I mplementing Autonomous Reactive Agents by Using Active Objects

Giuliano Armano

DIEE
Dipartimento di Ingegneria Elettrica ed
Elettronica,
University of Cagliari, Piazza d’ Armi, 1-09123,
Cagliari, Italy,

email: armano@diee.unica.it

Abstract

This paper briefly outlines the main characterigtics of an
ongoing research aimed at developing a support library for
implementing systems based on autonomous agents. The library
is built upon active objects, whose concurrent behavior is
disciplined -for each controlled object- by a corresponding
controller, according to the dictate of aspect-oriented
programming. So far, we implemented a preliminary release of
the library, with initial operational capabilities in particular,
agents are able to exhibit only a reactive behavior. To thisend, a
suitable architecture has been defined that embodies four
ubsysterns, each one being able to deal with a different aspect:
social ability, communication, behavior, and task execution.
Agents interaction and communication is performed according
to the standard FIPA ACL. CLOS (Common Lisp Object System)
has been adopted as the target language for implementing the
library, according to the condraints imposed by an ongoing
project, and for the sake of rapid prototyping.

1. Introduction

In the last few years, agents have been proposed as a
new promising and pervasive technology (see, for
example, [1], [2], [3], [4]). Interactions among agents
typically are performed according to standardized
protocols, which alow them to communicate, collaborate
and negotiate within a common environment. Moreover,
from a software engineering perspective, agents could be
seen as a further improvement in software development
technology [5], possibly aimed at replacing objects and
components in complex software architectures, in
particular when requirements are rapidly shifting over time.

ElosaVagiu
CR+A
Centro Ricerche e Sviluppo Studi Superiori
Sardegna,
VI Srada OVEST Z.1. Macchiareddu 1-09010
UTA (CA), Italy
email: eloisa@crsA.it

Object-oriented programming is apparently the most
appropriate technology to be used for implementing
agents, although there are differences between objects
and agents that should be pointed out in advance. The
first oneliesin the degree to which agents and objects are
autonomous. An object can be thought of as being
autonomous over its state, not over its behavior. The
second one lies in the fact that the standard object model
does not exhibit a flexible and autonomous behavior, while
agents do.

In this paper we describe a support library for
developing agent-oriented systems built upon active
objects. It is worth pointing out that active objects are
needed to give agents the capability of having their own
thread of control. Nevertheless, in our opinion, an agent
cannot be characterized by a unique active object, as an
autonomous agent must be able to dea with
communication, autonomy, and flexible behavior. To put
together all these features, we deem that an agent has to
be implemented as a set of collaborating active objects. In
fact, an agent should embody (at least) the following
interacting subsystems: social ability, communication,
behavior, and task-execution. After discussing such basic
issues, we will briefly outline the main features of the
library we implemented as a support for building
“agent-oriented” systems. CLOS (Common Lisp Object
System) has been selected as the target programming
language, according to the constraints imposed by an
ongoing project, and for the sake of rapid prototyping.



2. Concurrent
Objects

Programming and Active

Object-oriented programming (OOP) has been
presented as a technology that can greatly improve
software-engineering activities, as the object model
provides a better fit with real domain problems.
Nevertheless, there are many problems where OOP
techniques are not sufficient to capture all those important
design decisions a complex system must implement. In
particular, synchronization problems always arise while
trying to give a system the capability of executing
concurrent threads. To solve these problems, one must be
able to exploit additional programming constructs, able to
ensure synchronization. According to[6], synchronization
may be associated with objects and with their
communication means (i.e.,, message passing) through
various sub-levels of identification. Message passing, in a
concurrent  environment, requires  synchronization
between sender and receiver, as the classical blocking
policy cannot exploit the capabilities offered by a
concurrent environment. That iswhy, some asynchronous
types of transmission must be defined; e.g. “future”,
“past”, together with the classical one (i.e. “present”) [7].
In fact, object-oriented synchronization schemes can be
derived from classical concurrent programming, and a
general distinction can still be made depending on
whether synchronization specifications are centralized or
not. Such constructs, however, suffer from several
characterizing drawbacks; e.g., the “inheritance anomaly”
[8] and the so-called “code tangling” problem [9].
Solutions to the former problem have been proposed by
[10], [11], and [12], whereas the latter could be faced by
adopting an approach that separates synchronization
issues from operational issues, according to the proposal
of [9)].

We decided to adopt a synchronization policy that
hel ps avoiding the code-tangling problem. To this end, we
enforced a clean separation between a method body and
the constructs needed to perform synchronization. In
particular, for each object to be synchronized, a separate
object is used (as a controller) to take care of any aspect
related with thread and concurrency control. We
implemented each active object by actually using a pair of
objects, i.e.,, a controlled and a controller object. The
former is responsible for performing exported operations,
whereas the latter is devoted to deal with any
synchronization-related issue. In this way, the problem of
dealing with the inheritance anomaly can be suitably faced
adopting a solution based on guards (conceptually, a
suitable guard -whose semantics is kept separated from

the method body itself- embodies each synchronized
method).

3. From Active Objectsto Autonomous Agents

According to [13], active objects can be considered as
the basic structure for building agents. In fact, an active
object offers a basic autonomy level, characterized by its
reactive behavior. * In its simplest form, an agent could be
implemented as an active object. Nevertheless, although
the concept of active object provides some degree of
autonomy (as, to be activated, it does not rely on some
external resources), its behavior still remain procedural in
reaction to message requests.

On the other hand, agent activities are not limited to
receiving and sending messages. To be autonomous,
agents must be able to repeatedly perform a number of
operations without external intervention. To make the
difference between active objects and autonomous agent
clearer, we will quickly summarize some agents
characteristics, not provided by active objects:

= an agent may exhibit several behaviors, that can be
further decomposed into several elementary ones,

= an agent exhibits several kinds of responsibilities;
from simple computations to various reasoning
capabilities (some agent behaviors must incorporate
Al structures, to integrate a representation formalism
and areasoning mechanism);

= an agent must be able to interact with other agents,
thus exhibiting a proper social ability.

Let us consider, in greater detail, the above problems
from abehavioral and a communication perspective.

3.1. Behavior

A distinguishing property of an agent is its autonomy.
To model complex systems, agents need to combine
cognitive abilities to reason about complex situations, and
reactive abilities to meet deadlines. Therefore an agent
may have two kinds of behaviors: () reactive, i.e., based
on stimuli-response, and (ii) deliberative, i.e., cognitive.

A reactive agent has only a collection of simple
computing schemata, used to react on the environment’s

LoAn object is reactive in the sense that it reacts to events

consisting of incoming messages. In fact, at least conceptualy,
the only way to activate an object is by sending a message to it.



change. Thus, it acquires information about the
underlying world only by means of its sensors. On the
contrary, a deliberative agent has an explicit symbolic
representation of the world it has to interact with, in order
to take decisions about the action to perform, in a
“rational” way.

3.2. Communication

A community of agents is built upon a set of
autonomous entities showing communication and
cooperation capabilities. To this end, three important
questions arise:

=  how to adopt a common protocol to implement agents
interaction;

= how to conceive a common communication language
that they will be able to understand,;

= how to find an agreement on the list of terms that can
be used in the content of a message (and on their
meaning).

To give aresponse to all above questions, we need a
communication language that allows one to specify, (as
the standard FIPA ACL does [14]) encoding, semantics
and pragmatics of messages. Since, since different agents
might run on different platforms and use different
networking technologies, FIPA specifies that the
messages transported between platforms should be
encoded in atextual form.

4. Theagentslibrary

First, we implemented active objects, built in
accordance with the dictate of aspect-oriented
programming. Then, we started developing a support
library, devoted to provide facilities for developing
agent-oriented systems. It is worth pointing out that we
were not interested in building an environment for
agent-oriented programming; that is why, we decided to
implement only asupport library. Nevertheless, this choice
does not rule out the possibility of customizing CLOS (at
the meta-level); thus giving it the capability of interpreting
LISP-like declarations devoted to cope with agents-related
structures, policies and mechanisms at a higher level of
abstraction.

A preliminary release of the support library has been
implemented, with initial operational capabilities that allow
building systems of reactive agents. The underlying
architecture is a modified version of the classical one,

described in [15]. The library will be used within an
ongoing project aimed at developing a computer game
(mainly in C++). The game lets the user play within a
virtual city populated by two different kinds of entities,
i.e., physical and network “avatars’. Whereas the former
ones represent virtual inhabitants, the latter ones live
within avirtual computer network (e.g., computer viruses).
The first release of the library has been devoted to
implement network avatars with a reactive behavior. A
prototype of the system has already been implemented,
using CLOS as a target language for the sake of rapid
prototyping. The second release will be concerned on
giving avatars full autonomous capabilities, i.e., planning,
reasoning, and learning capabilities. As far as planning is
concerned, we are currently defining an extension of the
UCPOP planner. Considering that UCPOP is written in
LISP, and that PDDL (i.e.,, the defacto standard for
expressing the domain knowledge for planning a gorithms)
hasaLISP-like syntax, we decided to keep using CLOS as
atarget language. A suitable DLL will be used to integrate
the CLOS code within the C++ code.

4.1. Implementing Active Objects

We decided to implement active objects as a pair of
separate, but strictly interconnected, units (i.e., a
controlling and a controlled object). Any controlled unit
must implement the abstract class Synchroni zed,
whereas its controller must implement the abstract class
ProcessControl | er (see Figure 1). The core of the
synchronization model is the class
ProcessControl |l er that contains a semaphore
mut ex that ensures mutual exclusion, and two methods;
i.e,test andnoti fy. The controlled object is equipped
with an input and an output queue, devoted to deal with
incoming and outgoing messages, respectively. The
controlled object is made active by associating a process
toit.

ProcessController Synchronized

ActiveObjectController ActiveObject

Fig. 1 - The architecture of an active object.



When a synchronized method is invoked, a check on
method-entry is performed, so that the underlying method
body can be executed only when an appropriate guard
evaluates to true. On method exit, a notification is
performed, to inform all listeners that a concurrent thread
of control has been completed. It is worth pointing out
that the above check and notification do not need to be
explicitly asserted within the method body because
appl y- generi ¢ has been suitably redefined, in order
to provide synchronization capabilities at the CLOS
meta-level.

4.2. Implementing  Autonomous
Agents

(Reactive)

Basically, to define a reactive architecture, one must
provide atask-execution and a selection mechanism.

The former is typicaly realized through a set of
behavior modules, continuously taking perceptual inputs
and mapping them to an action to perform. Each of these
behavior modules is intended to achieve some particular
task. On the other hand, the latter usually relies on a set of
precedence rules that establish a total order among all
available behaviors. In this way, although several
behaviors may be “fired” simultaneously, a mechanism
able to choose among the different suggested actions is
given.

== - T s s s mm 1

| Fipa compliant '

1 1

1 Communication Supervisor 1| Behavior Supervisor
1 1

1 Social Ability Social Ability /IJ\ Behavior Behavior
1 Controller Handler NV Controller Handler
1 1

1 1

1 1

1 1

1 1

| at |

1 1

: Communication Server : Behavior Server

1 1

: Communication Communication :

I Controller Handler '

1 1 Object
1 1

1 1

1 1

e e e — = A m————— 1

ACL Interface

Fig. 2 — The proposed architecture for implementing
reactive agents.

From our point of view, a reactive agent is an entity
that encompasses four distinct subsystems, that embody

behavioral and communication capabilities (see Figure 2).
In particular:

1. the Behavior Supervisor is devoted to handle the
switching among different behaviors;

2. the Behavior Server embodies the objects that
actually perform operations;

3. the Communication Supervisor is devoted to handle
the cooperation between agents;

4. the Communication Server is devoted to handle the
interactions with other agents according to the
standard FIPA ACL.

4.3. Behavior Super visor

The behavior supervisor handles the reactive behavior
of the agent, and is implemented using an active object.
Its components are instances that implement the classes
Behavi or Control l er and Behavi or Handl er,
respectively. To specialize a behavior supervisor the
above classes must be suitably derived.

The behavior supervisor decides what actions are to be
performed and, in case of conflicts, it chooses the most
suitable one, according to the precedence rules that have
been specified on available actions. After consulting the
causal constraints (i.e., precedence rules) that hold among
actions, and after selecting an action to be performed, the
behavior supervisor sends a request to the behavior
server. When an agent must interact with other agents, the
behavior supervisor exploit the communication supervisor
capabilities; in particular, the latter decides what kind of
ACL interaction policy hasto be adopted.

4.4, Behavior Server

The behavior server collects the whole functionality
embodied by the agent as a collection of objects. Here,
objects can be active or passive, depending on the
underlying need for synchronization.

The behavior server interacts only with the behavior
supervisor. When the latter must perform an action, it
sends a request to the former. The behavior server
embodies a collection of objects, each one being able to
perform al “atomic” actions provided by the
corresponding agent.



4.5. Communication Supervisor

The communication supervisor handles the agent
interaction policies (i.e, its socia ability), and is
implemented using an active object. The components of
the communication supervisor are instances that
implement the classes Soci al AbilityController
and Soci al AbilityHandl er, respectively. To
specialize the behavior of a communication supervisor, the
above classes must be suitably derived.

After choosing the type of interaction to be adopted
(e.g., using a broker, adopting a given kind of streaming,
etc.), the communication supervisor delegates the
communication server to actualy perform the
communication according to the standard imposed by
FIPA ACL.

4.6. Communication Server

The communication server handles FIPA  ACL
performatives, and is implemented using an active object.
The components of the communication server are
instances that implement the classes
Conmruni cati onControl | er and
Communi cat i onHandl er, respectively. To speciaize
a communication server the above classes must be
suitably derived.

This server interacts with the communication
supervisor and with the external “agentified” environment.
The communication server receives from the
communication supervisor a request to send a
performative to another agent and vice-versa. In other
words, the communication server acts as a bridge between
the agent and its environment.

5. Conclusions and Future Work

The paper briefly outlines our implementation of a
support library for implementing systems based on
autonomous agents. The library is built upon active
objects, whose concurrent behavior is disciplined -for
each controlled object- by a corresponding controller,
according to the dictate of aspect oriented programming.
So far, agents exhibit only areactive behavior, and are able
to communicate and interact through a subset of the
standard FIPA ACL. Further support facilities, able to
improve the usability and flexibility of the above library,
are still under implementation.

As far as future work is concerned, we are currently
studying the characteristics (and implementation details)
of more complex architectures, such as vertically-layered
architectures (e.g., [17]). In particular, the vertica
architecture we are currently working on is a two-pass
architecture that defines abehavior layer, atwo-tiered plan
layer (that encompasses a strategic and a situated
planner), and a cooperation layer. Mediumterm goal, to be
tackled in the next future, will be giving agents reasoning
and learning capabilities.

6. References

[1]] M. R. Genesereth and S. P. Ketchpel, “Software
agents”, Communications of the ACM, Vol. 37 (7), pp. 48-53,
1994,

[2] N. R. Jennings and M. Wooldridge, “Applying agent
technology”, Applied Artificial Intelligence, Vol. 9(4), pp. 351-
361, 1995.

[3] M. Wooldridge, “Intelligent Agents’, in G. Weiss,
editor, Multiagent Systems. Modern Approach to Distributed
Artificial Intelligence, pp. 1-51, 1999.

[4] G. Weiss, “Multiagent systems: A Modern Approach to
Digtributed Artificial Intelligence’ , 1999.

[5] M. Wooldridge, “Agents and software engineering”,
AlI*IA Notizie, Vol. 11(3), pp. 31-37, 1998.

[6] J-P. Briot, R. Guerraoui and K-P. Lohr, “Concurrency
and Distribution in Object-Oriented Programming”, ACM
Computing Surveys, Vol. 30(3) pp. 291-329, 1998.

[71 A. Yonezawa and M. Tokoro, “ Object-Oriented
Concurrent Programming: An Introduction”, in A.
Yonezawa and M. Tokoro, editors, Object-Oriented
Concurrent Programming, pp. 1-7, 1987.

[8] A. Yonezawa, “ABCL: An Object-Oriented Concurrent
System”, 1990.

[9] G. Kiczales, “Aspect Oriented Programming”, ACM
SIGPLAN Notices, Vol. 32(10), pp. 162-162, 1997.

[10] S. Matsuoka and A. Yonezawa, “Analysis of
inheritance anomaly in object-oriented concurrent
programming languages”, in G.Agha, P. Wegner, and A.
Y onezawa, editors, Research directions in Concurrent Object-
Oriented Programming, pp. 107-150, 1993.

[11] S. Ferenczi, “Guarded methods vs. inheritance
anomaly inheritance anomaly solved by nested method
calls’, ACM SIGPLAN Notices, Vol. 30(2), p. 49-58, 1995.



[12] A. Poggi and G. Rimassa, “An efficient and flexible
C++ library for concurrent programming”, Software Practice
& Experience, Vol. 28(13), pp. 1437-1463, 1998.

[13] Z. Guessoum and J-P. Briot, “From Active objects to
autonomous agents”, |EEE Concurrency, 7(3), p. 68-76,1999.

[14] Foundation for Intelligent Physical Agents.
Specifications. Available from http://www.fipa.org, 1997.

[15] R.A. Brooks, “A robust layered control system for a
mobile robot”, |EEE Journal of Robotics and Automation, Vol.
2(1) pp. 14-23, 1986.

[16] J-P. Muller, M. Pischel and M. Thiel, “Modelling
reactive behavior in vertically layered agent architectures”,
in M. Wooldridge and N.R. Jennings, editors, Intelligent
Agents. Theories, Architectures and Languages, Vol. 890, pp.
261-276, 1995.



