
DHG: A System for Generating Macro -Operators from Static Domain Analysis

Giuliano Armano, Giancarlo Cherchi, and Eloisa Vargiu

DIEE Department of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, I-09123 Cagliari

{armano, cherchi, vargiu}@diee.unica.it

ABSTRACT

The attempt of dealing with the complexity of planning
tasks by resorting to abstraction techniques is a central
issue in the field of automated planning. Although the
generality of the approach has not been proved always
useful on domains selected for benchmarking purposes, in
our opinion it will play a central role as soon as the focus
will move from artificial to real problems. In this case, it
will be crucial to have a tool for automatically generating
abstraction hierarchies from a domain description. This
paper addresses the problem of how to identify macro-
operators starting from a ground-level description of a
domain, to be used for generating useful abstract-level
descriptions. In particular, a preliminary release of a
system devised to automatically generate abstraction
hierarchies has been implemented. Compared to our
previous work, this paper reports a step further, in the
direction of fully automatizing the process, from both a
conceptual and a pragmatic perspective. Conceptually, we
refined the process of macro -operators extraction by
dealing with the problem of parameters' unification
through the exploitation of domain invariants, which can
resolve ambiguities that may arise while performing
abstraction. Pragmatically, we implemented a system that
-given a description of the domain expressed in PDDL-
outputs a set of macro-operators to be used as a starting
point for defining abstract operators. Experimental results
highlight the ability of the system to identify suitable
macro-operators, used as starting point for populating the
abstract level. Such macro-operators usually represent
good alternatives to those extracted by a knowledge
engineer after a thorough (and sometimes painful!)
domain analysis.

KEY WORDS

Abstraction, Planning, Macro-Operators.

1 INTRODUCTION

Complex environments are difficult to handle by
traditional planning methods, since the search space can be
very large, even for relatively simple problems –e.g.,
benchmarks in the AIPS planning comp etitions ([20], [6],
[19]). The issue of dealing with the increasing complexity
of the problems is going to play a central role as soon as
planners will be used to solve problems encountered in
real-life applications. In the past, abstraction techniques
have been used in a variety of planning systems (e.g., GPS
[23], ABSTRIPS [24], ABTWEAK [26], PABLO [9], and

PRODIGY [8]), and have proven to be effective when
applied to problems of medium-high complexity [5].
Typically, they require the original search space to be
mapped into abstract spaces in which irrelevant details are
disregarded at different levels of granularity.
Let us briefly recall some relevant abstraction techniques
proposed in the literature: (i) action-based, (ii) state-based,
(iii) Hierarchical Task Networks, and (iv) case-based. The
first combines a group of actions to form macro-operators
[18]. The second exploits representations of the world
given at a lower level of detail; its most significant forms
rely on (a) relaxed models, obtained by dropping operators'
applicability conditions [24], and on (b) reduced models
[17], obtained by completely removing certain conditions
from the problem space. In the third (e.g., [10]), problem
and operators are organized into a set of tasks: a high-level
task can be reduced to a set of partially ordered, lower-
level, tasks. Reductions allow specifying how to obtain a
detailed plan from an abstract one. In the fourth, abstract
planning cases are automatically learned from given
concrete cases, as done in the PARIS system [7], although
the user must provide explicit refinement rules between
adjacent levels of the hierarchy.
The performance of planners can also be improved by
exploiting the knowledge about the domain, as shown by a
number of researchers. In particular, the fact that state
invariants can play an important role in “compiling”
planning domains is widely acknowledged ([12], [15],
[21], [16], [22]). A detailed discussion of the state
invariants, as well as the description of the TIM system,
which can automatically extract state invariants from a
PDDL domain and problem description, can be found in
[11].
This paper addresses the problem of how to identify
macro-operators starting from a ground-level description
of a domain, to be used for generating useful abstract-level
descriptions. Compared to our previous work ([5], [2], and
[3]), this paper reports a step further, in the direction of
fully automatizing the process. The process of macro-
operators extraction has been improved by the exploitation
of state invariants, useful for solving the problem of
parameters' unification.

2 RELATED WORK

The pionieristic work of Korf on macro-operators was not
explicitly tailored for abstraction hierarchies –the adoption
of macro -operators being limited to the ground level only.
The approach preserves both the soundness and the
completeness of the planner, since macro-operators
represent legal sequences of ground operators and none of
them are removed from the domain. Nevertheless, this
technique negatively impacts on the average branching
factor.
State-based techniques are mainly focused on removing
predicates at different levels of granularity (either for
preconditions only or for both preconditions and
postconditions), while disregarding abstraction on
operators. 1 Although they preserve the Upward Solution
Property (USP) [25], its main drawback concerns the
introduction of “false” solutions (i.e., not refinable
solutions that anyway hold at the abstract level(s), due to
the deletion of some constraints that apply to the ground
level). Thus, the adoption of these techniques is strictly
related to the actual ratio between “false” and “true”
solutions [13], which must be kept reasonably low.
As for HTNs, in a sense they are a generalization of Korf's
macro-operators, being aimed at supporting abstraction
through the definition of suitable building blocks at
different levels of granularity. Their main advantage is a
great expressive power (due to their capability of actually
defining an abstraction hierarchy), together with the ability
of allowing partial ordering among operators. The main
drawback appears to be its strict dependence from the
domain engineer, which is responsible for defining a
(possibly) sound and complete HTN network for the given
domain / problem.
Case-based techniques are centered on a different
perspective, assuming that a solution of a given problem
can be found by adapting plans already found for similar
problems. 2 Several different issues are very important in
this framework: (i) how to define suitable metrics for
measuring the similarity between problems, (ii) how to
store and maintain a repository of “cases” encountered
while solving problems, and (iii) which techniques and
heuristics should be exploited to adapt a plan retrieved
from the repository and deemed useful for solving the
given problem. It is worth noting that the adoption of case-
based planning is justified only agreeing with the
conjecture that “repairing” an existing solution is
computationally less costly than finding one from scratch,
which is actually a very controversial issue.

1 The overall technique can be classified as “a priori”,

abstractions being searched without resorting to information on
solutions.

2 The overall technique can be classified as “a posteriori”,
abstraction being rooted on the information elicited from
solutions found while solving previous problems.

3 AUTOMATIC GENERATION OF
MACRO-OPERATORS

Basically, a planning domain can be defined in terms of
two kinds of entities: predicates and operators (a particular
kind of unary predicates can also be taken into account,
giving rise to a third kind of entities –i.e., types – possibly
organized according to a suitable “is -a” hierarchy).
Although, in principle, abstraction might be performed
along both such dimensions, this paper is mainly
concerned with abstraction on operators –in particular,
with the automatic extraction of macro-operators.
Let us point out that the definition of abstract operators is
strictly related with the definition of abstract predicates
and vice versa. Keeping this in mind, our proposal can be
positioned between action- and state-based techniques.
To make this point clearer, let us give some definitions
first. For the sake of simplicity, let us consider only two
abstraction layers, namely ground and abstract (the
extension of the definitions to an N-level hierarchy being
trivial).
A deterministic ground operator is characterized by a
name, a list of parameters, and the specification of its pre-
and post-conditions given in terms of ground predicates. A
ground operator can be instantiated by unifying each of its
parameters with an object taken from the given domain. A
macro-operator is any legal sequence of non-instantiated
ground operators, together with the specification of its
overall pre- and post-conditions. An abstract operator is
characterized by a name, a list of parameters, and the
specification of its overall pre- and post-conditions given
in terms of abstract predicates.
Note that ground and abstract domains have the same form
and are loosely related under the assumption that (most of
the) abstract plans should be refinable at the ground level.
To guarantee this desirable property, an abstract operator
should be defined on top of several (at least one)
supporting macro-operators, i.e., macro-operators whose
pre- and post-conditions match the one defined for the
corresponding abstract operator. On the other hand, a
macro-operator can be obtained by uninstantiating any
legal sequence of ground operators. It is worth noting that
sequences deemed relevant can be obtained by resorting to
both “a priori” and “a posteriori” analysis. The former is
performed considering only the given domain (problem)
(e.g., [5]), whereas the latter can be performed by taking
into account (also) solutions previously found (see, for
example, [1]).
To tackle a planning problem using abstraction, one (or
more) abstract level(s) starting from the ground one should
be defined. Abstracting a ground domain leads to the
definition of an abstraction hierarchy, consisting of a set of
predicates and operators, together with a mapping function
devised to specify the mapping between ground and
abstract level. In general, three kinds of mappings should
be defined: (i) a set of types at the ground level can be

represented by a single type at the abstract level, 3 (ii) a
single predicate at the ground level can be represented by a
logical combination of predicates at the abstract level, and
(iii) a set of macro-operators at the ground level can be
combined into a single operator at the abstract level.
There is no predefined ordering in the abstraction process.
4 Nevertheless, as the paper is mainly concerned on
automatically extracting macro-operators, let us adhere to
the underlying assumption that our concerns about
predicates (and types) play a secondary role, with respect
to operators, in the process of defining an abstraction
hierarchy. Figure 1 depicts the architecture of the system
devised to automatically generate abstraction hierarchies.
It has been called DHG, standing for Domain-oriented
Hierarchy Generator.

The hierarchy generator module currently takes as inputs:
(i) state invariants mappings (generated by the invariants
mapper that processes the output produced by TIM [11]),
and (ii) supporting macro-operators mappings (extracted
from the sequences given by the domain analyzer –
described in the following). DHG outputs a domain
hierarchy, consisting of a ground and an abstract level.
Currently, abstract operators and predicates are generated
according to a simple strategy: for each supporting macro-
operator a different abstract operator is generated, whose
pre- and post-conditions are made coincident with the
selected macro -operator. All predicates not involved in any
pre- or post-condition are deleted from the abstract
domain. 5
The core of the whole process consists of finding a set of
relevant sequences and then (possibly) promoting them to
macro-operators. The basic steps for identifying such
sequences are performed using a graph-oriented technique:
first of all, a directed graph containing information about
the dependencies between ground operators is built. Being
G such graph, its nodes represent ground operators, and its

3 This is usually equivalent to defining an exclusive or in

terms of unary predicates.
4 In fact, one may start abstracting types, rather than

predicates or operators –although any choice performed on one
kind of mapping may impact on subsequent choices.

5 The final system, consisting of additional modules devised
to map also types and predicates (shadowed in the figure), will be
able to perform abstraction along all the cited dimension –i.e.,
predicates, types, and operators.

edges represent relations between effects of the source
node and preconditions of the destination node. In
particular, for each source node A and for each destination
node B, the corresponding edge is labelled with a pair of
non-negative numbers, say <a b>. The pair accounts for
how many predicates A can establish (a) and negate (b)
that are also preconditions of B. From each acyclic path a
relevant sequence of operators could be extracted. As
considering all possible paths would end up to a large
amount of macro -operators, a second step consists of
pruning G –yielding the pruned graph Gp. The pruning
activity is controlled by a set of domain-independent
heuristics, which have been described in our previous
work (see [5] for further details). A set of sequences
(candidates to generate macro -operators) is then extracted
from Gp. In particular, sequences whose post-conditions
are represented by empty sets are disregarded for obvious
reasons. The remaining sequences are considered relevant
for generating macro-operators [3]. For each relevant
sequence a corresponding macro-operator is generated,
whose pre- and post-conditions are evaluated from pre-
and post-conditions of the operators belonging to the
sequence. Each extracted macro-operator is promoted to an
abstract operator, defined –according to the define action
statement of the standard PDDL notation– by its name,
together with its parameters, its pre- and post-conditions.
Let us formally represent the process of promoting a
sequence of ground operators to a macro-operator. In
particular, let us assume that is a sequence of operators,
whose application to the source state S1 leads to the
destination state S2. Under this assumption, a
corresponding macro-operator can be defined as follows:
where γ, η, α, and δ represent preconditions, effects, add-
list, and delete-list of the resulting macro-operator,
respectively.

The above formulas can be easily evaluated if all the
actions belonging to σ are instantiated (i.e. all the involved
parameters refer to a specified object). On the contrary,
applying the formula in presence of variables could lead to
semantic inconsistencies. A typical example that highlights
this problem occurs when predicates that account for
spatial relations are considered. For instance, while
considering the predicate (at ?o - object ?l - location),
used in the Logistics domain to represent the position of an
object, there cannot be two predicates stating that the same
object is in two different locations. This condition can be
expressed through the use of suitable state invariants.
These are not explicitly stated in the domain description
and can be retrieved using TIM. A detailed description
about how to find state invariants is given in [11], where

()

() ()
() ()

=
=

=

nn

nn

n

ωσσωσ

σωωσσ

σωσσ

αδαδδ
γαδαα

ηγγγ

\\
\\

\

11

11

11

U
U

U

(1)

generic
problem

domain

state
invariants

sequences

TIM

DOMAIN
ANALYZER

invariant
mappings

INVARIANTS
MAPPER

macro-operators
mappings

MACRO-OPERATOR
MAPPER

domain
hierarchy

types
mappings

TYPE
MAPPER

predicates
mappings

PREDICATE
MAPPER

HIERARCHY
GENERATOR
 types

predicates

four kinds of state invariants are defined: identity, state
membership, uniqueness of state membership, and fixed
resource. The information about the domain, enriched with
invariants, allows to correctly unify macro-operators’
parameters.
To automatically build the domain hierarchy, the hierarchy
generator module requires a set of mapping functions that
contain the translation rules (on types, predicates,
operators, and invariants) between two adjacent levels of
abstraction. These are expressed through a suitable
extension of the hierarchy representation language. This
information has been inserted (as a :mapping clause) into
the define hierarchy statement, described in [4]. The
proposed extension devised for dealing with invariants is: 6

(<mapping-def>::=
 (:mapping (<src-domain> <dst-domain>)
 [:types <types-def>]
 [:predicates <predicates-def>]
 [:actions <actions-def>]
 [:invariants <invariants-def>])

Note that there is one :invariant statement for each
mapping definition between two adjacent levels. In fact, in
a n-level abstraction hierarchy, each mapping involves a
specific set of invariants. The general form of the
<invariants-def> is the following:

<invariants-def>::=
 ([:identity <identity-def>]
 [:statemembership <statemembership-def>]
 [:uniqueness <uniqueness-def>])

<identity-def>::=
 (and <typed-predicate> <typed-predicate>+)
 ((= <variable> <variable>) +)

<statemembership-def>::=
 (or <typed-predicate> <type-predicate>+)

<uniqueness-def>::=
 (not (and <typed-predicate>
 <typed-predicate>+))

The :invariant statement can be used to include the
information about state invariants either by hand or
automatically, as our abstraction system can also convert
the output of TIM into the proposed notation. Given the
mapping functions, abstract operators and predicates can
be generated according to a simple strategy: for each
macro-operator a suitable abstract operator is generated,
whose pre- and post-conditions are made coincident with
those of the selected macro-operator; predicates at the
abstract level are the same of the ground level, except for
those not involved in any pre - or post-condition of the
abstract operators.

6 With respect to the previous mapping definition, only the

:invariant statement has been added.

4 EXPERIMENTAL RESULTS

To assess the functionality of the DHG system, we
compared the automatically generated domain hierarchies
with the corresponding domain hierarchies hand-coded by
a knowledge engineer, and characterized by mapping on
types, predicates, and operators . A set of benchmarking
domains, taken from the planning competitions ([20], [6],
[19]), has been selected to generate the abstraction
hierarchies. The domain hierarchies have been used as
input for the HW[] system (see [5]), devised to perform
planning by abstraction. Let us briefly recall that, HW[]
(which stands for Hierarchical Wrapper) can exploit any
external PDDL-compliant planner to search for solutions
at any required level of abstraction.
Experiments have been performed using FF ([14]) as
external planner, being HW[FF] the resulting system. Let
us point out that the planner chosen to be embedded into
the system scarcely affects the relevance of the
experimental results. In fact, only the relative performance
between the automatic and the hand-coded versions of
each domain hierarchy should be directly compared (for a
description about the performance of abstraction
mechanis ms, see [5]). Experiments have been conducted
on several domains including Depots, Blocks-World and
Elevator (simple-miconic). For each domain, a set of
problems has been selected to compare the performances
of HW[FF] using the DHG's domain hierarchies with
those of HW[FF] using the hand-coded domain
hierarchies. 7
The abstract level found by DHG for the Depots domain is
composed by four abstract operators, two of them (lift and
drop) are identical to those defined at the ground level,
while the others are obtained from the sequences
drive;load and drive;unload. The hand-coded abstraction
hierarchy defines two abstract-operators (obtained from
the sequences drive;unload;drop and drive;lift;load),
disregards the lifting predicate, and substitutes depot and
distributor with the supertype place (this one being an
example of abstraction on types).
The abstract level found by DHG for the Elevator domain
is composed by four abstract operators: (obtained from the
sequences up;board, up;depart, down;board , and
down;depart). The corresponding hand-coded hierarchy
defines two abstract operators (load and unload) and
disregards two predicates (lift -at and above).
The abstract level found by DHG for the Blocks-World
domain is composed by two abstract operators: (obtained
from the sequences pick -up;stack and unstack;put-down).
The corresponding hand-coded hierarchy shows an
abstract domain composed by the same operators, although

7 For the sake of simplicity, since it is generally a demanding

work to generate by hand abstraction hierarchies having more
than two levels, the experiments have been made using two-level
abstraction hierarchies.

the predicates handempty and holding have been
disregarded.
Table 1 summarizes the results obtained for the selected
domains. The results obtained using the planner without
abstraction (FF, in this case) are not reported, since in this
work we are not concerned on comparing the performance
between a planning algorithm and its hierarchical
counterpart. The columns labelled abs and refs report the
time (expressed in milliseconds) needed to find the
solution at the abstract level and the time needed to refine
it, respectively. The column labelled tot reports the total
time spent by HW[FF] to solve the problem, including
disk usage, conversion to/from PDDL, etc. The column
labelled steps is reported to compare the quality of plans
(in terms of the steps required to reach the goal state)
between the two counterparts.
Experiments show that, for the Depots domain, the
performances of HW[FF] using the hierarchy found by
DHG are in general slight worse (the difference is about
25%) than those of HW[FF] fed with the hand-coded
hierarchy. In our opinion, the reason lies in the fact that
automatically extracted hierarchy does not include
abstraction on types and/or predicates, whereas the
corresponding hand-coded hierarchy introduces types and
predicates mappings. As for the Elevator domain the
performance measured while feeding HW[FF] with the
hierarchy found by DHG is about 20% worse than the one
obtained by running HW[FF] with the hand-coded
hierarchy. Also in this case the automatic hierarchy (being
pure macro-operator based) lacks of mappings on types
and/or predicates. In the Blocks-World domain, time
intervals are approximately the same, since the hierarchy
obtained from DHG is nearly identical to the one coded by
hand. In fact, both of them define the abstract domain by
two operators without abstracting types. The hand-coded
hierarchy disregards two predicates, (holding ?x - block)
and (handempty), but this clearly does not introduce a

substantial improvement, since holding does not appear in
the preconditions and the effects of the macro -operators,
and there is no macro-operator that negates the handempty
predicate. In conclusion, the performances obtained by the
automatic abstraction hierarchies should definitely be
considered satisfactory. In fact, the required effort to make
abstraction hierarchies by hand does not pay for the light
advantages in terms of saved time.

5 CONCLUSIONS AND FUTURE WORK

The automatic definition of macro-operators is one of the
most important steps in the task of abstracting a planning
domain. In this paper, a technique devised to tackle this
problem is briefly described, its implementation yielding a
system called DHG (standing for Domain-oriented
Hierarchy Generator). Experimental results –obtained
comparing the performances of automatically -generated
vs. hand-coded abstraction hierarchies– are encouraging
and demonstrate the validity of the approach. In particular,
the slightly negative impact on performances obtained by
resorting to the automatic generation of abstraction
hierarchies is more than counterbalanced by the fact that a
negligible effort is required to the knowledge engineer in
order to obtain suitable abstractions. The environment used
to perform the experiments combines DHG with HW[FF].
The latter is a (parametric) hierarchical planning
environment able to embed and run an external planner –in
this case FF– at different levels of granularity.
As for the future work, we are currently dealing with the
problem of combining predicate and operator abstractions.
Furthermore, suitable heuristics for building an abstraction
hierarchy able to ensure the USP are currently under study.

 Hand-Coded Automatic
Problem abs refs tot steps abs refs tot steps
Depot1 28 73 106 12 23 120 147 11
Depot2 54 128 187 17 33 207 245 17
Depot3 488 340 841 38 69 532 609 36
Depot4 292 416 717 43 389 581 982 31
Depot5 845 100 950 71 - - - -
Elevator1 10 51 63 8 19 57 78 8
Elevator2 17 142 163 15 20 145 170 16
Elevator3 18 226 248 4 11 28 40 4
Elevator4 18 359 383 23 23 396 427 26
Elevator5 19 740 767 28 26 566 603 28
Blocks1 11 41 54 6 11 41 54 6
Blocks2 18 104 125 14 19 107 129 14
Blocks3 40 450 497 44 41 463 513 44
Blocks4 45 479 532 48 46 471 524 48
Blocks5 55 501 564 48 58 472 538 48

Table 1. Hand-coded vs automatically generated hierarchy performance comparison using HW[FF].

REFERENCES

 [1] G. Armano, and E. Vargiu, An adaptive Approach for
Planning in Dynamic Environments. Proceedings of the
International Conference on Artificial Intelligence (IC-AI
2001), Las Vegas (Nevada) (2001) 987–993

[2] G. Armano, G. Cherchi, and E. Vargiu, Experimenting the
Performance of Abstractions Mechanisms through a
Parametric Hierarchical Planner. Proceedings of IASTED
International Conference on Artificial Intelligence and
Applications(AIA 2003), Innsbruck, Austria (2003) 399–
404.

[3] G. Armano, G. Cherchi, and E. Vargiu, Generating
Abstractions from Static Domain Analysis. Workshop dagli
Oggetti agli Agenti - Sistemi Intelligenti e Computazione
Pervasiva (WOA'03), Cagliari, Italy (2003).

[4] G. Armano, G. Cherchi, and E. Vargiu, An Extension to
PDDL for Hierarchical Planning. Workshop on PDDL
(ICAPS’03), Trento, Italy (2003).

 [5] G. Armano, G. Cherchi, and E. Vargiu, A Parametric
Hierarchical Planner for Experimenting Abstraction
Techniques. Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI'03),
Acapulco, Mexico (2003) 936–941,.

[6] F. Bacchus, Results of the aips 2000 planning competition
(2000).

[7] R. Bergmann, W. Wilke, Building and refining abstract
planning cases by change of representation language.
Journal of Artificial Intelligence Research (JAIR), Vol. 3
(1995) 53–118.

 [8] J.C. Carbonell, C.A. Knoblock, and S. Minton, PRODIGY:
An Integrated Architecture for Planning and Learning. In
D. Paul Benjiamin (ed.) Change of Representation and
Inductive Bias, Kluwer Academic Publisher (1990) 125–
146.

[9] J. Christensen, Automatic Abstraction in Planning. PhD
Thesis, Department of Computer Science, Standford
University (1991).

[10] K. Erol, J. Hendler, and D.S. Nau, HTN Planning:
Complexity and Expressivity. Proceedings of the Twelveth
National Conference on Artificial Intelligence (AAAI-94),
AAAI Press / MT Press, Seattle, WA (1994) 1123–1128.

[11] M. Fox, and D. Long, The automatic inference of state
invariants in tim. Journal of Artificial Intelligence Research
(JAIR), Vol. 9 (1998) 367—421.

[12] A. Gerevini, and L. Schubert, Accelerating partial order
planners: Some techniques for effective search control and
pruning. Journal of Artificial Intelligence Research (JAIR),
Vol. 5 (1996) 95—137.

[13] F. Giunchiglia, and T. Walsh, A theory of abstraction.
Technical Report 9001-14, IRST, Trento, Italy (1990).

[14] J. Hoffmann, and B. Nebel, The ff planning system: Fast
plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR)}, Vol. 14, (2001)
253–302.

[15] H. Kautz, and B. Selman, The Role of Domain Specific
Knowledge in the Planning as Satisfiability Framework.
Proceedings of the Fourth International Conference on
Artificial Intelligence Planning Systems (AIPS-98) (1998)
181–189.

[16] G. Kelleher, and A. Cohn, Automatically Synthesising
Domain Constraints from Operator Descriptions.
Proceedings of ECAI 1992 (1992) 653–655.

[17] C.A. Knoblock, Automatically generating abstractions for
planning. Artificial Intelligence, Vol. 68(2) (1994) 243–
302.

[18] R.E. Korf, Planning as search: A quantitative approach.
Artificial Intelligence, Vol. 33(1), (1987) 65–88.

[19] D. Long, The aips-98 planning competition. AI Magazine,
Vol. 21(2) (1998) 13–33.

[20] D. Long, Results of the aips 2002 planning competition,
2002. Url: http://www.dur.ac.uk/d.p.long/competition.html.

[21] T.L. McCluskey, and J. Porteous, Engineering and
compiling planning domain models to promote validity and
efficiency. Artificial Intelligence, Vol. 95(1) (1997) 1–65.

[22] P. Morris, and R. Feldman, Automatically Derived
Heuristics for Planning Search. Proceedings of the Second
Irish Conference on Artificial Intelligence and Cognitive
Science, School of Computer Applications, Dublin City
University (1989).

[23] A. Newell, and H.A. Simon, Human Problem Solving.
Prentice-HAll, Englewood Cliffs, NJ (1972).

[24] E.D. Sacerdoti, Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, Vol. 5, (1974) 115–135.

[25] J.D. Tenenberg, Abstraction in Planning. PhD Thesis,
Computer Science Department, University of Rochester
(1988).

[26] Q. Yang, and J. Tenenberg, Abtweak: Abstracting a
Nonlinear, Least-Commitment Planner. Proceedings of the
Eight National Conference on Artificial Intelligence,
Boston, MA (1990) 204–209.

