Automatic Generation of Macro-Operators from Static
Domain Analysis

Giuliano Armano and Giancarlo Cherchi and Eloisa Vargiu !

Abstract. The attempt of dealing with the complexity of planning
tasks by resorting to abstraction techniques is a central issue in the
field of automated planning. Although the generality of the approach
has not been proved always useful on domains selected for bench-
marking purposes, in our opinion it will play a central role as soon as
the focus will move from artificial to real problems. This paper ad-
dresses the problem of how to identify macro-operators starting from
a ground-level description of a domain, to be used for generating
useful abstract-level descriptions. In particular, a preliminary release
of a system devised to automatically generate abstraction hierachies
has been implemented. The system is able to take into account also
state invariants, to resolve ambiguities that may arise while perform-
ing abstraction. Experimental results highlight the ability of the sys-
tem to identify suitable macro-operators, used as a starting point for
populating the abstract level. Such macro-operators usually represent
good alternatives to those extracted by a knowledge engineer after a
thorough (and sometimes painful!) domain analysis.

1 INTRODUCTION

Complex environments are difficult to handle by traditional planning
methods, since the search space can be very large, even for relatively
simple problems. The issue of dealing with the increasing complexity
of the problems is going to play a central role as soon as planners will
be used to solve problems encountered in real-life applications. In the
past, abstraction techniques have been used in a variety of planning
systems, and have proven to be effective when applied to problems
of medium/high complexity [4]. The most relevant abstraction tech-
niques proposed in the literature are: (i) action-based ([11]), (ii) state-
based ([13] and [10]), (iii) Hierarchical Task Networks ([7]), and (iv)
case-based ([6]). The performance of planners can also be improved
by exploiting the knowledge about the domain. In particular, the fact
that state invariants can play an important role in “compiling” plan-
ning domains is widely acknowledged (a detailed discussion can be
found in [8]).

This paper addresses the problem of how to identify macro-
operators starting from a ground-level description of a domain, to
be used for generating useful abstract-level descriptions. Compared
to our previous work ([4], [1], and [3]), this paper reports a step fur-
ther, in the direction of fully automatizing the process. The process
of macro-operators extraction involves the exploitation of state in-
variants, useful for solving the problem of parameters’ unification.

1 Department of Electrical and Electronical Engineering - University of
Cagliari, Italy email: {armano, cherchi, vargiu} @diee.unica.it

2 MACRO-OPERATORS GENERATION

Basically, a planning domain can be defined in terms of predicates
and operators. > Although, in principle, abstraction can be performed
along both such dimensions, this paper is mainly concerned with
the latter —in particular, with the automatic extraction of macro-
operators. Figure 1 depicts the architecture of the DHG system —
standing for Domain-oriented Hierarchy Generator— devised to gen-
erate abstraction hierarchies. Starting from a planning domain de-
scription, DHG 1is able to find a set of relevant sequences of oper-
ators by resorting to the domain analyzer module. First, a directed
graph G is built, containing information about the dependencies be-
tween ground operators (nodes represent operators and edges repre-
sent relations between effects of the source node and preconditions
of the destination node). From each acyclic path a relevant sequence
of operators could be extracted; nevertheless, considering all possible
paths would end up to a large amount of sequences. Hence, a pruning
activity on G —yielding the pruned graph G,— is performed accord-
ing to suitable, domain independent, heuristics (see [4] for further
details). For each relevant sequence a corresponding macro-operator
is generated, whose pre- and post-conditions are evaluated from pre-
and post-conditions of the operators belonging to the sequence. Gen-
erating pre- and post-conditions starting from a sequence of opera-
tors with variable parameters involves an unification process, which
may lead to semantic inconsistencies. For instance, while consider-
ing predicates that account for spatial relations —e.g., (at 2o - object
?1 - location) used in the Logistics domain— there cannot be two pred-
icates stating that the same object is in two different locations. The
corresponding state invariant, not explicitly stated in the domain de-
scription, can be retrieved using TIM ([8]). The information about the
domain, enriched with invariants, allows to correctly unify macro-
operators’ parameters. To automatically build the domain hierarchy,
the hierarchy generator module requires a set of mapping functions
that contain the translation rules (on types, predicates, operators, and
invariants) between two adjacent levels of abstraction. These are ex-
pressed through the :mapping clause of the define hierarchy state-
ment, described in [2]. In order to deal with state invariants, the fol-
lowing extension to the representation has been adopted:

<mapping-def>::=
(:mapping (<src-domain> <dst-domain>)
[:types <types—-def>]
[:predicates <predicates—-def>]
[:actions <actions—-def>]
[:invariants <invariants-def>])

2 A particular kind of unary predicates can also be taken into account, giving
rise to a third kind of entities -i.e., types- possibly organized according to a
suitable “is-a” hierarchy



domain
hierarchy

!

generic
problem

INVARIANTS
MAPPER

invariants

invariant

DOMAIN MACRO-OPERATOR | macro-operators
ANALYZER [sequences MAPPER mappings

domain

_________________ . HIERARCHY
4 TYPE ! iypes GENERATOR
types i MAPPER mappings
L
i PREDICATE ! predicates
predicates ~ g MAPPER } mappings >

Figure 1. The DHG architecture.

In short, one :invariants statement for each mapping definition be-
tween two adjacent levels has been added, to support three kinds of
invariants (identity, state membership, and uniqueness of state mem-
bership). The :invariants statement can be used to include the in-
formation about state invariants, either hand-coded or automatically
generated (using TIM). Given the mapping functions, abstract op-
erators and predicates can be generated according to a simple strat-
egy: for each macro-operator a suitable abstract operator is gener-
ated, whose pre- and post-conditions are made coincident with those
of the selected macro-operator; predicates at the abstract level are the
same of the ground level, except for those not involved in any pre- or
post-condition of the abstract operators.

3 EXPERIMENTAL RESULTS

To assess the DHG system, we compared the automatically-
generated domain hierarchies with the ones hand-coded by a knowl-
edge engineer, and characterized by mappings on types, predicates,
and operators. Some domains, taken from the planning competitions
([12], [5]), including Depots, Blocks-World and Elevator (simple mi-
conic), have been selected for benchmarking purposes. The corre-
sponding domain hierarchies have been used as input for the HW[]
system ([4]), able to exploit any external PDDL-compliant planner
while searching for solutions at any required level of abstraction. Ex-
periments have been performed using FF ([9]) as external planner,
being HW[FF] the resulting system.

The abstract level found by DHG for the Depots domain is com-
posed by four abstract operators. Two of them (/ift and drop) are iden-
tical to those defined at the ground level, while the others are obtained
from the sequences drive;load and drive;unload. The hand-coded
abstraction hierarchy defines two abstract operators (obtained from
the sequences drive;unload;drop and drive,lift;load), disregards the
lifting predicate, and substitutes depot and distributor with the su-
pertype place. Experiments show that the performances of HW/[FF]
using the automatically-generated hierarchy (which does not include
abstraction on types or predicates) are in general slightly worse than
those obtained by resorting to the hand-coded hierarchy (the differ-
ence is about 25%).

The abstract level found by DHG for the Elevator domain is
composed by four abstract operators (obtained from the sequences
up;board, up;depart, down;board, and down;depart). The corre-
sponding hand-coded hierarchy defines two abstract operators (load
and unload), and disregards two predicates (/ift-ar and above). The

performance measured while feeding HW[FF] with the hierarchy
found by DHG is about 20% worse than the one obtained by run-
ning HW[FF] with the hand-coded hierarchy.

The abstract level found by DHG for the Blocks-World do-
main is composed by two abstract operators (obtained from the se-
quences pick-up;stack and unstack;put-down). The corresponding
hand-coded hierarchy shows an abstract domain composed by the
same operators, although the predicates handempty and holding have
been disregarded. In this domain, time intervals are approximately
the same, since the hierarchy obtained from DHG is nearly identical
to the one coded by hand. ?

4 CONCLUSIONS

The automatic definition of macro-operators is one of the most im-
portant steps in the task of abstracting a planning domain. In this
paper, a technique devised to perform this task is briefly described,
as implemented by the DHG system. Experimental results show that
the slightly negative impact on performances obtained by resorting
to the automatic generation of abstraction hierarchies is more than
counterbalanced by the fact that a negligible effort is required to the
knowledge engineer in order to obtain suitable abstractions.

REFERENCES

[1] G. Armano, G. Cherchi, and E. Vargiu, Experimenting the Performance
of Abstractions Mechanisms through a Parametric Hierarchical Plan-
ner, 399-404, Proceedings of IASTED International Conference on Ar-
tificial Intelligence and Applications(AIA 2003), Innsbruck (Austria),
2003.

[2] G. Armano, G. Cherchi, and E. Vargiu, An Extension to PDDL for
Hierarchical Planning, 1-6, Workshop on PDDL (ICAPS’03), Trento
(Ttaly), 2003.

[3] G. Armano, G. Cherchi, and E. Vargiu, Generating Abstractions from
Static Domain Analysis, Workshop dagli Oggetti agli Agenti - Sis-
temi Intelligenti e Computazione Pervasiva (WOA’03), Cagliari (Italy),
2003.

[4] G. Armano, G. Cherchi, and E. Vargiu, A Parametric Hierarchical
Planner for Experimenting Abstraction Techniques, 936-941, Proceed-
ings of the Eighteenth International Joint Conference on Artificial In-
telligence (IJCAI’03), Acapulco (Mexico), 2003.

[5] F. Bacchus. Results of the aips 2000 planning competition, 2000. Url:
http://www.cs.toronto.edu2000.

[6] R. Bergmann and W. Wilke, ‘Building and refining abstract planning
cases by change of representation language’, Journal of Artificial Intel-
ligence Research (JAIR), 3, 53-118, (1995).

[7]1 K. Erol, J. Hendler, and D.S. Nau, HTN Planning: Complexity and
Expressivity, 1123-1128, Proceedings of the Twelveth National Con-
ference on Artificial Intelligence (AAAI-94), AAAI Press / MT Press,
Seattle, WA, 1994.

[8] M. Fox and D. Long, ‘The automatic inference of state invariants in
tm’, Journal of Artificial Intelligence Research (JAIR), 9, 367421,
(1998).

[9]1 J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan gen-
eration through heuristic search’, Journal of Artificial Intelligence Re-
search (JAIR), 14, 253-302, (2001).

[10] C.A. Knoblock, ‘Automatically generating abstractions for planning’,
Artificial Intelligence, 68(2), 243-302, (1994).

[11] R.E. Korf, ‘Planning as search: A quantitative approach’, Artificial In-
telligence, 33(1), 65-88, (1987).

[12] D. Long. Results of the aips 2002 planning competition, 2002. Url:
http://www.dur.ac.uk/d.p.long/competition.html.

[13] E.D. Sacerdoti, ‘Planning in a hierarchy of abstraction spaces’, Artifi-
cial Intelligence, 5, 115-135, (1974).

3 The fact that —in the hand-coded hierarchy— holding and handempty are
disregarded at the abstract level clearly does not introduce a substantial im-
provement; in fact, holding does not appear in preconditions or effects of
any macro-operator, and there is no macro-operator that negates the han-
dempty predicate.



