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Abstract 
 

Acting in a dynamic environment is a complex task that requires several issues to be investigated. In this paper, a life-
cycle for implementing adaptive capabilities on intelligent agents is proposed, which integrates planning and learning 
within a hierarchical framework. The integration between planning and learning is achieved by an agent architecture 
explicitly designed for supporting abstraction. Planning is performed by adopting a hierarchical interleaved planning 
and execution approach. Learning is performed by exploiting a chunking technique on successful plans. A suitable 
feedforward neural network selects relevant chunks used to identify new abstract operators. Due to the dependency 
between abstract operators and already-solved planning problems, each agent is able to develop its own abstract layer, 
thus achieving an individual adaptation to the given environment. 
 
 

1. Introduction 
 

Using intelligent agents in applications built to work in real-world domains has introduced several issues to be 
investigated; in particular: (i) how to devise a suitable planning strategy able to deal with the underlying complexity, 
(ii) how to implement the capability to react promptly to environmental changes, and (iii) how to enable agents to adapt 
themselves to the given environment. 

An effective approach adopted for dealing with the complexity of the planning task is to build a set of abstractions so 
that the search can be controlled by mapping the original search space into new abstract spaces, in which irrelevant details 
have been disregarded at different levels of granularity. A hierarchical planner first solves a problem in the most abstract 
space and then uses the abstract solution to guide the search in the underlying space. The search proceeds recursively 
until a solution is found while searching the ground space. 

To give an agent the capability to react to any change in the environment, interleaving planning and execution 
monitoring can be adopted (e.g. [1] and [4]). In this way, all events that make the current activity needless or impossible 
to be completed can be quickly identified. Furthermore, whenever an agent does not have complete information about its 
environment, an early execution of the actions could be used to obtain more information[5]. 

Self adaptation is a very powerful tool for agents acting in complex environments. In this paper, an adaptive 
mechanism that allows an agent to discover abstract operators from successfully solved plans is described. Since planning 
is performed exploiting two levels of abstraction (i.e. ground and abstract), an abstract solution can be seen as a sequence 
of abstract operators, each embodying a subproblem to be solved by the underlying, ground-level, planner. Any new 
abstract operator becomes a candidate for being embedded into the abstract planner for other  problems to be solved.  

 

2. A hierarchical adaptive approach for acting in a dynamic environment 
 

A hierarchical interleaving planning and execution approach (HIPE) has been adopted for designing and implementing 
agents, which encompasses three main interacting aspects: (i) their underlying architecture and domain knowledge, 
(ii) their proactive and reactive capabilities, and (iii) their adaptive behavior. 



The proposed architecture is two-pass vertically layered and can be provided with N layers. Each layer exploits a local 
knowledge base (KB), and is numbered according to its level of abstraction. All layers are conceptually identical, each 
being able to embody in the same way reactive, deliberative and proactive functionality.  

We implemented agents provided with two layers (i.e., situated and strategic), each one capable of hosting a 
corresponding level of abstraction (i.e., ground and abstract, respectively), and provided with a planner, based on the 
UCPOP algorithm [6]. 

An agent repeatedly performs planning, executes actions, and monitors any change in the environment, both at the 
situated and strategic layer. The ground-level planner performs planning on any goal imposed by the abstract-level 
planner, so that “executing” an action at the abstract level actually means creating a subgoal to be solved by the ground-
level planner. Plan execution starts as soon as the first abstract operator has been refined. On completion, the next abstract 
operator (if any) is refined, according to a depth-first approach (see [2] for further details).  

Two main problems arise, concerning the soundness and completeness properties of an abstraction. Here, we are 
interested in dealing with a “quasi-sound” abstraction, i.e., with an abstraction in which the near-DRP holds (see [3]). On 
the other hand, no a-priori assumptions are made about completeness, except for the fact that it could be asymptotically 
obtained by repeatedly adding abstract operators to the planner located at the strategic layer. 

To be effective, the proposed HIPE approach requires an adaptive mechanism to be enforced. Here, we propose an 
automated mechanism for generating abstract operators (useful for any subsequent search at the abstract level), given an 
initial (hand-coded) hierarchical description of the domain, together with a set of already solved problems and their 
corresponding solutions. Successful plans are analyzed by the learning algorythm, particularly those for which the 
abstract-level planner failed, in search of relevant sequences that could play the role of “supporting macro-operators” 
while devising new operators at the abstract level.  

 
2.1. The adaptive behavior life cycle 

 
To identify abstract-operators, a “chunking” technique is exploited, which extracts sequences from successful plans. 

Relevant sequences are then identified by a feedforward neural network (FFNN), fed by a vector of suitable metrics 
evaluated for each given sequence. The adaptive life-cycle consists of repeatedly performing the following actions: 
1. The HIPE planner is activated on the given goal (let us assume that a suitable solution is found and executed). 
2. Plan subsequences are randomly extracted from the plan (chunking). 
3. Relevant sequences are filtered out by a suitable FFNN. For every sequence, a corresponding vector of metrics is 
evaluated, to be used as input to the FFNN. 
4. Each sequence deened relevant passes through a schematization process, which creates a corresponding macro-
operator schema (MO). All MOs are temporarily stored in the MOS REPOSITORY. 
5. Each MO passes through an abstraction process, which creates a corresponding abstract-operator schema (AO) from 
any given MO. For every MO, the AO REPOSITORY is updated  
6. When an AO is stored in the AO REPOSITORY, a suitable procedure must be invoked that decides whether or not the AO 
has to be added to the set of AOs (actually used by the abstract planner). 
 
3. Experimental results 
 

The system has been implemented as a prototype for a computer game, in which the user plays in a virtual city 
populated by different kinds of entities, all implemented by intelligent agents. Players have an agent representative within 
the game (i.e., an avatar), which can be given a goal to be attained through a simple graphical interface.  

Steps 1 to 5 of the adaptive life-cycle previously described have already been implemented. As for step 6, we are 
currently searching for an optimal balance between the augmented capability of solving problems at the abstract level and 
the growth of the search complexity due to the higher branching factor. 

The FFNN adopted for identifying relevant sequences is composed of an input layer of 7 neurons, together with a 
single hidden layer of 3 neurons, and has been trained with sequences extracted from a successful plan generated by the 
HIPE planner. A threshold µA has been used to separate relevant sequences from non-relevant ones and about 97% of the 
training sequences have been recognized as belonging to their proper class.  The test set we used has been taken from 
typical virtual world situations. The FFNN identified several sequences (all considered relevant) useful for abstraction 
and not yet obtained as a refinement of an existing abstract operator. Starting from these sequences, new abstract-operator 
candidates have been successfully generated by the system.  
 



4. Conclusions and future work 
 

In this paper, a first step towards agents that can develop an adaptive behavior has been performed. The adaptive life-
cycle, integrated within a hierarchical interleaving planning and execution approach, is driven by the given environment 
and by the history of problems that have been submitted to each agent. 

As for future work, we are testing the potential of domain ontologies for integrating planning and learning within a 
unifying framework. Furthermore, we are investigating how to automatically assess when a candidate abstract operator 
can be embodied in the set of active abstract operators. 
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