

Implementing Adaptive Capabilities on Agents that Act in a Dynamic

Environment

Giuliano Armano
DIEE

Department of Electrical and
Electronic Engineering
University of Cagliari
armano@diee.unica.it

Giancarlo Cherchi
DIEE

Department of Electrical and
Electronic Engineering
University of Cagliari
cherchi@diee.unica.it

Eloisa Vargiu
CRS4

Center for Advanced Studies,
Research and Development

in Sardinia
eloisa@crs4.it

Abstract

Acting in a dynamic environment is a complex task that requires several issues to be investigated. In this paper, a life-
cycle for implementing adaptive capabilities on intelligent agents is proposed, which integrates planning and learning
within a hierarchical framework. The integration between planning and learning is achieved by an agent architecture
explicitly designed for supporting abstraction. Planning is performed by adopting a hierarchical interleaved planning
and execution approach. Learning is performed by exploiting a chunking technique on successful plans. A suitable
feedforward neural network selects relevant chunks used to identify new abstract operators. Due to the dependency
between abstract operators and already-solved planning problems, each agent is able to develop its own abstract layer,
thus achieving an individual adaptation to the given environment.

1. Introduction

Using intelligent agents in applications built to work in real-world domains has introduced several issues to be
investigated; in particular: (i) how to devise a suitable planning strategy able to deal with the underlying complexity,
(ii) how to implement the capability to react promptly to environmental changes, and (iii) how to enable agents to adapt
themselves to the given environment.

An effective approach adopted for dealing with the complexity of the planning task is to build a set of abstractions so
that the search can be controlled by mapping the original search space into new abstract spaces, in which irrelevant details
have been disregarded at different levels of granularity. A hierarchical planner first solves a problem in the most abstract
space and then uses the abstract solution to guide the search in the underlying space. The search proceeds recursively
until a solution is found while searching the ground space.

To give an agent the capability to react to any change in the environment, interleaving planning and execution
monitoring can be adopted (e.g. [1] and [4]). In this way, all events that make the current activity needless or impossible
to be completed can be quickly identified. Furthermore, whenever an agent does not have complete information about its
environment, an early execution of the actions could be used to obtain more information[5].

Self adaptation is a very powerful tool for agents acting in complex environments. In this paper, an adaptive
mechanism that allows an agent to discover abstract operators from successfully solved plans is described. Since planning
is performed exploiting two levels of abstraction (i.e. ground and abstract), an abstract solution can be seen as a sequence
of abstract operators, each embodying a subproblem to be solved by the underlying, ground-level, planner. Any new
abstract operator becomes a candidate for being embedded into the abstract planner for other problems to be solved.

2. A hierarchical adaptive approach for acting in a dynamic environment

A hierarchical interleaving planning and execution approach (HIPE) has been adopted for designing and implementing
agents, which encompasses three main interacting aspects: (i) their underlying architecture and domain knowledge,
(ii) their proactive and reactive capabilities, and (iii) their adaptive behavior.

The proposed architecture is two-pass vertically layered and can be provided with N layers. Each layer exploits a local
knowledge base (KB), and is numbered according to its level of abstraction. All layers are conceptually identical, each
being able to embody in the same way reactive, deliberative and proactive functionality.

We implemented agents provided with two layers (i.e., situated and strategic), each one capable of hosting a
corresponding level of abstraction (i.e., ground and abstract, respectively), and provided with a planner, based on the
UCPOP algorithm [6].

An agent repeatedly performs planning, executes actions, and monitors any change in the environment, both at the
situated and strategic layer. The ground-level planner performs planning on any goal imposed by the abstract-level
planner, so that “executing” an action at the abstract level actually means creating a subgoal to be solved by the ground-
level planner. Plan execution starts as soon as the first abstract operator has been refined. On completion, the next abstract
operator (if any) is refined, according to a depth-first approach (see [2] for further details).

Two main problems arise, concerning the soundness and completeness properties of an abstraction. Here, we are
interested in dealing with a “quasi-sound” abstraction, i.e., with an abstraction in which the near-DRP holds (see [3]). On
the other hand, no a-priori assumptions are made about completeness, except for the fact that it could be asymptotically
obtained by repeatedly adding abstract operators to the planner located at the strategic layer.

To be effective, the proposed HIPE approach requires an adaptive mechanism to be enforced. Here, we propose an
automated mechanism for generating abstract operators (useful for any subsequent search at the abstract level), given an
initial (hand-coded) hierarchical description of the domain, together with a set of already solved problems and their
corresponding solutions. Successful plans are analyzed by the learning algorythm, particularly those for which the
abstract-level planner failed, in search of relevant sequences that could play the role of “supporting macro-operators”
while devising new operators at the abstract level.

2.1. The adaptive behavior life cycle

To identify abstract-operators, a “chunking” technique is exploited, which extracts sequences from successful plans.

Relevant sequences are then identified by a feedforward neural network (FFNN), fed by a vector of suitable metrics
evaluated for each given sequence. The adaptive life-cycle consists of repeatedly performing the following actions:
1. The HIPE planner is activated on the given goal (let us assume that a suitable solution is found and executed).
2. Plan subsequences are randomly extracted from the plan (chunking).
3. Relevant sequences are filtered out by a suitable FFNN. For every sequence, a corresponding vector of metrics is
evaluated, to be used as input to the FFNN.
4. Each sequence deened relevant passes through a schematization process, which creates a corresponding macro-
operator schema (MO). All MOs are temporarily stored in the MOS REPOSITORY.
5. Each MO passes through an abstraction process, which creates a corresponding abstract-operator schema (AO) from
any given MO. For every MO, the AO REPOSITORY is updated
6. When an AO is stored in the AO REPOSITORY, a suitable procedure must be invoked that decides whether or not the AO
has to be added to the set of AOs (actually used by the abstract planner).

3. Experimental results

The system has been implemented as a prototype for a computer game, in which the user plays in a virtual city
populated by different kinds of entities, all implemented by intelligent agents. Players have an agent representative within
the game (i.e., an avatar), which can be given a goal to be attained through a simple graphical interface.

Steps 1 to 5 of the adaptive life-cycle previously described have already been implemented. As for step 6, we are
currently searching for an optimal balance between the augmented capability of solving problems at the abstract level and
the growth of the search complexity due to the higher branching factor.

The FFNN adopted for identifying relevant sequences is composed of an input layer of 7 neurons, together with a
single hidden layer of 3 neurons, and has been trained with sequences extracted from a successful plan generated by the
HIPE planner. A threshold µA has been used to separate relevant sequences from non-relevant ones and about 97% of the
training sequences have been recognized as belonging to their proper class. The test set we used has been taken from
typical virtual world situations. The FFNN identified several sequences (all considered relevant) useful for abstraction
and not yet obtained as a refinement of an existing abstract operator. Starting from these sequences, new abstract-operator
candidates have been successfully generated by the system.

4. Conclusions and future work

In this paper, a first step towards agents that can develop an adaptive behavior has been performed. The adaptive life-
cycle, integrated within a hierarchical interleaving planning and execution approach, is driven by the given environment
and by the history of problems that have been submitted to each agent.

As for future work, we are testing the potential of domain ontologies for integrating planning and learning within a
unifying framework. Furthermore, we are investigating how to automatically assess when a candidate abstract operator
can be embodied in the set of active abstract operators.

References

[1] J. A. Ambros-Ingerson, and S. Steel, “Integrating Planning, Execution and Monitoring”, Proc. of the 7th National Conference on
Artificial Intelligence. 1988, pp. 83-88.
[2] G. Armano, and E. Vargiu, “An Adaptive Approach for Planning in Dynamic Environments”, 2001 International Conference on
Artificial Intelligence, IC-AI 2001, Special Session on Learning and Adapting in AI Planning, Las Vegas, Nevada, June 25-28, 2001,
pp. 987-993.
[3] F. Bacchus, and Q. Yang, “Downward Refinement and the Efficiency of Hierarchical Problem Solving”, Artificial Intelligence, Vol.
71(1), 1994, pp. 41-100.
[4] K. Z. Haigh and M. Veloso, “Interleaving Planning and Robot Execution for Asynchronous User Requests”, Autonomous Robots,
Vol. 5(1), March 1998, pp. 79-95.
[5] I. Nourbakhsh, Interleaving Planning and Execution for Autonomous Robots, Kluwer Academic Publishers, 1997.
[6] D. Weld, “An Introduction to Least Commitment Planning”, AI Magazine, 1994, pp. 27-61.

