be a finite set of resources, let W be a

finite set of witnesses, and let κ be an injective collapsing such thatW ⊇ κ(Resd\R)\{ }.

Then, for all a, U ′,R′ such that

U,R
a
−→ U ′,R′

the following holds:

∀P ≻ BW(U)κ : ∃W ′ ⊇ κ(Resd \ R
′), ∃P ′ ≻ BW′(U ′)κ : P

aκ
−→ P ′

The following theorem guarantees that a trace η of an initial usage U can be mimicked

by the BPA BW(U), provided that W has enough witnesses.

Theorem 28. Let U be an initial usage, let κ be an injective collapsing, and let W be

a finite set of witnesses such that W ⊇ κ(Resd) \ { }. Then, for all η:

η ∈ JUK∅ =⇒ ηκ ∈ JBW(U)K

Proof. By induction on the length of η, applying at each step Lemma 27. Note that,

since U is initial, at the first step we have BW(U)κ = BW(U).

Example 13. Let U = µh. νn. α(n) · h, and recall the policy DIFF(k) from Example 1.

We have that U 6|= ϕDIFF(1), e.g. because of the trace:

η = new(r0)α(r0)new(r1)α(r1)new(r2)α(r2)

Let now W = {#1,#2}. We have BW(U) = 〈X, {X , p}〉, where:

p = new( ) · α( ) ·X + new(#1) · α(#1) ·X + new(#2) · α(#2) ·X

Let κ be the injective collapsing such that κ(r1) = #1 and κ(r2) = #2. Then,

ηκ = new( )α( )new(#1)α(#1)new(#2)α(#2)

is a trace of BW(U), as correctly predicted by Theorem 28.

Note that ηκ 6|= ϕDIFF(1), while any collapsing κ′ onto some W ′ with |W ′| = 1 would

have unsoundly lead to ηκ′ |= ϕDIFF(1). �

The following lemma is the basic building block for showing the completeness of the

transformation BW(U). It states that, given any suitable injective collapsing κ, a transi-

tion
a
−→ of the BPA BW(U) can be replayed by the usage U , modulo κ. If the transition

taken by the BPA models the creation of a fresh resource, i.e. if a = new(#i), then there

must exist a dyamic resource r, not already used, such that κ(r) = #i.
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Lemma 29. Let U be a closed usage, let R ⊆ Resd be a finite set of resources, let W be

a finite set of witnesses, and let κ be a collapsing. Assume that:

P ≺ BW(U)κ P
a
−→ P ′

and, if a = new(#i), then there exists some r ∈ Resd \ R such that κ(r) = #i.

Then, there exist U ′,R′, and b such that:

U,R
b
−→ U ′,R′ a = b κ P ′ ≺ BW(U ′)κ

The following theorem guarantees that, for all suitable collapsings κ, an initial usage U

can perform all the computations that the BPA BW(U) can perform, modulo κ. Similarly

to Lemma 29, if the trace η of the BPA has n occurrences of new(#i), then there must

exist n dynamic resources mapped by κ to #i. To formalise this condition, for all traces η

and for all i ∈ N we define Wi(η) as the number of the occurrences of the event new(#i)

in η.

Theorem 30. Let U be an initial usage, let W be a finite set of witnesses, let η′ be a

trace, and let κ be a collapsing such that |κ−1(#i)| = Wi(η
′), for all #i ∈ W. Then,

for all traces η′:

η′ ∈ JBW(U)K =⇒ ∃η : η ∈ JUK∅ and η′ = η κ

Proof. By induction on the length of η, applying at each step Lemma 29. Note that,

since U is initial, at the first step we have BW(U)κ = BW(U). Also, note that the

assumption on κ, i.e. for each new(#i) there exist an r such that κ(r) = #i, allows to

maintain the invariant required by Lemma 29.

Example 14. Let U = (νn. α(n)) · (νn. α(n)), and recall the policy FRESH(k) from

Example 3. We have that U |= FRESH(2), because the two resources that are the targets

of α are distinct. Let W = {#1,#2}. We have that:

BW(U) =
(

new( ) · α( ) + new(#1) · α(#1) + new(#2) · α(#2)
)

·
(

new( ) · α( ) + new(#1) · α(#1) + new(#2) · α(#2)
)

Note that the BPA BW(U) violates the policy FRESH(2), e.g. because of the trace

η = new(#1)α(#1)new(#1)α(#1). This would seem to suggest a possible source of in-

completeness of our verification technique. However, note that there is something odd in

the trace η above: actually, the action new is fired twice on the same witness #1. We will

exploit this insight to recover completeness for our verification technique. This will be

done by composing the instantiated usage automaton with the unique witness automaton

(Definition 31) by a weak until operator (Definition 34). �

As shown in Example 14, the fact that U respects ϕ does not always imply that BW(U)

respect ϕ, so leading to a sound but incomplete decision procedure. The problem is that

BW(U) may use the same witness for different resources created by U . This may lead to

violations of policies, e.g. those that prevent some actions from being performed twice

(or more) on the same resource. To recover a (sound and) complete decision procedure,
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it suffices to check any trace of BW(U) only until the second witness #i is generated

for some #i ∈ W, i.e. before the second occurrence of new(#i). This is accomplished by

composing BW(U) with the “unique witness” automaton through a weak until operator,

defined below.

The unique witness AW is a finite state automaton that reaches an offending state on

those traces containing more than one new(#i) event, for some #i ∈ W. This is sound,

because these traces are non well-formed and will never be generated by a usage —

indeed, they are spuriously introduced by the mapping in Definition 20. We write A∨B

for the FSA that recognizes the union of the languages of the FSAs A and B.

Definition 31 (Unique witness). Let W be a finite set of witnesses. The unique

witness automaton AW is defined as follows:

AW =
∨

#i∈W

A#i

where the automata A#i
= 〈Σ, {qi0, q

i
1, q

i
2}, q

i
0, {q

i
2}, ρ#i

〉 are defined as follows:

ρ#i
= {qi0

new(#i)
−−−−−→ qi1, q

i
1

new(#i)
−−−−−→ qi2}

∪ { q0
ϑ
−→ q0, q1

ϑ
−→ q1 | ϑ ∈ Σ \ {new(#i)} } ∪ { q2

ϑ
−→ q2 | ϑ ∈ Σ }

Lemma 32. For all histories η and for all sets of witnesses W:

η ⊳ AW =⇒ ∀#i ∈ W : Wi(η) = 1

Proof. Straightforward from Definition 31.

The following corollary of Theorem 30 allows us to reconcile completeness of the trans-

formation BW(U) with policy compliance. For all the traces η′ of BW(U) that respect

the unique witness automaton AW , there exists a corresponding trace of the usage U ,

modulo κ. Unlike in Theorem 30, now we can choose an injective collapsing κ, and so

Lemma 12 guarantees that policy compliance will be preserved.

Corollary 33. Let U be an initial usage, let W be a finite set of witnesses, and let κ be

an injective collapsing such that κ(Resd) ⊇ W. For all traces η′, if

η′ ∈ JBW(U)K η′ ⊳ AW

then there exists a trace η such that

η ∈ JUK∅ η′ = η κ

Proof. Straightforward from Theorem 30 and Lemma 32.

We are almost ready to prove our main result, that is a sound and complete method for

statically checking policy compliance of usages. Still, an auxiliary definition is needed.

For all usages U and for all usage automata ϕ, let the set R(U,ϕ) denote res(U) ∪

res(ϕ) ∪ {#i}i∈1..|ϕ|, where res(U) comprises all the static resources mentioned in U . In
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Definition 34 we set up the weak until operator W . The main result eventually follows

in Theorem 35.

Definition 34 (Weak until). Let A0 = 〈S,Q0, q0, F0, δ0〉 and A1 = 〈S,Q1, q1, F1, δ1〉

be complete automata, i.e. for each state q and α ∈ S, there exists a transition from q

labelled by α. We define the weak util automaton A0 W A1 = 〈S,Q, q, F, δ〉 as follows:

Q = Q0 ×Q1

F = F0 × (Q1 \ F1)

q = q0 × q1

δ = {〈qi, qj〉
ϑ
−→ 〈q′i, q

′
j〉 | qi

ϑ
−→ q′i ∈ δ0, qj

ϑ
−→ q′j ∈ δ1, qj ∈ Q1 \ F1}

∪ {〈qi, qj〉
ϑ
−→ 〈qi, qj〉 | qj ∈ F1}

Theorem 35. Let U be an initial usage, let ϕ be a usage automaton, and let W =

{#i}i∈1..|ϕ|. Then, U |= ϕ if and only if:

∀σ : var(ϕ) → R(U,ϕ) : JBW(U)K ⊳Aϕ(σ, res(U) ∪W ∪ { }) W AW

Proof. For the “if” case (soundness), we prove the contrapositive. Assume that U 6|= ϕ.

So, pick a trace η such that:

η ∈ JUK∅ η 6|= ϕ

By Lemma 11, there exists an injective collapsing κ such that:

κ(Resd) ⊆ W ∪ { } ηκ 6|= ϕ

By Theorem 5, there exists σ : var(ϕ) → R(ηκ, ϕ) such that ηκ 6⊳ Aϕ(σ, res(ηκ)). Since

res(ηκ) ⊆ (res(η) ∩ Ress) ∪W ∪ { } ⊆ res(U) ∪W ∪ { }, then by Lemma 4:

ηκ 6⊳ Aϕ(σ, res(U) ∪W ∪ { })

By Theorem 28, we have that:

ηκ ∈ JBW(U)K

Since U is initial, it can only generate well-formed traces: so, η is well-formed. Further-

more, since κ is an injective collapsing into W, then ηκ⊳ AW .

Summing up, we have found a substitution σ : var(ϕ) → R(U,ϕ) such that:

JBW(U)K ∋ ηκ 6⊳ Aϕ(σ, res(U) ∪W ∪ { }) WAW

which is the desired contradiction.

For the “only if” part (completeness) we prove the contrapositive. Pick a trace η′ and

a substitution σ : var(ϕ) → R(U,ϕ) such that:

η′ ∈ JBW(U)K η′ 6⊳ Aϕ(σ, res(U) ∪W ∪ { }) η′ ⊳ AW

Let κ be an injective collapsing such that κ(Resd) ⊇ W. Since U is initial and η′ ⊳ AW ,

then by Corollary 33 there exists η such that:

η ∈ JUK∅ η′ = η κ
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Since res(ηκ) ⊆ (res(η) ∩ Ress) ∪W ∪ { } ⊆ res(U) ∪W ∪ { }, then by Lemma 4:

ηκ 6⊳ Aϕ(σ, res(ηκ))

By Theorem 5, the above implies that ηκ 6|= ϕ. Therefore, we can apply Lemma 12 to

deduce that η 6|= ϕ — the desired contradiction.

We now show that our method for verifying the validity of a usage U can be efficiently

implemented. Indeed, we first associate with U a BPA B(U), and then we model-check

B(U) against a finite set of finite state automata. Both phases require a polynomial

number of steps in the size |U | of U (the number of nodes of the a abstract syntax tree of

U). However, it requires an exponential factor in the arity of the given usage automaton.

There is a hidden exponential factor in the size (number of states) of the usage automaton,

needed to make the FSA deterministic. These exponential factors should not have a

significant impact in practice, since one expects that real-world policies to be expressed

with a small number of states and variables.

Theorem 36. The computational complexity of verifying that U |= ϕ is:

O(|U | |ϕ|+1)

Proof. (Outline). Let n = |U |, and let k = |ϕ|, assuming that n ≫ k. We estimate the

number of nodes of B(U) through the following recursive equation F (n, k). If n or k are 0,

then there is only the root, so F (n, k) = 1. For the general case, we can over-approximate

F as follows:

F (n, k) ≤ F (n− 1, k) + k × F (n− 1, k − 1) + k + 2

which corresponds to the case of Definition 20:

BW(νn.U)Θ = new( ) · BW(U{ /n})Θ +
∑

#i∈W

new(#i) · BW\{#}i
(U{#i/n})Θ

We now prove that F (n, k) ≤ nk+1 + 1. We proceed by induction on n. The base case is

trivial. For the inductive case, by the induction hypothesis and the binomial theorem it

follows that:

F (n, k) ≤ F (n− 1, k) + k × F (n− 1, k − 1) + k + 2

≤ (n− 1)k+1 + 1 + k × ((n− 1)k + 1) + k + 2

≤ ((n− 1) + 1)k+1 + 1

= nk+1 + 1

Therefore, F (n, k) = O(nk+1).

7. Local policies

In the previous section we have devised a model checking technique which is capable of

statically enforcing a global policy on a given usage.

However, in real-world scenarios, like e.g. in Service-oriented Computing, one has to

deal with a set of interacting services, each with its own local requirements on the usage
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[ϕ, [ϕ′ , . . . opening framing events

]ϕ, ]ϕ′ , . . . closing framing events

act(η) multiset of active policies in η

Φ(η) set of policies occurring in η

Φ(U) set of policies occurring in U

η−[ ] trace η with framing events removed

|= η η is valid

ϕ[ ] framed usage automaton

Table 6. Additional notation for local policies

of resources. The usage at hand should then abstract from the whole service composition,

and it should contain information about which policies have to be enforced on each sub-

component.

To cope with this situation, we proposed in [Bartoletti et al. 2005] local policies, that

formalise and enhance the concept of sandbox. Traces and usages were extended there

with special events that denote entering/leaving a sandbox.

The idea is the following. Assume you have a usage U = U0 ·U1 ·U2 and a policy ϕ to

be enforced locally on U1. Then, you can put U1 within a sandbox for ϕ. The new usage

is written as U ′ = U0 · [ϕ·U1·]ϕ · U2, where the framing events [ϕ and ]ϕ denote entering

the sandbox for ϕ and leaving it, respectively. Roughly, all the traces produced by U1

must respect the policy ϕ. Since ϕ might be legitimately interested in what happened

before the sandbox was entered, we allow it to inspect also the trace generated before [ϕ.

However, we can abort executions which violate ϕ only inside a sandbox for ϕ, i.e. when

ϕ is active.

To deal with local policies, we extend the set Act of actions with framing events [ϕ, ]ϕ
for all ϕ. These events can be used both in traces and in usages. For example, a trace

α [ϕ α′ ]ϕα
′′ represents a computation that (i) generates an event α, (ii) enters the scope

of ϕ, (iii) generates α′ within the scope of ϕ, (iv) leaves the scope of ϕ, and (v) generates

an event α′′ outside the scope of ϕ. Intuitively, ε, α and αα′ must respect ϕ, while αα′α′′

will not be required to. Usages U can only use framing events in a disciplined manner,

that is through the construction [ϕ·U ·]ϕ, called ϕ-framing of U and often abbreviated as

ϕ[U ].

We say that η has balanced framings when each opening framing event [ϕ has a

well-nested, corresponding closing ]ϕ. For example, α[ϕα
′[ϕ′α′′]ϕ′ ]ϕ is balanced, while

α[ϕα
′[ϕ′α′′]ϕ is not. Herewith, we shall only consider traces that are prefixes of balanced

histories. This property is always guaranteed for the traces generated by usages.

We now define the multiset of policies which are active for a trace.

Definition 37 (Active policies). The multiset act(η) of the active policies of a trace

η is defined as follows:

act(ε) = {| |} act(η [ϕ) = act(η) ∪ {|ϕ|}

act(η α(~r)) = act(η) act(η ]ϕ) = act(η) \ {|ϕ|}
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Traces and usages are valid when they respect all the relevant active policies. To give

some intuition, recall from Example 6 the policy ϕIF, saying that private files cannot

be sent in plaintext. Let η = private(f) [ϕIF
send(f) ]ϕIF

. Then, η is not valid, because

private(f) send(f) does not obey the active policy ϕIF. Note that the ability of checking

the whole trace was crucial: if one were not able to observe the events before the opening

of the framing, he would unsafely deduce that η is valid.

Definition 38 (Validity of traces and usages). A trace η is valid when |= η, defined

inductively as follows:

|= ε |= η′β if |= η′ and (η′β)−[ ] |= ϕ for all ϕ ∈ act(η′β)

where η−[ ], i.e. η with all the framing events removed, is defined as follows:

ε−[ ] = ε α(~r)−[ ] = α(~r) ( η[ϕ )−[ ] = (η ]ϕ )−[ ] = η−[ ]

A usage U is valid when, for all U ′,R,R′ and η, if U,R
η
−→ U ′,R′ then |= η.

Example 15. Let U = α0 · ϕ[α1 · ϕ
′[α2] · α3]. The following is a trace of U :

η = α0 [ϕ α1 [ϕ′ α2 ]ϕ′ α3

We have that η is valid if and only if: ε |= ϕ, α0 |= ϕ, α0α1 |= ϕ, α0α1α2 |= ϕ,

α0α1α2α3 |= ϕ, and α0α1 |= ϕ′, α0α1α2 |= ϕ′. �

Validity of traces is a safety property [Schneider 2000]. Also, validity is not composi-

tional in general, in the sense that the validity of two traces does not imply the validity

of their composition. This is a consequence of the assumption that no past events can

be hidden. Note in passing that, differently from validity, policy compliance η |= ϕ of

Definition 3 is not prefix-closed. This allows for defining policies which permit to recover

from offending states, see e.g. Example 7.

Lemma 39. For all traces η and η′:

|= η η′ =⇒ |= η (prefix-closed)

|= η and |= η′ 6=⇒ |= η η′ (not compositional)

Proof. The proof of the prefix-closedness is immediate, by definition. The fact that

validity is not compositional follows from the following example. Consider the trace

η = α[ϕ α ]ϕ α, where ϕ requires that α cannot be fired more than twice. Since α |= ϕ

and αα |= ϕ, then η is valid. Note that the first α is checked, even though it is outside of

the framing: since it happens in the past, our policies can inspect it. Instead, the third α

occurs after the framing has been closed, therefore it is not checked. Now, consider the

trace η′ = αη. In spite of both α and η being valid, their composition η′ is not. To see

why, consider the trace η̄ = αα[ϕ α, which is a prefix of η′. We have that act(η̄) = {|ϕ|},

but η̄−[ ] = ααα 6|= ϕ. This shows that validity is not compositional.

Example 16. Recall from Example 7 the usage automaton ϕLoan, that prevents anyone

from taking out a loan if their account is in the red. We have that red black [ϕLoan
is valid.

Indeed, red black |= ϕLoan — while the prefix red is not required to respect the policy
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[ϕ ]ϕ [ϕ ]ϕ

α(x)

α(x)α(x)

α(x)

q0 q1

q̇0 q̇1

q2

q̇2

[ϕ

q1 q2q0

(b)(a)

α(x) α(x)

Fig. 9. (a) Usage automaton ϕ. (b) Framed usage automaton ϕ[ ]

ϕLoan (so matching the intuition that one can recover from a red balance and obtain a

loan). �

We specify in Definition 40 below a transformation of usage automata that enables

them to recognize valid traces. This is done by instrumenting a usage automaton ϕ with

framing events, resulting in a framed usage automaton ϕ[ ] that will recognize those traces

that are valid with respect to the policy ϕ.

Definition 40 (Framed Usage Automata). Let ϕ = 〈S,Q, q0, F, E〉 be a usage au-

tomaton. We define the framed usage automaton ϕ[ ] = 〈S′, Q′, q0, F
′, E′〉 as:

S′ = S ∪ {[ϕ, ]ϕ, [ϕ′ , ]ϕ′ , . . .}

Q′ = Q ∪ { q̇ | q ∈ Q }

F ′ = { q̇ | q ∈ F }

E′ = E ∪ { q
[ϕ
−→ q̇ | q ∈ Q } ∪ { q̇

]ϕ
−→ q | q ∈ Q \ F }

∪ { q̇
α(~ρ):g
−−−−→ q̇′ | q

α(~ρ):g
−−−−→ q′ ∈ E and q ∈ Q \ F }

Intuitively, the usage automaton ϕ[ ] is partitioned into two layers. Both are copies of

ϕ, but all the states in the first layer of ϕ[ ] are made non-final. This represents being

outside the ϕ-framing. The second layer is reachable from the first one when opening a

framing for ϕ, while closing gets back — unless we are in a final, offending state. The

transitions in the second layer are copies of those in ϕ, the only difference being that the

final states are sinks. The final states in the second layer are exactly those final in ϕ.

Example 17. Recall from Example 3 the policy FRESH, which prevents from firing the

action α twice on the same resource. The usage automaton ϕ that models FRESH is

displayed in the left-hand side of Figure 9. The framed version ϕ[ ] is displayed in the

right-hand side of the same figure. �

In the rest of this section, we shall only consider traces without “redundant” framings,

i.e. we will discard traces of the form η [ϕ η′ [ϕ with ]ϕ 6∈ η′. We do this without loss

of generality. Actually, in [Bartoletti et al. 2005] we defined a static transformation of

usages that removes these redundant framings, while preserving validity. For instance,

ϕ[U · ϕ[U ′]] is rewritten as ϕ[U · U ′] since the inner ϕ[. . .] is redundant. Hereafter, we

assume that this transformation has always been applied to usages.
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We will relate framed usage automata with validity in Lemma 43. A trace η (which has

no redundant framings, after the assumed transformation) is valid if and only if it com-

plies with the framed automata ϕ[ ], for all the policies ϕ spanning over η. Before proving

Lemma 43, a couple of auxiliary results are needed. Lemma 41 relates the instantiations

of usage automata with the instantiations of their framed versions.

Lemma 41. Let η be a trace (without redundant framings), let ϕ be a usage automaton,

let R ⊆ Res, and let σ : var(ϕ) → R \ { }. Then:

(a) η−[ ] ⊳Aϕ(σ,R) =⇒ η ⊳Aϕ[ ]
(σ,R)

(b) η ⊳Aϕ[ ]
(σ,R) =⇒ η−[ ] ⊳Aϕ(σ,R) or ϕ 6∈ act(η)

Lemma 42 connects the active policies of η with the compliance between η and ϕ[ ].

Lemma 42. For all traces η (without redundant framings) and for all ϕ:

η 6|= ϕ[ ] =⇒ ϕ ∈ act(η)

The following lemma characterizes trace validity in terms of policy compliance. Below,

we denote with Φ(η) the set of usage automata ϕ such that [ϕ or ]ϕ occur in η. Note

that, since policy compliance is decidable (Theorem 5), then the following lemma states

that also trace validity is decidable.

Lemma 43. A trace η (without redundant framings) is valid if and only if:

∀ϕ ∈ Φ(η) : η |= ϕ[ ]

Our last theorem characterizes usage validity in terms of policy compliance. Together

with Theorem 35, it provides us with a sound and complete model checking technique

for verifying the validity of usages. Recall that we have assumed the usage at hand

transformed with the algorithm in [Bartoletti et al. 2005], which guarantees the absence

of redundant framings. Below, we denote with Φ(U) the set of usage automata ϕ such

that [ϕ or ]ϕ occur in U .

Theorem 44. For all initial usages U , U is valid if and only if:

∀ϕ ∈ Φ(U) : U |= ϕ[ ]

Proof. Straightforward from Lemma 43.

Example 18. Consider the following usage

U = ϕ[νn. ϕread1 [µh.(write(n) · h+ read(n) · dispose(n))] · write(n) · read(n)]

where ϕ is the usage automaton displayed in Figure 1, while ϕread1 is the usage automaton

displayed in Figure 7, where α has been replaced with read .

Intuitively, U models a usage pattern where a new object n is created, it may be

written to several times (the loop is modelled by the recursion construct µh), and, on

leaving the loop, n is read and finally disposed of. The policy ϕread1 is active throughout

the loop. Once the scope of ϕread1 is left, the object n is written to and read again. The

scope of the policy ϕ is the whole usage.
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According to Theorem 44, U is valid if and only if U |= ϕ[ ] and U |= ϕread1 [ ].

By Theorem 35, the translation of U into BPA BW(U) requires only two witnesses

(W = {#1,#2}). Roughly, here the dynamically generated resource n is replaced by

the witnesses #1 and #2 in two different branches (the third branch with the dummy

resource is immaterial in this case, since there is only one ν). When checking the BPA

against ϕread1 [ ], say on #1, we discover that: (1) entering the policy framing makes the

automaton move to the “active” layer; (2) the first read(#1) performed by the BPA

makes the automaton reach state q1; (3) leaving the policy framing makes the automa-

ton return to the “inactive” layer; (4) the second read(#1) performed by the BPA makes

the automaton reach state fail , but since we are in the “inactive” layer, this is not an

offending state. Overall, we have that U does not violate ϕread1 . This is correct because,

within the scope of ϕread1 , only one read can be performed.

By comparison, when checking U against ϕ[ ] instantiated with x = #1 and y = #2, we

discover that: (1) entering the policy framing makes the automaton move to the “active”

layer, where (2) the new(#1) performed by the BPA makes the automaton reach state

q1; (3) writes are ignored by this automaton because of the self-loops; (4) read(#1) is

ignored in q1; (5) dispose(#1) makes the automaton move to q0; (6) the final read(#1)

makes the automaton move to fail . This last state is offending, since it belongs to the

“active” layer in the framed automaton. Hence, there is a trace of U causing a violation

of ϕ. Indeed, within the scope of ϕ the object n is accessed after it is disposed.

8. Related Work

Usage automata constitute a class of automata over infinite alphabets. The techniques

developed in this paper provide an effective finite-state representation of this class of au-

tomata. The issue of extending finite-state techniques to automata over infinite alphabets

has been previously considered, e.g. in [Grumberg, Kupferman & Sheinvald 2010, Kamin-

ski & Francez 1994, Shemesh & Francez 1994, Segoufin 2006].

Variable Finite Automata (VFA) [Grumberg et al. 2010] are a class of automata where

the alphabet consists of constant symbols, as well as variables ranging over an infinite

alphabet. Variables comprise a finite set of bounded variables, and a single free variable.

Each bounded variable is assigned to a different symbol, while the free variable is a

sort of wildcard, which can be associated to different symbols in each occurrence. Some

recent results show that VFA are strictly more expressive than usage automata [Degano,

Mezzetti & Ferrari 2011]. This seems related to the free variable, which has no counterpart

in usage automata. We conjecture that a similar wildcard construct can be added to usage

automata, while preserving the model checking result. Our model checking technique can

be extended as in [Degano, Mezzetti & Ferrari 2011] to construct an algorithm for model

cheking usages against VFA.

Register automata [Kaminski & Francez 1994, Shemesh & Francez 1994] extend finite-

state automata with a finite set of registers. Each register can store a symbol taken from

an infinite alphabet. Register automata have been proved in [Ciancia & Tuosto 2009]

to have the same expressive power as History-Dependent Automata, a special class of

automata which can manage fresh name generation [Montanari & Pistore 2005]. Register
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automata are more expressive than our usage automata. Intuitively, our witnesses play

the same role of the content of registers, but while registers can be updated during a

run, witnesses are constant entities. Register automata are not simple to use — quoting

from [Grumberg et al. 2010]: “the formalisms of register, pebble, and data automata all

fail hard the simplicity criterion”. We think usage automata are a simpler specification

formalism because they are more declarative in style, since each variable is bound to the

same resource for the whole lifetime of any instantiation.

A characterization of the class of policies enforceable through run-time monitoring

systems is given in [Alpern & Schneider 1987, Schneider 2000]. There, the policy language

is that of security automata, a class of Büchi automata that recognize safety properties. To

handle the case of parameters ranging over infinite domains, security automata resort to

a countable set of states and input symbols. The transition relation of security automata

needs not even be computable: therefore, they are strictly more expressive than usage

automata. Several other mechanisms, e.g. [Bauer, Ligatti & Walker 2005, Martinelli &

Mori 2007, Pandey & Hashii 1999], are Turing-equivalent, and so able to recognize more

policies than usage automata. Yet, this flexibility comes at a cost. First, the process

of deciding whether an action must be denied or not might not terminate. Second, non-

trivial static optimizations are unfeasible, unlike in our approach. In particular, no precise

static guarantee can be given about the compliance of a program with the imposed policy:

run-time monitoring is then needed to enforce the policy, while our usage automata are

model-checkable, so possibly avoiding this overhead.

In [Igarashi & Kobayashi 2002], policies are modelled as sets of permitted usage pat-

terns, to be attached to resources upon creation. Our usage automata are not hard-wired

to resources, yet they are parametric over resources. For instance, a usage automaton ϕ

with variables x, y means that, for all the possible instantiations of x and y to actual

resources, the obligation expressed by ϕ must be obeyed. This is particularly relevant in

mobile code scenarios, where you need to impose constraints on how external programs

access the resources created in your local environment, without being able to alter the

code.

The usage automata and the model checking technique presented in this paper extend

and improve previous versions appeared in [Bartoletti 2009, Bartoletti, Degano, Ferrari

& Zunino 2008a, Bartoletti, Degano, Ferrari & Zunino 2009]. The main improvement

w.r.t. past approaches is the ability to deal with an arbitrary number of variables, while

retaining a polynomial-time model checking algorithm. Also, the current paper features a

neater technical apparatus, which builds upon an indistinguishability result (Theorem 13)

to devise a model checking algorithm for global policies, which smoothly scales to the

general case of local policies.

9. Conclusions

We proposed a model for policies which control the usage of resources. Usage automata

follow the history-based apprach to security, and they can be enforced through finite

state automata. A basic calculus of usages was presented to describe the patterns of
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resource access and creation, and obligations to respect usage policies, possibly within a

local scope.

In spite of the augmented flexibility given by resource creation and by policy parametriza-

tion, we devised a complete and efficient (essentially polynomial-time) model-checking

technique for deciding when a usage complies with all the usage policies it is subject to,

within their local scope. Our technique manages to represent the generation of an un-

bounded number of resources in a finitary manner. Yet, we do not lose the possibility of

verifying interesting usage properties of programs. When there are policies that a usage

does not obey, only these have to be monitored at run-time, essentially also requiring

polynomial-time. We have shown the applicability of our theory by modelling a variety

of relevant policies and applications.

The theory presented in this paper has been used for two implementations:

— Jalapa [Bartoletti, Costa, Degano, Martinelli & Zunino 2009], an extension to the

security model of Java. It features history-based usage policies, specified through

usage automata. Programmers can define their scope through a “sandbox” construct.

The enforcement of policies is based on bytecode rewriting, and it is transparent to

programmers (they need not insert explicit policy checks).

— LocUsT(“Local usage policies tool”), a tool which model checks usages U against

usage automata ϕ. This implements the model checking technique of Sections 6 and 7,

mainly exploiting Theorems 35 and 44.

We now briefly comment on the LocUsT implementation. Roughly, given a usage U and

a usage automaton ϕ, it (1) regularizes U through the algorithm described in [Bartoletti

et al. 2005], (2) converts U into a BPA following Table 5, (3) computes a finite number of

framed instantiations of ϕ (one for each σ considered in Theorem 35), (4) composes each

instantiation with the unique witness automaton (as required by the same theorem), and

(5) model-checks the BPA of step (2) against each of the FSAs obtained at step (4).

More in detail, in the last step LocUsT checks whether the set of (prefixes of) traces of

the BPA and the language of the FSA have a non-empty intersection. This is implemented

through a fixpoint algorithm, briefly described below. For all FSA states q and all BPA

named processes X we compute two sets: (a) the set of FSA states reachable from q via

a (finite) trace of X, and (b) the set of FSA states reachable from q via a prefix of a

(possibly infinite) trace of X. This leads to defining a monotonic function over a domain

which satisfies the ascending chain condition, because we only have a finite number of

sets to compute, and each one is bounded from above by the set of all the states of the

FSA. Hence, the fixpoint is computable (in PTIME). To check for language intersection

we then test if from the initial state q0 it is possible to reach a final (offending) state

using a prefix of a trace of the initial process X0.

Some relevant extensions to our model are possible. A first simple extension is to

assign a type to resources. To do that, the set Act of actions is partitioned to reflect the

types of resources (e.g. Act = File ∪ Socket ∪ · · · ), where each element of the partition

contains the actions admissible for the given type (e.g. File = {open, close, read ,write}).

The syntax of the ν-constructor is extended with the type τ , i.e. νn : τ. U . Validity

should now check that the actions fired on a resource also respect its type. Our model-
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checking technique can be smoothly adapted by using pairwise disjoint sets of witnesses,

each for each type (e.g. TFile = {#F1,#F2, ...}, TSocket, etc.), to be dealt with by the

corresponding “unique witness” automata. The overall time complexity is essentially

unaltered; actually, partitioning resources according to their type might even reduce the

impact of the exponential factor.

The language of usages has two simple extensions. The first consists in attaching poli-

cies to resources upon creation, similarly to [Igarashi & Kobayashi 2002]. The construct

νn : ϕ. U is meant to enforce the policy ϕ on the freshly created resource. An encod-

ing into the existing constructs is possible. First, the whole usage has to be sandboxed

with the policy ϕν(x), obtained from ϕ(x) by adding a new initial state qν and an

edge labelled check(x ) from qν to the old initial state. The encoding then transforms

νn : ϕ. U into νn. check(n) · U . The second extension consists in allowing parallel us-

ages U |V . Model checking is still possible by transforming usages into Basic Parallel

Processes [Christensen 1993] instead of BPAs. However, the time complexity becomes

exponential in the number of parallel branches [Mayr 1998]. A less immediate extension

concerns adding quantitative information to both policies and operations on resources,

so leading to a notion of quantitative validity of usages, see e.g. [Degano, Ferrari &

Mezzetti 2011]. It would be interesting to compare this notion with the more classi-

cal ones, based on a Markovian approach, e.g. [Hillston 1996], and to apply stochastic

model-checking to our case, e.g. with PRISM [Kwiatkowska, Norman & Parker 2009].
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Appendix A. Proofs

Proofs for Section 3

Lemma 4. For all usage automata ϕ, for all traces η, and for all substitutions σ :

var(ϕ) → Res \ { }:

∃R ⊇ res(η) : η ⊳Aϕ(σ,R) =⇒ ∀R′ ⊇ res(η) : η ⊳Aϕ(σ,R
′)

Proof. We prove the contrapositive. Assume there existsR′ ⊇ res(η) such that η 6⊳ Aϕ(σ,R
′).

Then, there is a run q0
η
−→ qk of Aϕ(σ,R

′) where qk ∈ F . For all R ⊇ res(η), we recon-

struct an offending run of Aϕ(σ,R) on η.

Let δR and δR′ be the transition relations of Aϕ(σ,R) and Aϕ(σ,R
′), respectively, let

δ∗R and δ∗R′ be their (labelled) reflexive and transitive closures, and let XR and XR′ be

the sets of edges instantiated without completion.

We will prove by induction on the length of η that δ∗R′({q0}, η) ⊆ δ∗R({q0}, η).

The base case η = ε is trivial.

For the inductive case, let η = η′α(~r). By the induction hypothesis, we have that

δ∗R′({q0}, η
′) ⊆ δ∗R({q0}, η

′). Let now q ∈ δ∗R′({q0}, η
′), and assume that q′ ∈ δR′(q, α(~r)).

Only one of the following two cases may occur.

— q
α(~r)
−−−→ q′ ∈ XR′ .

Note that both R and R′ give rise to the same set:

XR = XR′ = { q
α(~ξσ)
−−−→ q′ | q

α(~ξ): g
−−−−⊸ q′ ∈ E and σ |= g }

Indeed, the sets R and R′ only affect the self loops added by complete(X ,R) and

complete(X ,R′), respectively.

— q
α(~r)
−−−→ q′ ∈ complete(XR′ ,R′), with q′ = q.

Since r ∈ res(η) and both R ⊇ res(η) and R′ ⊇ res(η), it follows that q
α(~r)
−−−→ q′ ∈

complete(X ,R) if and only if q
α(~r)
−−−→ q′ ∈ complete(X ,R′), which implies the thesis.

Theorem 5. For all traces η and for all usage automata ϕ, η |= ϕ iff:

∀σ : var(ϕ) → R(η, ϕ) : η ⊳Aϕ(σ, res(η))

Proof. For the “only if” part, assume that η |= ϕ, i.e. that η ⊳ Aϕ(σ
′,Res), for all

σ′ : var(ϕ) → Res \ { }. Since R(η, ϕ) ⊆ Res \ \{ }, then it is also the case that

η ⊳Aϕ(σ,Res). By Lemma 4, it follows that η ⊳Aϕ(σ, res(η)).

For the “if” part, we prove the contrapositive. Assume that η 6|= ϕ, i.e. η 6⊳ Aϕ(σ
′,Res)

for some σ′ : var(ϕ) → Res \ { }. We will prove that there exists some σ : var(ϕ) →

R(η, ϕ) such that η 6⊳ Aϕ(σ, res(η)). We write ran(σ) for the image of σ on its domain.

Let:

R = ran(σ′) \R(η, ϕ) (i.e. resources in ran(σ′) unavailable for σ)

W = {#i}i∈1..|ϕ| \ ran(σ
′) (i.e. witnesses available for σ)
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Since |R| ≤ |W| holds by construction, then there exists an injective function ω : R → W.

We exploit this fact to define the substitution σ : var(ϕ) → R(η, ϕ) needed to prove that

η 6⊳ Aϕ(σ, res(η)). We map each x ∈ var(ϕ) into σ′(x), if σ′(x) belongs to the admissible

codomain for σ, i.e. R(η, ϕ). Otherwise, if σ′(x) is a resource in R, then σ maps x into

an available witness in W. In symbols:

(1) σ(x) =

{

ω(σ′(x)) if σ′(x) ∈ R

σ′(x) otherwise

We will first prove an auxiliary result. For all guards g:

(2) σ |= g ⇐⇒ σ′ |= g

We proceed by induction on the structure of g. The base case g = true is trivial. The

other base case is when g has the form ξ0 = ξ1. Exactly one of the following four subcases

holds.

— ξ0, ξ1 ∈ Ress. The thesis follows from σ(ξ0) = ξ0 = σ′(ξ0) and σ(ξ1) = ξ1 = σ′(ξ1).

— ξ0 ∈ Var, ξ1 ∈ Ress. Then, σ(ξ1) = ξ1 = σ′(ξ1). By (1), we have that:

σ(ξ0) =

{

ω(σ′(ξ0)) if σ′(ξ0) ∈ R (a1)

σ′(ξ0) otherwise (a2)

(⇐=) Assume that σ′ |= ξ0 = ξ1. We are in the case (a2), because ξ1 ∈ res(ϕ) implies

that ξ1 6∈ R. Therefore, σ(ξ0) = σ′(ξ0) = ξ1 = σ(ξ1).

(=⇒) Assume that σ |= ξ0 = ξ1. Again, we are in the case (a2), because ξ1 6∈ R.

Therefore, σ′(ξ0) = σ(ξ0) = σ(ξ1) = ξ1 = σ′(ξ1).

— ξ0 ∈ Ress, ξ1 ∈ Var. Symmetric to the previous case.

— ξ0, ξ1 ∈ Var. By (1), we have that:

σ(ξ0) =

{

ω(σ′(ξ0)) if σ′(ξ0) ∈ R (a1)

σ′(ξ0) otherwise (a2)

σ(ξ1) =

{

ω(σ′(ξ1)) if σ′(ξ1) ∈ R (b1)

σ′(ξ1) otherwise (b2)

(⇐=) Assume that σ′ |= ξ0 = ξ1. Let r = σ′(ξ0). If r 6∈ R, then we are in the case

(a2,b2), and so σ(ξ0) = σ′(ξ0) = r = σ′(ξ1) = σ(ξ1). Otherwise, if r ∈ R, then we

are in the case (a1,b1), and so σ(ξ0) = ω(r) = σ(ξ1). In both cases, we conclude that

σ |= ξ0 = ξ1.

(=⇒) Assume that σ |= ξ0 = ξ1, i.e. σ(ξ0) = r = σ(ξ1) for some r. We have that either

r ∈ W, and so the cases (a1,b1) apply, or r ∈ ran(σ′)\R, and since (ran(σ′)\R)∩W =

∅, then the cases (a2,b2) apply.

In the case (a1,b1), we have that σ(ξ0) = ω(σ′(ξ0)) = ω(σ′(ξ1)) = σ(ξ1). Since ω is

injective, then we conclude σ′(ξ0) = σ′(ξ1).

In the case (a2,b2), we have that σ′(ξ0) = σ(ξ0) = σ(ξ1) = σ′(ξ1).

In both cases, we have proved that σ′ |= ξ0 = ξ1.
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This concludes the proof of (2) in the base case ξ0 = ξ1. The proof of the inductive

cases ¬g and g0 ∧ g1 is straightforward.

Back to the main statement, since η 6⊳ Aϕ(σ
′,Res), then by Definition 3 there exists

a run q0
η
−→ qk of Aϕ(σ

′,Res) on η such that qk ∈ F . We will reconstruct an offending

run of Aϕ(σ, res(η)) on η. Let δ and δ′ be the transition relations of Aϕ(σ, res(η)) and

Aϕ(σ
′,Res), respectively, let δ∗ and δ′∗ be their (labelled) reflexive and transitive closures,

and let X and X ′ be the sets of edges instantiated without completion.

We prove by induction on the length of η:

δ′∗({q0}, η) ⊆ δ∗({q0}, η)

The base case η = ε is trivial.

For the inductive case, let η = η′α(~r). By the induction hypothesis, we have that

δ′∗({q0}, η
′) ⊆ δ∗({q0}, η

′). Let now q ∈ δ′∗({q0}, η
′), and assume that q′ ∈ δ′(q, α(~r)).

Only one of the following two cases may occur.

1 q
α(~r)
−−−→ q′ ∈ X ′.

Then, there exists an edge q
α(~ξ): g
−−−−⊸ q′ in ϕ such that:

σ′ |= g ~ξ σ′ = ~r

By (2), it follows that σ |= g. Also, since each component of ~r is in res(η), and

res(η)∩R = ∅, then by (1) we have that ~ξσ = ~ξσ′ = ~r. Therefore, the edge q
α(~ξ): g
−−−−⊸ q′

in ϕ can also be instantiated to the transition q
α(~r)
−−−→ q′ ∈ X , which proves the needed

inclusion.

2 q
α(~r)
−−−→ q′ ∈ complete(X ′,Res).

Then, q′ = q, and there exists no q′′ such that q
α(~r)
−−−→ q′′ ∈ X ′. We must prove

that there also exists no q′′ such that q
α(~r)
−−−→ q′′ ∈ X . By contradiction, assume that

q
α(~r)
−−−→ q′′ ∈ X .

Then, there would exist an edge q
α(~ξ ′): g′

−−−−−⊸ q′′ in ϕ such that:

σ |= g′ ~ξ ′σ = ~r

By (2), it follows that σ′ |= g′. Similarly to the previous case, we also have that

~ξ ′σ′ = ~ξ ′σ = ~r. Therefore, q
α(~r)
−−−→ q′′ ∈ X ′ – which is the desired contradiction.

Proofs for Section 4

Proposition 7. Removing guards decreases the expressive power of usage automata.

Proof. Recall from Example 1 the usage policy DIFF(k), that prevents the action α

to be fired on more than k distinct resources. We shall prove that there exists no usage

automaton without guards that recognizes DIFF(1).
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By contradiction, assume that ϕ has no guards and recognizes DIFF(1). Let:

η = α(r)α(r′) where r, r′ 6∈ res(ϕ) and r 6= r′

Since η 6∈ DIFF(1), by Theorem 5 it follows that η 6⊳ Aϕ(σ, {r, r
′}) for some σ : var(ϕ) →

R(η, ϕ). Also, since α(r) ∈ DIFF(1), then α(r)⊳Aϕ(σ, {r, r
′}). Any run of Aϕ(σ, {r, r

′})

on η will then have the form:

q0
α(r)
−−−→ q1

α(r′)
−−−→ q2 where q0, q1 6∈ F and q2 ∈ F

Since q1 6∈ F and q2 ∈ F , the transition from q1 to q2 cannot be a self-loop, and so there

exists q1
α(x)
−−−⊸ q2 ∈ E such that σ(x) = r′. Also, it must be q0 6= q1, because of the

following. By contradiction, assume that q0 = q1.

Since q0 = q1
α(x)
−−−⊸ q2 ∈ E, then the trace α(r) would violate ϕ, which contradicts the

hypothesis that ϕ recognizes DIFF(1).

Thus, q0 6= q1, and so there exists q0
α(y)
−−−⊸ q1 ∈ E such that σ(y) = r. Consider now

the trace:

η′ = α(r)α(r) ∈ DIFF(1)

We have that η′ 6⊳ Aϕ({x 7→ r, y 7→ r}, {r}), and so by Theorem 5 it follows that η′ 6|= ϕ

– contradiction, because we assumed ϕ to recognize DIFF(1).

Proposition 8. Decreasing the arity of events does not decrease the expressive power

of usage automata.

Proof. Given a usage automaton ϕ, we show that restricting its events to act on a

single target preserves the policy defined by ϕ, modulo an injective transformation of

traces.

Let Act1 be the set of actions defined as follows:

Act1 = {α1, . . . , α|α| | α ∈ Act } Act1 ∩ Act = ∅

We define the following transformation, called slicing. For each usage automaton ϕ =

〈S,Q, q0, F, E〉, we define the usage automaton slice(ϕ) = 〈S′, Q′, q0, F, E
′〉 as follows:

S′ = {α1(ξ1), . . . , α
k(ξk) | α(ξ1, . . . , ξk) ∈ S }

Q′ = Q ∪ { qie | e =
(

q
α(~ξ):q
−−−−⊸ q′

)

∈ E, i ∈ 1..|α| − 1 }

E′ = { q
α1(ξ1) : g
−−−−−−⊸ q1e , qi−1

e

αi(ξi): g
−−−−−⊸ qie, qk−1

e

αk(ξk): g
−−−−−−⊸ q′

∣

∣

e =
(

q
α(ξ1,...,ξk) : g
−−−−−−−−−⊸ q′

)

∈ E, i ∈ 2..k − 1 }

We then define the injective transformation slice : Ev∗ → (Act1×Res)∗, that maps the

events on many resources into sequences of events on a single resource:

slice(ε) = ε slice(η α(r1, . . . , rk)) = slice(η)α1(r1) · · ·α
k(rk)

It is straightforward to prove, by induction on the length of η, that for all usage
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automata ϕ and for all traces η:

η |= ϕ ⇐⇒ slice(η) |= slice(ϕ)

Lemma 10. For traces η, for all collapsings κ, and for all permutations π of witnesses,

η κ |= ϕ if and only if η κ π |= ϕ.

Proof. Straightforward induction on the length of traces.

Lemma 11. Let η be a trace, let ϕ be a usage automaton, and let K be the set of

injective collapsing such that |κ(Resd)| = |ϕ|+ 1. Then:

(∀κ ∈ K : ηκ |= ϕ) =⇒ η |= ϕ

Proof. We prove the contrapositive. Assume that η 6|= ϕ. Then, by Theorem 5, there

exists σ : var(ϕ) → R(η, ϕ) such that η 6⊳ Aϕ(σ, res(η)). Let ran(σ) = {r1, . . . , rh}, where

r1, . . . , rh are pairwise distinct, and let rh+1, . . . , r|ϕ| be distinct dynamic resources not

occuring in η.

Let κ be the collapsing defined as follows, for all r ∈ Resd:

(3) κ(r) =

{

#i if ri = r for some i ∈ 1..|ϕ|

otherwise

Note that κ is injective on κ−1({#i}i∈1..|ϕ|), and κ(Resd) = {#i}i∈1..|ϕ| ∪ { }. Thus, we

have that κ ∈ K.

By Definition 3, since η 6⊳ Aϕ(σ, res(η)), then there is a run q0
η
−→ qk of Aϕ(σ, res(η))

such that qk ∈ F . Let σ′ = σκ. We will reconstruct an offending run of Aϕ(σ
′, res(ηκ))

on ηκ.

We first prove an auxiliary result. For all guards g occurring in ϕ:

(4) σ |= g ⇐⇒ σ′ |= g

We proceed by induction on the structure of g. The base case g = true is trivial. The

other base case is when g has the form ξ0 = ξ1. We only deal with the subcase ξ0, ξ1 ∈ Var

(the other subcases are straightforward).

(=⇒) We have that ξ0σ
′ = ξ0σκ = ξ1σκ = ξ1σ

′.

(⇐=) Let ξ0σ
′ = r = ξ1σ

′. Since ran(σ′) = ran(σ)κ ⊆ Ress ∪ {#i}i∈1..|ϕ| ∪ { }, there

are the following exhaustive cases:

— r ∈ Ress. The thesis follows by the fact that κ is the identity on static resources.

— r = #i, for some i ∈ 1..|ϕ|. By (3), this implies that ξ0σ = ri = ξ1σ.

— r = . This case cannot occur, as (3) would imply that ξ0σ, ξ1σ 6∈ ran(σ) – a contra-

diction.

This concludes the proof of (4) in the base case ξ0 = ξ1. The proof of the inductive

cases ¬g and g0 ∧ g1 is straightforward.
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Let δ and δκ be the transition relations of Aϕ(σ, res(η)) and Aϕ(σ
′, res(ηκ)), respec-

tively, let δ∗ and δ∗κ be their (labelled) reflexive and transitive closures, and let X and

Xκ be the sets of edges instantiated without completion.

We prove by induction on the length of η that:

δ∗({q0}, η) ⊆ δ∗κ({q0}, ηκ)

The base case η = ε is trivial.

For the inductive case, let η = η′α(~r). By the induction hypothesis, we have that

δ∗({q0}, η
′) ⊆ δ∗κ({q0}, η

′κ). Let now q ∈ δ∗({q0}, η
′), and assume that q

a
−→ q′. Only one

of the following two cases may occur.

1 q
a
−→ q′ ∈ X.

Then, there exists an edge q
α(~ξ): g
−−−−⊸ q′ in ϕ such that:

σ |= g α(~ξ σ) = a

By (4), it follows that σ′ |= g. Also, we have that α(~ξσ′) = aκ. Therefore, the edge

q
α(~ξ): g
−−−−⊸ q′ in ϕ can also be instantiated to the transition q

aκ
−→ q′ ∈ Xκ, which

proves the needed inclusion.

2 q
a
−→ q′ ∈ complete(X, res(η)).

Then, q′ = q, and there exists no q′′ such that q
a
−→ q′′ ∈ X. We must prove that

there also exists no q′′ such that q
aκ
−→ q′′ ∈ Xκ. By contradiction, assume that

q
aκ
−→ q′′ ∈ Xκ.

Then, there would exist an edge q
α(~ξ ′): g′

−−−−−⊸ q′′ in ϕ such that:

σ′ |= g′ α(~ξ ′σ′) = aκ

By (4), it follows that σ |= g′. Since α(~ξ ′σ′) = aκ and κ is bijective on ran(σ), then

we have α(~ξ ′σ) = a. Therefore, q
a
−→ q′′ ∈ X – which is the desired contradiction.

Lemma 12. Let η be a trace, let ϕ be a usage automaton, and let K̄ be the set of

injective collapsings such that |κ(Resd)| ≥ |ϕ|+ 1 for all κ ∈ K̄. Then:

η |= ϕ =⇒ (∀κ ∈ K̄ : ηκ |= ϕ)

Proof. We prove the contrapositive. Assume that there exists an injective collapsing

κ′ ∈ K̄ such that ηκ′ 6|= ϕ. Let κ′−1({#i}i∈N) = {r1, . . . , rh}. Since κ
′ ∈ K̄, then h ≥ |ϕ|.

By Lemma 10, we can rename the witnesses used by κ′, to obtain an injective collapsing

κ onto {#1, . . . ,#h} such that ηκ 6|= ϕ. Let κ̄ be the inverse of κ on κ−1({#i}i∈N), that

is:

(5) κ̄(r) =

{

ri if r = #i and κ(ri) = #i

r otherwise

Note that κ̄ is well-defined, because κ is injective on κ−1({#i}i∈N).
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By Theorem 5, there exists σ′ : var(ϕ) → R(ηκ, ϕ) such that:

ηκ 6⊳ Aϕ(σ
′, res(ηκ))

By Definition 3, there is a run q0
ηκ
−→ qk of Aϕ(σ

′, res(ηκ)) such that qk ∈ F . Let σ = σ′κ̄.

We will reconstruct an offending run of Aϕ(σ, res(η)) on η.

The following auxiliary result will be needed.

(6) ∀ξ ∈ Ress ∪ Var : ξσ′ = ξσκ

We now prove (6). If ξ ∈ Ress, there is nothing to prove, since σ, σ′ and κ are the identity

on static resources. If ξ ∈ Var, the only relevant case is when ξ ∈ var(ϕ). By (5), we have

ξσκ = ξσ′κ̄κ. Since ran(σ′) ⊆ R(ηκ, ϕ) = res(ηκ)∪ res(ϕ) ∪ {#i}i∈1..|ϕ| \ { }, there are

the following exhaustive cases:

— ξσ′ ∈ Ress. The thesis follows by the fact that κ̄, κ are the identity on static resources.

— ξσ′ = #i, for some i ∈ 1..|ϕ|. By hypothesis, #i ∈ κ(Resd), so there exists some

r ∈ Resd such that κ(r) = #i. By (5), κ̄(#i) = r. Then, ξσ′κ̄κ = #iκ̄κ = rκ = #i.

— ξσ′ = . This case cannot occur, since 6∈ R(ηκ, ϕ).

This concludes the proof of (6).

We now prove a further auxiliary result. For all guards g occurring in ϕ:

(7) σ |= g ⇐⇒ σ′ |= g

We proceed by induction on the structure of g. The base case g = true is trivial. The

other base case is when g has the form ξ0 = ξ1. We only deal with the subcase ξ0, ξ1 ∈ Var

(the other subcases are straightforward).

(=⇒) By (6), we have that ξ0σ
′ = ξ0σκ = ξ1σκ = ξ1σ

′.

(⇐=) Let ξ0σ
′ = ξ1σ

′ = r. Then, ξ0σ = ξ0σ
′κ̄ = rκ̄ = ξ1σ

′κ̄ = ξ1σ.

This concludes the proof of (7) in the base case ξ0 = ξ1. The proof of the inductive

cases ¬g and g0 ∧ g1 is straightforward.

Let δ and δκ be the transition relations of Aϕ(σ, res(η)) and Aϕ(σ
′, res(ηκ)), respec-

tively, let δ∗ and δ∗κ be their (labelled) reflexive and transitive closures, and let X and

Xκ be the sets of edges instantiated without completion.

We prove by induction on the length of η that:

δ∗κ({q0}, ηκ) ⊆ δ∗({q0}, η)

The base case η = ε is trivial.

For the inductive case, let η = η′α(~r). By the induction hypothesis, we have that

δ∗κ({q0}, η
′κ) ⊆ δ∗({q0}, η

′). Let now q ∈ δ∗κ({q0}, η
′κ), and assume that q

aκ
−→ q′. Only

one of the following two cases may occur.

1 q
aκ
−→ q′ ∈ Xκ.

Then, there exists an edge q
α(~ξ): g
−−−−⊸ q′ in ϕ such that:

σ′ |= g α(~ξ σ′) = aκ
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By (7), it follows that σ |= g. Also, we have that:

α(~ξσ) = α(~ξσ′ κ̄) = α(~ξσ′) κ̄ = aκκ̄ = a

Combining the above, we have proved that σ |= g and α(~ξ σ) = a.

Therefore, the edge q
α(~ξ): g
−−−−⊸ q′ in ϕ can also be instantiated to the transition q

a
−→

q′ ∈ X, which proves the needed inclusion.

2 q
aκ
−→ q′ ∈ complete(Xκ, res(ηκ)).

Then, q′ = q, and there exists no q′′ such that q
aκ
−→ q′′ ∈ Xκ. We must prove

that there also exists no q′′ such that q
a
−→ q′′ ∈ X. By contradiction, assume that

q
a
−→ q′′ ∈ X.

Then, there would exist an edge q
α(~ξ ′): g′

−−−−−⊸ q′′ in ϕ such that:

σ |= g′ α(~ξ ′σ) = a

By (7), it follows that σ′ |= g′. Furthermore, by (6) we have that α(~ξ ′σ′) = α(~ξ ′σκ) =

aκ. Therefore, q
aκ
−→ q′′ ∈ Xκ – which is the desired contradiction.

Proofs for Section 6

Lemma A.1. For all U , W, Θ, and for all substitutions σ : Nam → Res:

BW(Uσ)Θ = BW(U)Θσ σ

Proof. Straightforward by induction on the structure of U .

Lemma 25. For allW, U, U ′, h′ and Θ, there exists a coherent renaming ζ of BW(U{U ′/h′})Θ
such that ζ is the identity on the BPA variables in Θ, and:

BW(U{U ′/h′})Θ ζ = BW(U)Θ{BW(U ′)Θ/h′}

where BW(U)Θ{〈p′,∆′〉/h′} stands for 〈p,∆+∆′〉 if BW(U)Θ{p′/h′} = 〈p,∆〉.

Proof. By induction on the structure of U . The base cases U = ε, α(~r), h and the

inductive cases U = U0 ·U1, U = U0+U1, and U = νn. U ′′ are straightforward. Consider

now the case U = µh.U ′′. If h = h′, trivial. Otherwise:

BW(U{U ′/h′})Θ = 〈X, {X , p}+∆〉 where 〈p,∆〉 = BW(U ′′{U ′/h′})Θ{X/h}

BW(U)Θ{BW(U ′)Θ/h′} = 〈X, {X , p′}+∆′〉 where 〈p′,∆′〉 = BW(U ′′)Θ{X/h,BW(U ′)Θ/h′}

(note that we can choose the fresh variable X in both the equations). By the induction

hypothesis, there exists a renaming ζ coherent with BW(U ′′{U ′/h′})Θ{X/h}, such that ζ

leaves the variables in Θ{X/h} untouched (thus Xζ = X), and:

BW(U ′′{U ′/h′})Θ{X/h} ζ = BW(U ′′)Θ{X/h,BW(U ′)Θ/h′}



M. Bartoletti, P. Degano, G. L. Ferrari and R. Zunino 46

i.e. pζ = p′ and ∆ζ = ∆′. Therefore, it follows that:

BW(U{U ′/h′})Θ ζ = 〈X, {X , p}+∆〉 ζ

= 〈Xζ, {Xζ , pζ}+∆ζ〉

= 〈X, {X , p′}+∆′〉

= BW(U)Θ{BW(U ′)Θ/h′}

which concludes the proof.

The following lemma states some well-known properties of simulation and bisimulation.

Lemma A.2. The similarity relation ≻ between BPAs is a simulation, and a preorder.

The bisimilarity relation ∼ is a bisimulation, and an equivalence relation. Moreover, for

all BPAs P,Q,R and substitutions σ:

P ≻ Q =⇒ P ·R ≻ Q ·R and R · P ≻ R ·Q

P ∼ Q =⇒ P ≻ Q

P ∼ Q =⇒ Pσ ∼ Qσ

P ∼ Q =⇒ P ·R ∼ Q ·R

Lemma 26. For all usages U , and for all W,W ′,Θ:

W ⊇ W ′ =⇒ BW(U)Θ ≻ BW′(U)Θ

Proof. By induction on the size of U . The only non-trivial case is U = νn.U ′, for which

we have:

BW(νn. U ′) = new( ) · BW(U ′{ /n}) +
∑

#i∈W

new(#i) · BW(U ′{#i/n})

≻ new( ) · BW′(U ′{ /n}) +
∑

#i∈W′

new(#i) · BW′(U ′{#i/n})

= BW′(νn. U ′)

where in the second step we have applied Lemma A.2, and the induction hypothesis

1 + |W \W ′| times.

Lemma 27. Let U be a closed usage, let R ⊂ Resd be a finite set of resources, let W be a

finite set of witnesses, and let κ be an injective collapsing such thatW ⊇ κ(Resd\R)\{ }.

Then, for all a, U ′,R′ such that

U,R
a
−→ U ′,R′

the following holds:

∀P ≻ BW(U)κ : ∃W ′ ⊇ κ(Resd \ R
′), ∃P ′ ≻ BW′(U ′)κ : P

aκ
−→ P ′
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Proof. By induction on the depth of the derivation of U,R
a
−→ U ′,R′. In all the cases

below, we will fulfil the statement by choosing W ′ = W \ κ(R′ \ R). Indeed, we have

that:

W ′ = W \ κ(R′ \ R)

⊇ κ(Resd \ R) \ (κ(R′ \ R) ∪ { }) as W ⊇ κ(Resd \ R) \ { }

⊇ κ(Resd) \ (κ(R) ∪ κ(R′ \ R) ∪ { })

= κ(Resd) \ (κ(R
′) ∪ { }) as R′ ⊇ R

= κ(Resd \ R
′) \ { } as κ is an injective collapsing

Base Cases

— α(~r),R
α(~r)
−−−→ ε,R.

By Definition 20 and Definition 19:

P ≻ BW(α(~r))κ = 〈α(~r), ∅〉κ
α(~r)κ
−−−→ 〈0, ∅〉 = BW(ε)κ

from which the thesis follows directly.

— νn. U ′′,R
new(r)
−−−−→ U ′′{r/n},R∪ {r}, with r 6∈ R.

P ≻ BW(νn.U ′′)κ = new( ) · BW(U ′′{ /n})κ+
∑

w∈W

new(w) · BW\{w}(U
′′{w/n})κ

Two cases are possible, depending on whether κ(r) = or κ(r) ∈ {#i}i∈N.

In the first case, κ(r) = , since:

P ≻ BW(νn.U ′′)κ
new( )
−−−−→ BW(U ′′{ /n})κ

then there exists P ′ ≻ BW(U ′′{ /n})κ such that P
new( )
−−−−→ P ′.

Combining the above:

P ′ ≻ BW(U ′′{ /n})κ

= BW(U ′′){ /n}κ by Lemma A.1

= BW(U ′′){r/n}κ as κ(r) =

= BW(U ′′{r/n})κ by Lemma A.1

= BW′(U ′)κ as W ′ = W \ {κ(r)} = W

In the second case, we have κ(r) = #j , for some j. Since r ∈ Resd \ R, then κ(r) ∈

κ(Resd \ R) ⊆ W. Since:

BW(νn.U ′′)κ
new(#j)
−−−−−→ BW\{#j}(U

′′{#j/n})κ

then there exists P ′ ≻ BW\{#j}(U
′′{#j/n})κ such that P

new(#j)
−−−−−→ P ′.
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Combining the above:

P ′ ≻ BW\{#j}(U
′′{#j/n})κ

= BW\{#j}(U
′′){#j/n}κ by Lemma A.1

= BW\{#j}(U
′′){r/n}κ as κ(r) = #j

= BW\{#j}(U
′′{r/n})κ by Lemma A.1

= BW′(U ′)κ as W ′ = W \ {κ(r)} = W \ {#j}

— U = ε · U1,R
ε
−→ U1,R.

P ≻ BW(ε · U1)κ = BW(ε)κ · BW(U1)κ = 〈0, ∅〉 · BW(U1)κ
ε
−→ BW(U1)κ

from which the thesis follows directly.

— µh.U ′′,R
ε
−→ U ′′{U/h},R

BW(µh.U ′′)κ = 〈X, {X , p}+∆〉κ where 〈p,∆〉 = BW(U ′′){X/h}

Let P ≻ BW(µh.U ′′)κ. Since 〈X, {X , p} + ∆〉κ
ε
−→ 〈p, {X , p} + ∆〉κ, then there

exist P ′ such that P
ε
−→ P ′ ≻ 〈p, {X , p}+∆〉κ.

By Lemma 25, it follows that:

BW(U ′′{U/h})ζ = BW(U ′′){BW(U)/h} = 〈p, {X , p}+∆〉

for some renaming ζ coherent with BW(U ′′{U/h}).

Then, by Lemma 24:

BW(U ′′{U/h})ζ ∼ BW(U ′′{U/h}) = BW(U ′)

Hence, since a bisimulation is also a simulation:

BW(U ′′{U/h})ζ ≻ BW(U ′)

Combining the above, we conclude that:

P ′ ≻ 〈p, {X , p}+∆〉κ ≻ BW(U ′)κ

Inductive Cases

— U0 + U1,R
a
−→ U ′

0,R
′, with U0,R

a
−→ U ′

0,R
′ (the symmetric case is similar).

By Definition 20, we have:

P ≻ BW(U0 + U1)κ = BW(U0)κ+ BW(U1)κ ≻ BW(U0)κ

Since P ≻ BW(U0)κ and U0,R
a
−→ U ′

0,R
′, by the induction hypothesis it follows that

there exists P ′ and W ′ = W \ κ(R′ \ R) such that:

P
aκ
−→ P ′ ≻ BW′(U ′

0)κ

and the thesis follows immediately.

— U0 · U1,R
a
−→ U ′

0 · U1,R
′, with U0,R

a
−→ U ′

0,R
′.

By Definition 20, we have:

P ≻ BW(U)κ = BW(U0 · U1)κ = BW(U0)κ · BW(U1)κ
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LetQ = BW(U0)κ. By the induction hypothesis, there existQ′ andW ′ = W\κ(R′\R)

such that:

(8) Q
aκ
−→ Q′ ≻ BW′(U ′

0)κ

Since P ≻ Q · BW(U1)κ and Q
aκ
−→ Q′, then there exists P ′ such that:

(9) P
aκ
−→ P ′ ≻ Q′ · BW(U1)κ

Therefore, we have that:

P ′ ≻ Q′ · BW(U1)κ by (9)

≻ Q′ · BW′(U1)κ by Lemma 26 (W ′ ⊆ W)

≻ BW′(U ′
0)κ · BW′(U1)κ by (8)

= BW′(U ′)κ

This concludes the proof of the lemma.

Lemma 29. Let U be a closed usage, let R ⊆ Resd be a finite set of resources, let W be

a finite set of witnesses, and let κ be a collapsing. Assume that:

P ≺ BW(U)κ P
a
−→ P ′

and, if a = new(#i), then there exists some r ∈ Resd \ R such that κ(r) = #i.

Then, there exist U ′,R′, and b such that:

U,R
b
−→ U ′,R′ a = b κ P ′ ≺ BW(U ′)κ

Proof. By induction on the structure of U . We have the following cases:

— U = ε.

In this case the conditions P ≺ BW(U)κ = 0 and P
a
−→ P ′ cannot be met together,

since 0 cannot take any transitions.

— U = α(~r).

Let P ≺ BW(U)κ = α(~r)κ. Since α(~r)κ can only take the transition

α(~r)κ
α(~r)κ
−−−→ 0

then it must be the case that a = α(~r)κ and P ′ ≺ 0. The thesis holds with U ′ = ε,

b = α(~r), R′ = R, which give BW(U ′)κ = 0 ≻ P ′.

— U = νn. U ′′

Let P ≺ BW(νn. U ′′)κ. Then, by Definition 20:

P ≺ new( ) · BW(U ′′{ /n})κ+
∑

w∈W

new(w) · BW\{w}(U
′′{w/n})κ

Note that, since the set of witnesses W is finite, there is a finite set of processes Q

such that BW(νn. U ′′)κ
a
−→ Q. Also, any such transitions must fall within one of the

following two cases:

1 Q = BW\{#i}(U
′′{#i/n})κ, for some #i ∈ W, and a = new(#i)
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2 Q = BW(U ′′{ /n})κ, and a = new( ).

In the case (1), we have that P ′ ≺ BW\{#i}(U
′′{#i/n})κ. By hypothesis, we can

choose a fresh r ∈ Resd \ R such that κ(r) = #i.

We have the following transition:

νn.U ′′,R
new(r)
−−−−→ U ′′{r/n},R∪ {r}

Now let U ′ = U ′′{r/n}, let b = ε, and let R′ = R∪ {r}. We have that:

P ′ ≺ BW\{#i}(U
′′{#i/n})κ

= BW\{#i}(U
′′){#i/n}κ by Lemma A.1

= BW\{#i}(U
′′){r/n}κ as κ(r) = #i

= BW\{#i}(U
′′{r/n})κ by Lemma A.1

≺ BW(U ′)κ by Lemma 26

Case (2) is similar. We have P ′ ≺ BW(U ′′{ /n})κ, and we choose a fresh r ∈ Resd\R

such that κ(r) = (this is always possible, because R is finite). Then we let U ′ =

U ′′{r/n} and R′ = R∪ {r}.

— U = U0 · U1

Let P ≺ BW(U0 · U1)κ. Then, by Definition 20:

P ≺ BW(U0)κ · BW(U1)κ

Now we have two subcases depending on the structure of U0.

1 U0 = ε. In this case BW(U0)κ = 0, hence we have the transition

0 · BW(U1)κ
ε
−→ BW(U1)κ

So, it must be a = ε and P ′ ≺ BW(U1)κ. The thesis follows directly, by choosing

U ′ = U1, b = a, and R′ = R.

2 U0 6= ε. Any transition from BW(U)κ has been derived as follows:

BW(U0)κ
a
−→ Q′

BW(U0)κ · BW(U1)κ
a
−→ Q′ · BW(U1)κ

So, we have P ′ ≺ Q′ · BW(U1)κ. Since BW(U0)κ ≺ BW(U0)κ, by the induction

hypothesis there exist U ′
0,R

′ and b such that

U0,R
b
−→ U ′

0,R
′ a = b κ Q′ ≺ BW(U ′

0)κ

Let U ′ = U ′
0 · U1. We have that:

U0,R
b
−→ U ′

0,R
′

U0 · U1,R
b
−→ U ′

0, ·U1,R
′

Also, we have:

P ′ ≺ Q′ · BW(U1)κ ≺ BW(U ′
0)κ · BW(U1)κ = BW(U ′)κ
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— U = U0 + U1

Let P ≺ BW(U0 + U1)κ. Then, by Definition 20:

P ≺ BW(U0)κ+ BW(U1)κ

Only two transitions are possible. Consider now the case where the left-hand side

moves (the other case is symmetric). We have that:

BW(U0)κ
a
−→ Q′

BW(U0)κ+ BW(U1)κ
a
−→ Q′

So, it must be the case that P
a
−→ P ′ ≺ Q′. Since BW(U0)κ

a
−→ Q′, by the induction

hypothesis there exist U ′
0,R

′ and b such that

U0,R
b
−→ U ′

0,R
′ a = b κ Q′ ≺ BW(U ′

0)κ

Then the thesis follows by P ′ ≺ Q′ ≺ BW(U ′
0)κ and:

U0,R
b
−→ U ′

0,R
′

U0 + U1,R
b
−→ U ′

0,R
′

The other case is similar.

— U = µh.U ′′

Let P ≺ BW(µh.U ′′)κ. Then, by Definition 20:

P ≺ 〈X,∆+ {X , p}〉κ where BW(U ′′)Θ{X/h} = 〈p,∆〉

By construction, there is only one transition from 〈X, {X , p}+∆〉κ:

〈X, {X , p}+∆〉κ
ε
−→ 〈p, {X , p}+∆〉κ

Then, we must have P ′ ≺ 〈p,∆+ {X , p}〉κ, and a = ε.

We have that:

µh.U ′′,R
ε
−→ U ′′{U/h},R

So, let U ′ = U ′′{U/h}, let b = ε, and let R′ = R.

By Lemma 25, there is some coherent renaming ζ such that

BW(U ′′{U/h})ζ = BW(U ′′){BW(U)/h}

By Lemma 24, BW(U ′′{U/h}) ∼ BW(U ′′{U/h})ζ.

Combining the above:

P ′ ≺ 〈p, {X , p}+∆〉κ

= 〈p, {X , p}+∆+ {X , p}+∆〉κ

= BW(U ′′){〈X,{X,p}+∆〉/h}κ

= BW(U ′′){BW(U)/h}κ

∼ BW(U ′′{U/h})κ

= BW(U ′)κ
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Proofs for Section 7

Lemma 41. Let η be a trace (without redundant framings), let ϕ be a usage automaton,

let R ⊆ Res, and let σ : var(ϕ) → R \ { }. Then:

(a) η−[ ] ⊳Aϕ(σ,R) =⇒ η ⊳Aϕ[ ]
(σ,R)

(b) η ⊳Aϕ[ ]
(σ,R) =⇒ η−[ ] ⊳Aϕ(σ,R) or ϕ 6∈ act(η)

Proof. We first introduce some notation. We denote by Q and Q̇ the states in the

first and in the second layer of Aϕ[ ]
(σ,R), respectively. We denote with F and Ḟ the

final states of Aϕ(σ,R) and Aϕ[ ]
(σ,R), respectively. Also, for each state q in Aϕ(σ,R),

we denote with q@Q and q@Q̇ the projections of q on the first and on second layer of

Aϕ[ ]
(σ,R).

For (a), we prove the contrapositive. Let η = β1 · · ·βn, and assume that η 6⊳ Aϕ[ ]
(σ,R).

By Definition 3, there exists an offending run:

q(0)
η
−→ q(n) ∈ Ḟ run of Aϕ[ ]

(σ,R) on η

We shall now construct an offending run:

q̄(0)
η−[ ]

−−−→ q̄(n̄) ∈ F run of Aϕ(σ,R) on η−[ ]

At the first step of this construction, let q̄(0) = q(0). For the remaining steps, we shall

scan the trace η with the index k, the trace η−[ ] with k̄, and at each step we shall define

q̄(k̄+1). At the k-th step, if βk is a framing event then we just let q̄(k̄+1) = q̄(k̄), thanks

to the self-loop of Aϕ(σ,R) on βk.

For each transition q(k)
βk−→ q(k+1) with βk ∈ Ev, we let q̄(k̄+1) = q(k+1)@Q. By

Definition 40 and 3, Aϕ(σ,R) has the transition q̄(k̄)
βk̄−→ q̄(k̄+1).

For (b), we prove the contrapositive. Assume that η−[ ] 6⊳ Aϕ(σ,R) and ϕ ∈ act(η′).

By Definition 3, there is an offending run:

q̄(0)
η−[ ]

−−−→ q̄(n̄) ∈ F run of Aϕ(σ,R) on η−[ ]

We will show how to construct an offending run:

q(0)
η
−→ q(n+1) ∈ Ḟ run of Aϕ[ ]

(σ,R) on η

At the first step of our construction, let q(0) = q̄(0). For the remaining steps, we shall

scan the trace η with the index k, the trace η′−[ ] with k̄, and at each step we shall define

q(k+1). For the k-th step, there are the following cases:

— if βk = [ϕ, then q(k) ∈ Q, because η has no redundant framings. Let q(k+1) = q(k)@Q̇.

By Definitions 40 and 3, Aϕ[ ]
(σ,R) has a transition q(k)

[ϕ
−→ q(k+1).

— if βk = ]ϕ, then q(k) ∈ Q̇, because η has no redundant framings. Moreover, q̄(k̄) 6∈ F ,

otherwise we have found a (strict) prefix of η that is offending for Aϕ[ ]
(σ,R). Let

q(k+1) = q(k)@Q. Then, Aϕ[ ]
(σ,R) can take the transition q(k)

]ϕ
−→ q(k+1).
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— if βk = [ϕ′ or βk = ]ϕ′ for some ϕ′ 6= ϕ, then let q(k+1) = q(k).

— otherwise, if βk ∈ Ev, there are the following two subcases:

– if q(k) ∈ Q, then choose q(k+1) = q̄(k̄+1).

– if q(k) ∈ Q̇, then q̄(k̄) 6∈ F : otherwise, we have found a (strict) prefix of η that

is offending for Aϕ[ ]
(σ,R). So, Aϕ(σ,R) has a transition q̄(k̄)

βk̄−→ q̄(k̄+1). Let

q(k+1) = q̄(k̄+1)@Q̇. Then, Aϕ[ ]
(σ,R) has the transition q(k)

βk−→ q(k+1).

We have then constructed a run q(0)
η
−→ q(n+1) of Aϕ[ ]

(σ,R) on η. Since ϕ ∈ act(η),

then in η the scope of ϕ has been entered but not exited. Thus, q(n+1) is in the second

layer of Aϕ[ ]
(σ,R). The state q(n+1) is offending, because q̄k ∈ F . This yields the expected

contradiction.

Lemma 42. For all traces η (without redundant framings) and for all ϕ:

η 6|= ϕ[ ] =⇒ ϕ ∈ act(η)

Proof. Straightforward by induction on the length of η.

Lemma 43. A trace η (without redundant framings) is valid if and only if:

∀ϕ ∈ Φ(η) : η |= ϕ[ ]

Proof. We proceed by induction on the length of η. The base case, η = ε, is trivial.

For the inductive case, assume that η = η′β.

For the “only if” part, assume that η is valid, and let ϕ ∈ Φ(η). There are the following

two subcases.

— if ϕ 6∈ act(η), then by Lemma 42 it follows that η |= ϕ[ ].

— if ϕ ∈ act(η), then by Definition 38 it follows that η−[ ] |= ϕ. By contradiction,

assume that η 6|= ϕ[ ]. By Theorem 5, it follows that there exists σ : var(ϕ) →

R(η, ϕ) such that η 6⊳ Aϕ[ ]
(σ, res(η)). Therefore, by Lemma 41(a), we have that

η−[ ] 6⊳ Aϕ(σ, res(η)). By Theorem 5, we finally obtain η−[ ] 6|= ϕ — contradiction.

For the “if” part, we prove the contrapositive. Assume that η is not valid. By Defini-

tion 38, either η′ is not valid, or η−[ ] 6|= ϕ for some ϕ ∈ act(η).

— if η′ is not valid, by the induction hypothesis it follows that η′ 6|= ϕ[ ] for some

ϕ ∈ Φ(η′) = Φ(η). Since all the offending states of ϕ[ ] are sinks, it must also be the

case that η 6|= ϕ[ ].

— if η−[ ] 6|= ϕ for some ϕ ∈ act(η), then by Theorem 5 it follows that there exists

σ : var(ϕ) → R(η, ϕ) such that η−[ ] 6⊳ Aϕ(σ, res(η)). Therefore, by Lemma 41(b), we

have that η 6⊳ Aϕ[ ]
(σ, res(η)). Theorem 5 then implies the thesis η 6|= ϕ[ ].


