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Abstract

Questo articolo illustra brevemente un’architettura per implementare agenti autonomi intelligenti
che agiscono in un mondo virtuale creato per un videogioco e possono interagire con esso tramite
operazioni di pianificazione in un ambiente dinamico e non completamente osservabile. In
particolare, è in corso di sviluppo un’architettura ad agenti di tipo verticale, progettata per
consentire agli agenti di interagire con un ambiente complesso. Tale architettura si basa su tre
livelli di astrazione (situato, strategico e deliberativo), ma è stata progettata per essere facilmente
generalizzata ad N livelli, in funzione dell’ambiente operativo e della complessità degli obiettivi da
raggiungere. Ciascun livello controlla il sottostante, in modo tale che il comportamento dell’agente
sia governato da una chiara organizzazione gerarchica.

This paper briefly describes an architecture for implementing intelligent autonomous agents that
“live” in a virtual world created for a computer game, and must interact with it by suitably planning
and executing in a dynamic and not-completely accessible environment. In particular, we are
currently working on a two-pass vertically layered architecture, designed to deal with a complex
environment. Such an architecture is currently based on three levels of abstraction (i.e., situated,
strategic and deliberative), but has been designed for being easily generalized to a N-levels
architecture, depending on the given environment and task complexity. Each layer controls the
underlying one, so that an agent behavior is supported by a clean hierarchical organization.

1. Introduction

In the last few years, AI researchers have concentrated their efforts in the field of intelligent
autonomous agents, i.e., on systems capable of autonomous sensing, reasoning and acting in a complex
environment. As in this paper we are mainly concerned about architectures, let us briefly recall that an
agent architecture is essentially a map of the internals of an agent (i.e., its data structures, the operations
that may be performed on them, and the corresponding control flows [Woo 99]).  Among different kinds of
architectures (see, for example: [Lés 96], [Bar 89], [Fis 94], [Bro 86], [Mae 90], [Agr 96], [Bra 88], [Geo 87],
[Fer 92], [Mul 97]), we are interested in layered ones. In horizontally layered architectures, each software
layer is directly connected to the sensory inputs and action outputs. A great advantage of horizontally



layered architectures is their conceptual simplicity; however, because the layers are competing with one-
another, there is the possibility that the overall behavior of the agent will become incoherent. In order to
ensure consistency, horizontally layered architectures include a mediator function, devoted to select the
layer to be activated. An example of horizontally layered architecture is TOURINGMACHINES [Fer 92]. As far
as vertically layered architectures are concerned, decision making is realized via various software layers,
each of which is devoted to deal with the environment at different levels of abstractions. In particular, in
two-pass vertically layered architectures, information flows up until a layer able to deal with the received
stimulus is reached, and then the control flows back to the actuators (e.g., INTERRAP [Mul 97]).

In this paper, we briefly illustrate a two-pass vertically layered architecture that exhibits planning
capabilities in an environment whose complexity is comparable to the one that characterizes the real
world. In the next section, a basic introduction to the problems related with planning in dynamic and not-
completely accessible environments is given. In section 3, the proposed architecture is sketched and
briefly compared with other layered approaches. In section 4, experimental results are discussed, together
with an example that highlights how an agent finds solutions of planning problems according to different
levels of abstraction. In section 5, conclusions are drawn and future work is pointed out.

2. Planning in Complex Environments

It is well known that the AI planning community has greatly promoted innovations in agents’ design,
and that planning capabilities are one of the most important features to be implemented in an autonomous
agent. In particular, the introduction of intelligent autonomous agents has promoted investigations on
planning algorithms with the aim of using them in real-world domains. To this end, it is worth pointing out
that a relaxation of all the simplifying assumptions made by classical planners about their working

Level 1

Level  2

Level 3

inputsactions

situated

KB

KB

KB

Control

strategic

deliberative

Information

Fig. 1– A three-layers, two-pass, vertical architecture.



environment has to be made. In particular, atomic actions, deterministic effects, accessibility, and static
environment are simplifying hypotheses that no longer hold for real-world domains (see, for example,
[Wel 94] and [Nar 98] for a discussion on this topic). In fact, a real-world domain is usually (i) not-
completely controllable, i.e., an agent does not have complete control over its actions, (ii) not-completely
accessible, i.e., it is impossible for an agent to have complete knowledge about the underlying
environment, and (iii) dynamic, i.e., the presence of other agents, or exogenous events can modify the
underlying environment. In the following, for the sake of simplicity, we will characterize as “complex” an
environment that exhibits such characteristics. To deal with a complex environment, several extensions of
classical planning algorithms have been proposed. Such extensions can be classified according to several
features, thus giving rise to different classification hierarchies. In our opinion, complex domains need to
point out how a planning agent adapts a plan to the changes occurred in its operating environment while
trying to attain a goal. To this end, one may try to deal with any change from an “open-loop” perspective,
or else to accept the possibility of adopting a “closed-loop” approach based on re-planning.

Contingency planners represent a typical example of the former approach, whose underlying strategy
consists of handling off-line any source of uncertainty (see, for example, WARPLAN-C [War 76], CNLP
[Peo 92]). As far as the latter approach is concerned, let us recall that the integration of planning and
execution can lead to powerful control strategies (see, for example, [Nou 97]). Of course, a plan is
updated only whenever a change in the environment makes it obsolete. The underlying hypothesis is that
such a kind of planners should be able to recover from any unexpected environmental change.

The planning capabilities of the proposed architecture allow an agent to operate in a complex
environment while exploiting a “closed-loop” approach based on local re-planning. The search complexity
is controlled by allowing an agent to make plans at different levels of abstraction. In this way, only part of
the original plan must be modified according to a change of the environment.

3. A Three-Layers Vertical Architecture

We are currently implementing a two-pass vertically layered architecture equipped with three layers,
i.e., situated, strategic and deliberative (see figure 1). Each layer is numbered according to its level of
abstraction (1, 2, and 3, respectively). Thus, level 3 is more abstract than level 2, and so on. It is worth
pointing out in advance that the proposed architecture is completely scalable; in fact, it might be easily
equipped with N layers, depending on the environment complexity. Furthermore, whereas in classical
layered architectures each level is usually devoted to cope with different behavioral characteristics, in the
proposed architecture each layer is –at least conceptually– identical to any other one, each of them being
able to embody reactive, deliberative and proactive functionality (see figure 2). Only the “responsibilities”
of a layer change radically, depending on the level of abstraction being considered. According to the
features that characterize a two-pass vertically layered architecture, the information flows from level 1 up
to level 3, whereas the control flows from level 3 down to level 1. Thus, an agent that receives an input
from its environment lets the information flow until a suitable layer able to deal with it is found. Then, the
reactive module is devoted to decide whether or not the current activity has to be continued or aborted. In
the latter case, the deliberative module is devoted to set a new goal, depending on the nature of the input.

Now, let us focus our attention on the hierarchical planning process, with the aim of explaining how
agents are able to solve difficult tasks in a complex environment. As expected, plan generation is
performed on different layers, each one equipped with a suitable planner. Each planner is allowed to use
only the operators available at the corresponding level. It is worth pointing out that, whereas typical
hierarchical planners use a fixed (a priori) decomposition strategy (e.g., HTN  [Ero 94], ABSTRIPS [Kno 91]),
in the proposed architecture, the decomposition is performed at runtime and distributed on several layers.



Each layer is devoted to perform a (local) planning on any goal imposed by its overlying planner (if any), or
to perform a re-planning activity, if needed. Thus, a goal to be attained at level K enforces other goals (i.e.,
plans) on the underlying K-1 levels. That is why, an abstract operator defined for a given layer may hide a
complex plan on the underlying layer. As agents generate hierarchical plans, a complex plan can be easily
adapted in response to any unpredictable event occurred while executing it; in this way any re-planning
activity requires only a local search at the proper level of abstraction.

As far as predicates and operators are concerned, it is well known that hierarchical planning can be
done by abstracting over predicates or over operators, both mechanisms being successfully used to
reduce the computational complexity of the search ([Kno 92]). We adopted a three-level hierarchy of
predicates, according to the layers that make up the current release of the proposed architecture.
Predicates can be ground or abstract, depending on their allocation. Only predicates defined at level 1 are
ground, whereas every abstract predicate is defined on top of other predicates (the visibility of level K
being strictly reduced to level K-1). Moreover, each layer has its own set of operators that can be
managed by the corresponding planning module. Operators can be ground or abstract, and are defined
according to a STRIPS-like syntax (we prefer to use the term “ground”, instead of “atomic”, to stress the fact
that considering operators no further decomposable is only a convention). Note that, our abstraction
hierarchy is not generated by dropping literals from the original problem definition. In this sense, our
abstract operators are more similar to HTN  compound tasks than to abstraction hierarchies described in
ABSTRIPS. On the other hand, operator expansion is similar to the one performed in ABSTRIPS.
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Fig. 2 – The internal structure of a layer.



It is worth pointing out that there is no need of generating a completely detailed plan before starting
execution; in fact, execution starts when the first situated plan has been generated (as an expansion of the
abstract operator that starts the plan at the strategic level). In this way, a plan is progressively generated
and executed in an interleaved way. The general form of a layered plan is shown in figure 3 (for the sake
of simplicity, the deliberative layer has been only sketched). This strategy allows an agent to elaborate a
plan in small “chunks”, whose detailed representation can be deferred until actually needed. In this way, a
complex task can be started even though only a minimal part of the entire plan has been generated,
thanks to the adopted “closed-loop” planning strategy. Note that, if a plan at the situated level fails, local
re-planning is attempted; if no solution is found, the failure is notified to the upper (strategic) level, where
local re-planning is attempted at a higher level of abstraction, and so on. The adopted strategy (which falls
into the category of Interleaved Planning and Execution), exploits the architecture by moving any event
that cannot be handled by the current layer up to the next (more abstract) one. In this way, local re-
planning can be used as a general mechanism to deal with unexpected events, without being always
compelled to start a global re-planning activity.

Moreover, in such a process an agent does not need to have a complete knowledge of all the
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information required to successfully complete the whole plan: thanks to the interleaved strategy that has
been implemented, during plan execution it can gather the information required to expand in the proper
way abstract operators.

4. Experimental Results

The proposed architecture has been developed for an ongoing project aimed at developing a computer
game. The game lets the user play within a virtual world populated by two different kinds of entities, i.e.,
physical and network “avatars” (see figure 4). The former ones represent inhabitants of the virtual world,
whereas the latter ones (e.g., computer viruses) live within a virtual computer network, very similar to
Internet. A prototype of the system has already been implemented, using CLOS as a target language for
the sake of rapid prototyping. The current release is aimed at giving avatars planning capabilities able to
cope with the complex environment that characterizes the game. In particular, physical avatars must be
able to move within the virtual world and to interact with its objects. Moreover, they must be able to exploit
the capabilities of the underlying virtual computer network, to send and receive information. As already
pointed out, agents are able to deal with a given problem at different levels of abstraction. For each layer,
actions schemata are suitably represented according to a STRIPS-like syntax. Planning results from the
interaction among the planners located at different layers of the architecture, and the behavior of each

Fig. 4 - A sample of the virtual environment where physical avatars “live”.



planner follows a UCPOP-like strategy ([Pen 92]).
The main difference among the domains defined at different layers (see figures 5 and 6) is the

abstraction adopted to represent an agent behavior and knowledge. For example, the (goto ?l1 ?l2) action
–strategic level– requires, as a precondition, that the agent must be near to the starting location
(is-near ?l1). The post-condition (effect) is that the agent must be near to its destination (is-near ?l2). The
is-near predicate becomes more detailed at the situated level, where it is expanded as
(:or (next-to ?l1) (inside ?l1)), the or being resolved at runtime.

Let us consider, now, the following sample problem: “an agent is located inside a building connected to
the network. Its goal is to retrieve a file located in another building (not connected to the network), and to
send it to the mailbox of its corresponding player”. To solve the problem at the strategic level the agent
must (i) go to the physical location where the file is located, (ii) get the file, (iii) return to the initial building
and (iv) send the file by email. Of course, the goal that must be attained at the strategic level is set by the
deliberative level. After that, a backward search is started that carries out the creation of a plan at the
strategic level.

The actions of the strategic level are abstract operators that need to be further expanded at the
situated level. For example, the strategic operator goto originates a planning problem at the situated level,

(define (domain file-world-1)

  (:operator move
   :parameters ((Pl ?l1) (Pl ?l2))
   :precondition (:and (next-to ?l1) (:neq ?l1 ?l2))
   :effect (:and (next-to ?l2)(:not (next-to ?l1))))

  (:operator take-file
    :parameters ((file ?f) (PL ?l))
    :precondition (:and (located ?f ?l) (inside ?l))
    :effect (own ?f))

  (:operator insert-file
    :parameters ((file ?f) (PL ?l))
    :precondition (:and (own ?f) (inside ?l))
    :effect (located ?f ?l))

  (:operator upload-file
    :parameters ((file ?f) (PL ?l) (TL ?t))
    :precondition (:and (inside ?l) (connected ?l) (located ?f ?l))
    :effect (available ?f ?t))

  (:operator open-door
    :parameters ((door ?d) (tool ?t))
    :precondition (:and (own ?t)(closed ?d))
    :effect (opened ?d))

  ...

) ; end domain file-world-1

Fig. 5 – A sample of operators defined at the situated level.



which is solved by using the situated operators open-door, go-outside, and move. The latter operators are
to be considered ground and are implemented by suitable actions that act on (and modify) the underlying
virtual environment (see figure 7).

5. Conclusions and Future Work

In this paper, a two-pass vertically layered architecture for implementing autonomous planning agents
has been briefly outlined. In fact, a layered architecture, able to efficiently implement an interleaved
planning and execution strategy, appears to be a suitable solution for solving those problems that arise
from the complex environment that hosts agents. In fact, agents must implement “avatars” acting in a
virtual world created for a computer game. Within such a “simulated” world, a (virtual) computer network is
also available, to give avatars the capability of performing typical actions allowed on Internet (telnet, ftp,
etc.). Network-based entities (e.g., computer viruses and hacking tools) are implemented using agents,
too.

The main mechanism that allows agents to interact with such a world is an interleaved iteration of
planning and execution. Currently, three levels of abstraction (i.e., situated, strategic and deliberative),
have been implemented, although a N-levels architecture is also feasible, depending on the given

(define (domain file-world-2)

  (:operator goto
    :parameters ((PL ?l1) (PL ?l2))
    :precondition (:and (:neq ?l1 ?l2)(is-near ?l1))
    :effect (:and (is-near ?l2) (:not (is-near ?l1))))

  (:operator put-file
    :parameters ((file ?f) (PL ?l))
    :precondition (:and (own ?f) (is-near ?l))
    :effect (located ?f ?l))

  (:operator get-file
    :parameters ((file ?f) (PL ?l))
    :precondition (:and (located ?f ?l) (is-near ?l))
    :effect (own ?f))

  (:operator receive-file
    :parameters ((file ?f) (PL ?l) (TL ?t))
    :precondition (:and (is-near ?l) (connected ?l) (available ?f ?t))
    :effect (located ?f ?l))

  (:operator send-file
    :parameters ((file ?f) (PL ?l) (TL ?t))
    :precondition (:and (is-near ?l) (connected ?l) (located ?f ?l))
    :effect (available ?f ?t)))

  ...

) ; end domain file-world-2

Fig. 6 - A sample of operators defined at the strategic level.



environment and task complexity. Each level controls the underlying one, so that an agent behavior is
supported by a clean hierarchical organization.

As far as future work is concerned, we are currently studying the problem of giving agents the
capability of learning abstract operators by examining their own plans. Furthermore, complexity issues,
aimed at characterizing re-planning activities according to the hypotheses made about the underlying
dynamic environment, are currently under study.
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