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Firenze, I-50139, Italy, dallachiara@unifi.it

ABSTRACT2

Parallelism represents an essential aspect of human mind/brain activities. One can recognize3
some common features between psychological parallelism and the characteristic parallel stru-4
ctures that arise in quantum theory and in quantum computation. The article is devoted to a5
discussion of the following questions:6

1. a comparison between classical probabilistic Turing machines and quantum Turing machi-7
nes.8

2. Possible applications of the quantum computational semantics to cognitive problems.9
3. Parallelism in music.10

1 INTRODUCTION

Parallelism represents an essential aspect of the activities of human brain and mind. One can recognize11
some common features between psychological parallelism and the characteristic parallel structures that12
arise in quantum theory and in quantum computation, being responsible for the extraordinary efficiency13
and speed of quantum computers.14

Quantum parallelism and classical parallelism are deeply different, although it is sometimes claimed that15
quantum Turing machines are nothing but special examples of classical probabilistic Turing machines.116
But what exactly are quantum Turing machines? So far, the literature has not provided a rigorous “institu-17
tional” concept of quantum Turing machine. Some definitions seem to be based on a kind of “imitation”18
of the classical definition of Turing machine, by referring to a tape (where the symbols are written) and19
to a moving head (which changes its position on the tape).2 These concepts, however, seem to be hardly20
applicable to physical quantum computers. Both in the classical and in the quantum case, it is expedient21
to consider a more abstract concept: the notion of state machine, which neglects both tapes and moving22

1 See, for instance, Penrose, 1994.
2 See, for instance, Fouché et al., 2007.
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heads. Every finite computational task realized in different computational models proposed in the lite-23
rature can be simulated by a state machine.3 In order to compare classical and quantum parallelism, we24
will analyze the concepts of (classical) deterministic state machine, (classical) probabilistic state machine25
and quantum state machine. On this basis we will discuss the question: to what extent can quantum state26
machines be simulated by probabilistic state machines? (Sections 2-3).27

In the investigation about possible links between quantum structures and psychological structures a28
useful tool is represented by a special form of quantum logical semantics (called quantum computational29
semantics) that has been inspired by the theory of quantum computation. We will see how this seman-30
tics can be naturally applied to a formal analysis of musical compositions, where parallel structures,31
ambiguity, holism and contextuality play an essential role (Sections 4-5).432

Our analysis seems to confirm a general conjecture that has been defended and discussed in different33
research-fields: the basic concepts of the quantum-theoretic formalism (which had for a long time been34
regarded as mysterious and potentially paradoxical) seem to have a universal interest that goes beyond the35
domain of microphysical phenomena.36

2 CLASSICAL DETERMINISTIC AND PROBABILISTIC MACHINES

We will first introduce a formal definition for the notion of deterministic state machine. On this basis,37
probabilistic state machines will be represented as stochastic variants of deterministic machines, which38
are able to calculate different outputs with different probability-values.39

Definition 1. Deterministic state machine.40

A deterministic state machine is an abstract system M based on the following elements:41

1. A finite set S of internal states, which contains an initial state sin and includes a set of halting states42
Shalt = {shaltj | j ∈ J}.43

2. A finite alphabet, which can be identified with the set {0, 1} of the two classical bits. Any register44
represented by a bit-sequence w = (x1, . . . , xn) is a word (of length n). Any pair (s, w) consisting of45
an internal state s and of a word w represents a possible configuration of M, which is interpreted as46
follows: M is in the internal state s and w is the word written on an ideal tape.47

3. A set of words that represent possible word-inputs for M.48
4. A program, which is identified with a finite sequence of rules:

(R0, . . . , Rt).

Each Ri is a partial function that transforms configurations into configurations. We may have: Ri =49
Rj with i 6= j. The number i, corresponding to the rule Ri, represents the i-th step of the program.50
The following conditions are required:51

4.1 The rule R0 is defined for any configuration (s0, w0), where s0 is the initial state sin and w0 is a
possible word-input. We have:

R0 : (s0, w0) 7→ (s1, w1),

where s1 is different from the initial state and from all halting states (if t 6= 0).52

3 See, for instance, Savage, 1998 and Gudder, 1999.
4 Some basic intuitive ideas of the quantum computational semantics are close to the “quantum cognition approach” that has been extensively developed in
recent times (see, for instance, Aerts et al., 2005a, 2005b, Aerts et al., 2014). In both theories concepts and thoughts are represented as special abstract entities
that can be described in the framework of the quantum-theoretic formalism. The technical developments of the two approaches are, however, different.
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4.2 For any i (0 < i < t),
Ri : (si, wi) 7→ (si+1, wi+1),

where si+1 is different from all si, . . . , s0 and from all halting states.53
4.3 Rt : (st, wt) 7→ (st+1, wt+1),54

where st+1 is a halting state.55

Each configuration (si+1, wi+1) represents the output for the step i and the input for the step i+ 1.56

The concept of computation of a deterministic state machine can be now defined as follows.57

Definition 2. Computation of a deterministic state machine.58

A computation of a deterministic state machine M is a finite sequence of configurations

((s0, w0), . . . , (st+1, wt+1)),

where:59

1. w0 is a possible word-input of M.60
2. s0, . . . , st+1 are different internal states of M such that: s0 = sin and st+1 is a halting state.61
3. For any i (0 ≤ i ≤ t),

(si+1, wi+1) = Ri((si, wi)),

where Ri is the i-th rule of the program.62

The configurations (s0, w0) and (st+1, wt+1) represent, respectively, the input and the output of the com-63
putation; while the words w0 and wt+1 represent, respectively, the word-input and the word-output of the64
computation.65

Apparently, each deterministic state machine is devoted to a single task that is determined by its program.66

Let us now turn to the concept of probabilistic state machine. The only difference between determi-
nistic and probabilistic state machines concerns the program, which may be stochastic in the case of a
probabilistic state machine (PM). In such a case, instead of a sequence of rules, we will have a sequence
(Seq0, . . . , Seqt) of sequences of rules such that:

Seq0 = (R01 , . . . , R0r)

. . . . . . . . .

Seqt = (Rt1 , . . . , Rtl).

Each rule Rij (occurring in the sequence Seqi) is associated to a probability-value pij such that:∑
j

pij = 1.

From an intuitive point of view, pij represents the probability that the rule Rij be applied at the i-th step.67
A deterministic state machine is, of course, a special case of a probabilistic state machine characterized68
by the following property: each sequence Seqi consists of a single rule Ri.69

Any probabilistic state machine naturally gives rise to a graph-structure for any choice of an input-70
configuration conf0 = (s0, w0). As an example, consider the following simple case: a probabilistic state71
machine PM whose program consists of two sequences, each consisting of two rules:72

Frontiers 3
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Seq0 = (R01 , R02)

Seq1 = (R11 , R12).

The graph associated to PM for the configuration conf0 is illustrated by Figure 1.73

How do probabilistic machines compute? In order to define the concept of computation of a proba-74
bilistic machine, let us first introduce the notions of program-path and of computation-path of a given75
probabilistic machine.76

Definition 3. Program-path and computation-path.77

Let PM be a probabilistic state machine with program (Seq0, . . . , Seqt).78

• A program-path of PM is a sequence

P = (R0h , . . . , Rij , . . . , Rtk),

consisting of t rules, where each Rij is a rule from Seqi (probabilistically independent of all other79
rules of P).80

• For any choice of an input (s0, w0), any program-path P determines a sequence of configurations

CP = ((s0, w0), . . . , (si, wi), . . . , (st+1, wt+1)),

where (si+1, wi+1) = Rij (si, wi) and Rij is the i-th element of P . This sequence is called the81
computation-path of PM determined by the program-path P and by the input (s0, w0).82
The configuration (st+1, wt+1) represents the output of CP .83

Figure 1. The graph of PM.

Any program-path P = (R0h , . . . , Rij , . . . , Rtk) has a well determined probability-value p(P), which
is defined as follows (in terms of the probability-values of its rules):

p(P) := p0h · . . . · pij · . . . · ptk .

As expected, the probability-value of a program-path P naturally determines the probability-values of
all corresponding computation-paths. It is sufficient to put:

p(CP) := p(P).

This is a provisional file, not the final typeset article 4
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Consider now the set PPM of all program-paths and the set CPPM of all computation-paths of a
probabilistic machine PM. One can easily show that:∑

i

{p(Pi)|Pi ∈ PPM} =
∑
i

{p(CP i)|CP i ∈ CPPM} = 1.

On this basis the concept of computation of a probabilistic state machine can be defined as follows.84

Definition 4. Computation of a probabilistic state machine.85

A computation of a probabilistic state machine PM with input (s0, w0) is the system of all computation-86
paths of PM with input (s0, w0).87

Unlike the case of deterministic state machines, a computation of a probabilistic state machine does not
yield a unique output. For any choice of a configuration-input (s0, w0), the computation-output is a system
of possible configuration-outputs (sit+1, w

i
t+1), where each (sit+1, w

i
t+1) corresponds to a computation-

path CP i. As expected, each (sit+1, w
i
t+1) has a well determined probability-value that is defined as

follows:

p((sit+1, w
i
t+1)) :=

∑
i

{
p(CP i)|the configuration-output of CP i is (sit+1, w

i
t+1)

}
.

One can easily show that the sum of the probability-values of all configuration-outputs of any machine88
PM is 1.89

3 QUANTUM STATE MACHINES

The strong parallelism that characterizes quantum computers is based on two quantum-theoretic notions
that have been often described as mysterious and potentially paradoxical: superposition and entanglement.
For the readers who are not expert of quantum theory it is expedient to recall some concepts of the
quantum formalism that are used in quantum computation.5 The basic idea is that any piece of quantum
information is mathematically represented as a possible state of a quantum system that can store and
transmit the information in question. In the simplest situations one is dealing with a single particle S
(say, an electron or a photon), whose “mathematical environment” is a special example of a vector space:
the two-dimensional Hilbert space C2, based on the set of all ordered pairs of complex numbers. The
canonical (orthonormal) basis of C2 consists of the two following unit-vectors:

|0〉 = (1, 0); |1〉 = (0, 1),

which represent, in this framework, the two classical bits (0 and 1), or (equivalently) the two classical
truth-values (Falsity and Truth). A pure state corresponds to a maximal piece of information that cannot
be consistently extended to a richer knowledge. Such state is represented as a unit-vector |ψ〉 that can be
expressed as a superposition of the two elements of the canonical basis of C2:

|ψ〉 = c0|0〉+ c1|1〉,

where c0 and c1 (also called amplitudes) are complex numbers such that |c0|2 + |c1|2 = 1.90

The physical interpretation of |ψ〉 (also called qubit-state or, briefly, qubit) is the following: the physical91
system S in state |ψ〉 might satisfy the physical properties that are certain for the bit |0〉 with probability92

5 A survey of quantum computation theory can be found, for instance, in Nielsen et al., 2000.
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|c0|2 and might satisfy the physical properties that are certain for the bit |1〉 with probability |c1|2. Due to93
the characteristic indeterminism of quantum theory, the pure state |ψ〉 is at the same time a maximal and94
logically incomplete piece of information that cannot decide some important physical properties of the95
system S. Accordingly, from an intuitive point of view, one can say that |ψ〉 describes a kind of cloud of96
potential properties that might become actual when a measurement is performed. Measuring a physical97
quantity (by means of an apparatus associated to the canonical basis) determines a sudden transformation98
of the qubit |ψ〉 either into the bit |0〉 or into the bit |1〉. Such transformation is usually called collapse of99
the wave-function.100

Not all states associated to a physical system S are pure. Non-maximal pieces of information can be
represented as mixtures of pure states (special examples of operators called density operators). In the
space C2 a density operator ρ can be represented as a convenient finite sum of projection-operators:

ρ =
∑
i

wiP|ψi〉,

where wi are real numbers such that
∑

iwi = 1, while each P|ψi〉 is a projection-operator that projects101
along the direction of |ψ〉. Notice that such representation is not generally unique. A density operator102
that cannot be represented as a projection P|ψ〉 is called a proper mixture. While pure states codify an103
essential indetermination of some relevant properties of the quantum system under investigation, mixtures104
may correspond to an epistemic uncertainty of the observer. Unlike pure states (which always satisfy105
some well-determined properties), there are mixtures that cannot decide any (non-trivial) property of the106
associated system. An example of this kind is the state ρ = 1

2I, where I is the identity operator of the107
space C2.108

As happens in classical information theory, quantum computation also needs complex pieces of infor-
mation, which are supposed to be stored by composite quantum systems (generally consisting of n
subsystems). Accordingly, one can naturally adopt the quantum-theoretic formalism for the mathema-
tical representation of composite physical systems, based on the use of tensor products (special examples
of products).6 While a single qubit is a unit-vector of the space C2, a pure state representing a complex
piece of information can be identified with a unit-vector of the n-fold tensor product of C2:

⊗nC2 = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n−times

(with n ≥ 1).

Such vectors are called quregisters. The canonical basis of the space ⊗nC2 consists af all registers,
products of bits that have the following form:

|x1〉 ⊗ . . .⊗ |xn〉 (where any xi is either 0 or 1).

Instead of |x1〉 ⊗ . . .⊗ |xn〉, it is customary to write |x1, . . . , xn〉. Any quregister can be represented as a
superposition of registers:

|ψ〉 =
∑
i

ci|xi1 , . . . , xin〉,

where ci are complex numbers such that
∑

i |ci|2 = 1.109

A tensor product |ψ1〉 ⊗ . . .⊗ |ψn〉 (of n quregisters) is often briefly indicated by: |ψ1〉 . . . |ψn〉.110

6 The basic property of the tensor productH1 ⊗H2 of two (finite-dimensional) Hilbert spacesH1 andH2 is the following:H1 ⊗H2 is a Hilbert space that
properly includes an isomorphic image of the Cartesian product H1 × H2 (consisting of all ordered pairs of vectors that belong to the spaces H1 and H2,
respectively). Furthermore, H1 ⊗H2 contains all possible superpositions of its elements. A vector |ψ〉 ofH1 ⊗H2 is called factorized iff |ψ〉 corresponds
to a pair (|ψ1〉, |ψ2〉) ∈ H1 ×H2. In such a case, it is customary to write: |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Of course, not all vectors ofH1 ⊗H2 are factorized.
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Quantum computation makes essential use of some characteristic quantum states that are called entan-
gled. In order to illustrate the concept of entanglement from an intuitive point of view, let us refer to
a simple paradigmatic case. We are concerned with a composite physical system S consisting of two
subsystems S1 and S2 (say, a two-electron system). By the quantum-theoretic rules that concern the math-
ematical description of composite systems, all states of S shall live in the tensor product H = H1 ⊗H2,
where H1 and H2 are the Hilbert spaces associated to the systems S1 and S2, respectively. The observer
has a maximal information about S: a pure state |ψ〉 of H. What can be said about the states of the two
subsystems? Due to the form of |ψ〉, such states cannot be pure: they are represented by two identical
mixtures, which codify a “maximal degree of uncertainty”. A typical possible form of |ψ〉 is the following
Bell-state:

|ψ〉 =
1√
2

(|0, 0〉+ |1, 1〉),

which lives in the space C2 ⊗ C2, whose canonical basis consists of the four vectors111
|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 .112

This gives rise to the following physical interpretation: the global system S might satisfy the properties113
that are certain either for the state |0, 0〉 or for the state |1, 1〉 with probability-value 1

2 . At the same time,114

|ψ〉 determines that the reduced state of both subsystems (S1 and S2) is the mixture 1
2I. Although it is115

not determined whether the state of the global system S is |0, 0〉 or |1, 1〉, the two subsystems S1 and S2116
can be described as “entangled”, because in both possible cases they would satisfy the same properties,117
turning out to be indistinguishable. As a consequence, any measurement performed by an observer either118
on system S1 or on system S2 would instantaneously transform the potential properties of both subsystems119
into actual properties (by collapse of the wave-function).120

The celebrated “Einstein-Podolsky-Rosen paradox”(EPR) is based on a similar physical situation. As121
is well known, what mainly worried Einstein was the possibility of “non-local effects”: the subjective122
decision of an observer (who may choose among different incompatible observables to be measured on the123
system S1) seems to determine the instantaneous emergence of an actual property for the system S2, which124
might be very “far” from S1 (possibly inaccessible by means of a light-signal). Interestingly enough, in125
the framework of quantum computation, entangled states have been often used as a powerful resource,126
even from a technological point of view (for instance, in the applications to teleportation-phenomena and127
to quantum cryptography).128

As expected, quantum computation cannot be identified with a “static” representation of pieces of infor-129
mation. What is important is the dynamic process of information that gives rise to quantum computations.130
Such process is mathematically performed by quantum logical gates (briefly, gates): special examples of131
unitary operators that transform quregisters into quregisters in a reversible way. Since in quantum theory132
the time-evolution of all physical systems is mathematically described by unitary operators, one can say133
that quantum computations can be regarded as the time-evolution of some special quantum objects.134

We will now introduce the definition of quantum state machine, which represents a quantum counter-135
part of the classical notion of deterministic state machine. From an intuitive point of view, any quantum136
state machine can be regarded as a kind of quantum superposition of many classical deterministic state137
machines. Some definitions of quantum Turing machine discussed in the literature are based on a strong138
idealization: no limit is assumed for the length of the registers occurring in a computation. This corre-139
sponds to the classical assumption according to which a Turing machine is equipped with an infinite tape.140
We will consider a more realistic concept, closer to physical quantum computers, which are of course141
always bound to a limited memory.142

Definition 5. Quantum state machine.143

A quantum state machine is an abstract system QM associated to a (finite-dimensional) Hilbert space
HQM whose unit-vectors |ψ〉 represent possible pure states of a quantum system that could physically
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implement the computations of the state machine. The spaceHQM has the following form:

HQM = HH ⊗HS ⊗HW .
The following conditions are required:144

1. HH (which represents the halting-space) is the space C2, where the two elements of the canonical145
basis ({|0〉H , |1〉H}) correspond to the states “the machine does not halt” and “the machine halts”,146
respectively.147

2. HS (which represents the internal-state space) is associated to a finite set S of classical internal states.148
We require that HS = ⊗mC2, where 2m is the cardinal number of S. Accordingly, the set S can be149
one-to-one associated to a basis ofHS .150

3. HW (which represents the word-space) is identified with a Hilbert space ⊗nC2 (for a given n ≥ 1).151
The number n determines the length of the registers |x1, . . . , xn〉 that may occur in a computation.152
Shorter registers |x1, . . . , xh〉 (with h < n) can be represented in the space ⊗nC2 by means of153
convenient ancillary bits.154

Let BQM be a basis ofHQM, whose elements are unit-vectors having the following form:
|ϕi〉 = |hi〉|si〉|xi1 , . . . , xin〉,

where |hi〉 belongs to the basis ofHH , while |si〉 belongs to the basis ofHS .155
Any unit-vector |ψ〉 of HQM that is a superposition of basis-elements |ϕi〉 represents a possible

computational state of QM. The expected interpretation of a computational state

|ψ〉 =
∑
i

ci|hi〉|si〉|xi1 , . . . , xin〉

is the following:156

• the machine in state |ψ〉 might halt with probability |ci|2 (if |hi〉 = |1H〉) or with probability157
1− |ci|2 (if |hi〉 = |0H〉).158

• the machine in state |ψ〉 might correspond to the classical configuration (si, (xi1 , . . . , xin)) with159
probability |ci|2.160
Hence, the state |ψ〉 describes a kind of quantum co-existence of different classical deterministic161
configurations.162

4. The set of possible inputs of QM is identified with the set of all computational states that have the
following form:

|ψ〉 =
∑
i

|0H〉|sin〉|xi1 , . . . , xin〉.

5. Like a deterministic state machine, a quantum state machine QM is characterized by a program. In
the quantum case, a program is identified with a sequence of unitary operators ofHQM:

(U0, . . . , Ut),

where we may have: Ui = Uj with i 6= j.163
The following conditions are required:164

a) for any possible input |ψ0〉, U0(|ψ0〉) = |ψ1〉 is a superposition of basis-elements having the
following form:

|h1i 〉|s1i 〉|x1i1 , . . . , x
1
in〉,

where all s1i are different from sin and |h1i 〉 = |0H〉, if t 6= 0.165
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b) For any j (0 < j < t), Uj(|ψj〉) = |ψj+1〉 is a superposition of basis-elements having the following
form:

|0H〉|sj+1
i 〉|xj+1

i1
, . . . , xj+1

in
〉.

c) Ut(|ψt〉) = |ψt+1〉 is a finite superposition of basis-elements having the following form:

|1H〉|shaltj 〉|x
t+1
i1

, . . . , xt+1
in
〉.

The concept of computation of a quantum state machine can be now defined in a natural way.166

Definition 6. Computation of a quantum state machine.167

Let QM be a quantum state machine, whose program is the operator-sequence (U0, . . . , Ut) and let |ψ0〉
be a possible input of QM. A computation of QM with input |ψ0〉 is a sequence of computational states
of QM

QC = (|ψ0〉, . . . , |ψt+1〉),
such that: |ψi+1〉 = Ui(|ψi〉), for any i (0 ≤ i ≤ t).168

The vector |ψt+1〉 represents the output of the computation, while the density operator Red3(|ψt+1〉) (the169
reduced state of |ψt+1〉with respect to the third subsystem) represents the word-output of the computation.170

Like all abstract notions of quantum computer, the concept of quantum state machine gives rise to some171
critical questions that have been often discussed in the literature. Two important problems (which cannot172
have any counterpart in the case of classical computation) are the following:173

• How shall we interpret the operation of “reading the output” of a computation of a given machine?174
What is the role of the collapse of the wave-function during a reading-action?175

• Is it possible to measure the halting state without disturbing the configuration-state?176

Consider now a quantum state machine whose program is

(U0, . . . , Ut).

Each Ui naturally determines a corresponding word-operator UWi , defined on the word-spaceHW . Gene-
rally, it is not guaranteed that all word-operators are unitary. But it is convenient to refer to quantum state
machines that satisfy this condition. In this way, any quantum state machine (whose word-space is⊗nC2)
determines a quantum circuit, consisting of a sequence of unitary operators (gates):

(UW0 , . . . , UWt ),

where n represents the width, while t+ 1 represents the depth of the circuit.177

To what extent can quantum state machines be simulated by classical probabilistic state machines? In178
order to discuss this important question, let us refer to a celebrated quantum experiment, based on the179
Mach-Zehnder interferometer (represented by Figure 2).180

The physical situation can be sketched as follows. Consider a photon-beam (possibly consisting of a181
single photon) and assume that |0〉 describes the state of photons moving along the x direction, while182
|1〉 describes the state of photons moving along the y direction. All photons go through a first beam183
splitter that “splits” them giving rise to the following effect: within the box each photon follows a path184
corresponding either to the x-direction or to the y-direction with probability 1

2 . Soon after, on both paths,185
all photons are reflected by a mirror that inverts their direction. Finally, the photons pass through a second186
beam splitter that determines the output-state. Suppose that all photons entering into the interferometer-187
box are moving in the x-direction. According to a “classical way of thinking” we would expect that the188
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Figure 2. The Mach-Zehnder interferometer.

photons detected at the end of the process will move either along the x-direction or along the y-direction189
with probability 1

2 . The result of the experiment is, instead, completely different: the Mach-Zehnder190
interferometer always transforms the input-state |0〉 into the output-state |0〉; while the input-state |1〉 is191
transformed into |1〉.192

¿From a mathematical point of view, such a “surprising” result can be explained by using, in an essen-
tial way, the concept of superposition. The apparatuses (used in the Mach-Zehnder experiment) can be
mathematically represented by two important gates. A beam splitter can be regarded as a physical imple-
mentation of the Hadamard-gate

√
I (also called square root of identity), which is defined as follows (on

the canonical basis of C2):
√
I|0〉 =

1√
2

(|0〉+ |1〉);
√
I|1〉 =

1√
2

(|0〉 − |1〉).

Apparently, the Hadamard-gate transforms the two classical bits |0〉 and |1〉 into two (different) genuine193
superpositions. As a consequence, within the Mach-Zehnder box a photon in state 1√

2
(|0〉+ |1〉) turns out194

to satisfy at the same time two alternative properties: the property of moving along the x-direction and195
the property of moving along the y-direction. We have here a characteristic quantum parallelism: a single196
photon “goes along” two different paths at the same time! Metaphorically, situations of this kind have197
been sometimes compared to the puzzling behavior of a “quantum skier” who runs at the same time on198
the left and on the right side of a given tree (see Figure 3).199

The second apparatus of the Mach-Zehnder interferometer (the mirror), can be regarded as a physical200
implementation of another important gate, the negation NOT (a quantum generalization of the classical201
negation), which is defined as follows:202

NOT|0〉 = |1〉; NOT|1〉 = |0〉.

Accordingly, the Mach-Zehnder circuit can be identified with the following sequence of three gates (all
defined on the space C2):

(
√
I, NOT,

√
I).

Let us now apply the Mach-Zehnder circuit to the input |0〉. We obtain:203
√
I : |0〉 7→ 1√

2
(|0〉+ |1〉); NOT : 1√

2
(|0〉+ |1〉) 7→ 1√

2
(|0〉+ |1〉);

√
I : 1√

2
(|0〉+ |1〉) 7→ |0〉.204
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Figure 3. The quantum skier.

We can see, in this way, how the Mach-Zehnder circuit transforms the input-state |0〉 into the output-state205
|0〉. In a similar way, the input-state |1〉 is transformed into the output-state |1〉.206

Is there any natural “classical counterpart” for the Hadamard-gate? A natural candidate might be a par-207
ticular example of a probabilistic state machine that we can conventionally call the classical probabilistic208
NOT-state machine (PMNOT). Such machine can be defined as follows:209

• The set of possible word-inputs of PMNOT is the set of words {(0), (1)}.210

• The program of PMNOT consists of the following sequence of rules:

Seq0 = (R01 , R02),

where:211
R01 : (sin, (x)) 7→ (shaltj , (x)) and p(R01) = 1

2 ;212

R02 : (sin, (x)) 7→ (shaltj , (1− x)) and p(R02) = 1
2 .213

Consider, for instance, the input (sin, (0)). The output will be the following set:{
(shaltj , (0)), (shaltj , (1))

}
.

On this basis, a “classical probabilistic Mach-Zehnder state machine” would determine (for the word-input214
(0)) the word-graph illustrated by Figure 4.215

Figure 4. A word-graph for a “classical probabilistic Mach-Zehnder state machine” .
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Such a machine turns out to compute both the words (0) and (1) with probability 1
2 . Interestingly enough,216

this is the same probabilistic result that is obtained in the quantum case, when one performs a measurement217
inside the interferometer-box. In such a case, photons behave like “normal skiers”, who pass either at the218
right or at the left side of a tree (where or represents here, of course, the exclusive disjunction).219

The arguments we have developed seem to confirm the following conjecture: the characteristic220
superposition-patterns, that may occur during a quantum computation (when no measurement is per-221
formed during the computation-process), cannot be generally represented by probabilistic state machines.222
Quantum parallelism (based on superpositions) and classical parallelism are deeply different.223

4 QUANTUM PARALLELISM, PSYCHOLOGICAL PARALLELISM AND QUANTUM
COMPUTATIONAL SEMANTICS

What kind of similarity can be recognized between quantum parallel structures and different forms of224
psychological parallelism? Trying to represent the human mind as a kind of system of quantum state225
machines would be, of course, naive and misleading. In spite of many important results in the framework226
of neurosciences, the complex network that connects human conscious and unconscious thoughts is still227
quite mysterious.7 Quantum-like superpositions can be reasonably applied to represent some aspects of228
such complex networks. Even quantum interference phenomena (with the characteristic constructive and229
destructive effects) can find some natural psychological interpretations.230

According to an interesting hypothesis (discussed by the neuroscientist Edoardo Boncinelli8), the myste-231
rious emergence of an act of consciousness can be represented as a sudden transition from a parallel232
structure to a linear one. Is it reasonable to conjecture that such transition could be described as a kind of233
“psychological collapse of the wave-function”?234

In the investigations about possible links between quantum structures and psychological structures a235
useful tool is represented by a special form of quantum logical semantics (called quantum computational236
semantics) that has been naturally inspired by the theory of quantum computation.9237

Let us briefly recall the basic ideas of this semantics. We can refer a first-order language L, whose238
non-logical alphabet contains individual terms (variables and names), predicates and sentential constants.239
Interpreting the language L means associating to any formula α a meaning, identified with a piece of240
quantum information that can be stored by a quantum system. Accordingly, any possible meaning of α is241
represented by a possible (pure or mixed) state of a quantum system: generally, a density operator ρα that242
lives in a Hilbert spaceHα, whose dimension depends on the linguistic complexity of α.243

The logical operators of L are associated to special examples of Hilbert-space operations that have a244
characteristic dynamic behavior, representing possible computation-actions. The logical connectives are245
interpreted as particular (reversible) gates, like the negation NOT, the Hadamard-gate

√
I, the Toffoli-gate246

T (which allows us to define a reversible conjunction AND). At the same time, the logical quantifiers (∀,247
∃) are interpreted as possibly irreversible quantum operations. Since the universe of discourse (which the248
language refers to) may be indeterminate, the use of quantum quantifiers may give rise to a reversibility-249
breaking, which is quite similar to what happens in the case of measurement-phenomena.250

Due to the characteristic features of quantum holism, meanings turn out to behave in a holistic and251
contextual way: the density operator ρα (which represents the global meaning of a formula α) determines252
the contextual meanings of all parts of α (which can be obtained by applying the reduced-state function to253
ρα). As a consequence, it may happen that the meaning of a formula is an entangled pure state, while the254

7 As is well known, the literature devoted to the study of parallel structures in the mind/brain-behavior is very rich. As an example, one can refer to some
important contributions of A. Damasio (see, for instance, Damasio, 1999).
8 See Boncinelli, 2012.
9 See Dalla Chiara et al., 2005, Dalla Chiara et al., 2010, Dalla Chiara et al. (in press) .
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meanings of its parts are proper mixtures. In such cases, the meaning of a global expression turns out to255
be more precise than the meanings of its parts. It is also admitted that one and the same formula receives256
different contextual meanings in different contexts.257

As an example, consider the atomic sentence “Alice is pretty” (formalized as Pa). In order to store the258
information expressed by this sentence, we need three quantum objects whose states represent the pieces259
of information corresponding, respectively, to the predicate P, to the name a and to the truth-degree260
according to which the individual denoted by the name a satisfies the property denoted by the predicate261
P. Accordingly, the meaning of the sentence Pa can be identified with a (pure or mixed) state ρPa living262
in the tensor-product space HPa = ⊗3C2. In order to obtain the contextual meanings of the linguistic263
parts of Pa it is sufficient to consider the two reduced states Red1(ρPa) and Red2(ρPa), which describe264
(respectively) the states of the first and of the second subsystem of the quantum object that stores the265
information expressed by the sentence Pa. From a logical point of view, Red1(ρPa) and Red2(ρPa) can266
be regarded as two intensional meanings: a property-concept and an individual concept, respectively;267
while ρPa represents a propositional concept (or event).268

Like formulas, sequences of formulas also can be interpreted according to the quantum computati-269
onal rules. As expected, a possible meaning of the sequence (α1, . . . , αn) will be a density operator270
ρ(α1,...,αn) living in a Hilbert spaceH(α1,...,αn), whose dimension depends on the linguistic complexity of271
the formulas α1, . . . , αn.272

In this framework one can develop an abstract theory of vague possible worlds. Consider a pair

W = ((α1, . . . , αn), ρ(α1,...,αn)),

consisting of a sequence of formulas and of a density operator that represents a possible meaning for our273
sequence. It seems reasonable to assume that W describes a vague possible world, a kind of abstract274
scene where most events are characterized by a “cloud of ambiguities”, due to quantum uncertainties. In275
some cases W might be exemplified as a “real” scene of a theatrical play or as a vague situation that is276
described either in a novel or in a poem. And it is needless to recall how ambiguities play an essential role277
in literary works.278

As an example, consider the following vague possible world:

W = ((Pab), ρ(Pab)),

where Pab is supposed to formalize the sentence “Alice is kissing Bob”, while ρPab corresponds to the
pure state

|Ψ〉Pab = |ϕ〉 ⊗ 1√
2

(|0, 1)〉+ |1, 0〉)⊗ |1〉,

where |ϕ〉 lives in the space C2, while |Ψ〉Pab lives in the space ⊗4C2. Here the reduced state of |Ψ〉Pab279
that describes the pair (Alice, Bob) has the typical form of an entangled state; consequently, the states280
describing the two individuals Alice and Bob are two identical mixed states. In the context |Ψ〉Pab Alice281
and Bob turn out to be indistinguishable: it is not determined “who is who” and “who is kissing whom”.282
It is not difficult to imagine some “real” theatrical scenes representing ambiguous situations of this kind.283

5 A QUANTUM SEMANTICS FOR MUSIC

An abstract version of the quantum computational semantics can be applied to a formal analysis of musical284
compositions, where both musical ideas and extra-musical meanings are generally characterized by some285
essentially vague and ambiguous features.10286

10 See Dalla Chiara et al., 2012.
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Any musical composition (say, a sonata, a symphony, an opera,...) is, generally, determined by three287
elements:288

• a score;289
• a set of performances;290
• a set of musical thoughts (or ideas), which represent possible meanings for the musical phrases291

written in the score.292

While scores represent the syntactical component of musical compositions, performances are physical293
events that occur in space and time. From a logical point of view, we could say that performances are,294
in a sense, similar to extensional meanings, i.e. well determined systems of objects which the linguistic295
expressions refer to.296

Musical thoughts (or ideas) represent, instead, a more mysterious element. Is it reasonable to assume297
the existence of such ideal objects that are, in a sense, similar to the intensional meanings investigated298
by logic? Is there any danger to adhere, in this way, to a form of Platonism? When discussing semantic299
questions, one should not be “afraid” of Platonism. In the particular case of music, a composition cannot300
be simply reduced to a score and to a system of sound-events. Between a score (which is a system of301
signs) and the sound-events created by a performance there is something intermediate, represented by the302
musical ideas that underlie the different performances. This is the abstract environment where normally303
live both composers and conductors, who are accustomed to study scores without any help of a material304
instrument.305

Following the rules of the quantum semantics, musical ideas can be naturally represented as superposi-
tions that ambiguously describe a variety of co-existent thoughts. Accordingly, we can write:

|µ〉 =
∑
i

ci|µi〉,

where:306

• |µ〉 is an abstract object representing a musical idea that alludes to other ideas |µi〉 (possible variants307
of |µ〉 that are, in a sense, all co-existent);308

• the number ci measures the “weigth” of the component |µi〉 in the context |µ〉.309

As happens in the case of composite quantum systems, musical ideas (which represent possible mea-310
nings of musical phrases written in a score) have an essential holistic behavior: the meaning of a global311
musical phrase determines the contextual meanings of all its parts (and not the other way around).312

An important feature of music is the capacity of evoking extra-musical meanings: subjective feelings,313
situations that are vaguely imagined by the composer or by the interpreter or by the listener, real or virtual314
theatrical scenes (which play an essential role in the case of lyric operas and of Lieder). The interplay315
between musical ideas and extra-musical meanings can be naturally represented in the framework of316
our quantum semantics, where extra-musical meanings can be dealt with as special examples of vague317
possible worlds.318

We can refer to the abstract tensor product of two spaces

MSpace⊗WSpace,

where:319

• MSpace represents the space of musical ideas |µ〉.320
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• WSpace represents the space of vague possible worlds, dealt with as special examples of abstract321
objects |w〉 that can be evoked by musical ideas.322

Following the quantum-theoretic formalism, we can distinguish between factorized and non-factorized
global musical ideas. A factorized global musical idea will have the form:

|M〉 = |µ〉 ⊗ |w〉.

But we might also meet entangled global musical ideas, having the form:

|M〉 = c1(|µ1〉 ⊗ |w1〉) + c2(|µ2〉 ⊗ |w2〉).

As is well known, music gives rise to a special kind of psychological experience, where some complex323
parallel structures are consciously grasped, in a way that may appear miraculous. Paradigmatic examples324
arise, for instance, in the case of trios or quartets of lyric operas. In such cases, the listener perceives a325
global polyphonic structure; at the same time, he/she is able to follow (at least to a certain extent) the326
different melodic lines and even the different thoughts and feelings of the characters who are singing. As327
an example, it may be interesting to consider three great masterpieces of the history of lyric operas: the328
quartet of Act 1 in Beethoven’s Fidelio, the quartet of Act 3 in Verdi’s Rigoletto and the trio of Act 3329
of Der Rosenkavalier by Richard Strauss. The parallel structures that arise in these three examples have330
some significant differences both from the musical and from the semantic point of view.331

In Fidelio’s quartet the psychological contraposition between the four characters (Marzelline, Leonore,332
Rocco, Jaquino) is realized by means of a single musical theme that is successively sung by the four333
singers (Figure 5).

Figure 5. The quartet-theme.

334

It is amazing how Beethoven succeeds in expressing, by one and the same theme, different attitudes and335
emotions: the joyful hope of Marzelline, the doubts and the anguish of Leonore, the paternal satisfaction336
of Rocco, the jealous rage of Jaquino. The whole context is dominated by strong ambiguities and anta-337
gonistic elements: the contrast between an improbable family-portrait and the cruel jail-environment, the338
contradictions of Rocco (who is at the same time a fond father and an accomplice of the prison-system),339
the sexual ambiguity of Leonore, the loving heroin who has disguised herself as a man (Fidelio), in the340
attempt to save her husband, the prisoner Florestan. The musical result is an extraordinary and highly341
emotional polyphonic construction based on very simple musical components.342

The structure of Rigoletto’s quartet is completely different. All characters are associated to specific343
musical themes that are repeated with some variations. The leading musical idea is represented by the344
wonderful theme sung by the Duke of Mantova at the very beginning (Figure 6).11345

11 Fairest daughter of love, I am a slave of your charms; with but a single word you could relieve my every pain. Come touch my breast and feel how my heart
is racing. With but a single word you could relieve my every pain.
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Figure 6. The Duke.

Like Mozart’s Don Giovanni, Verdi’s Duke is a cynic seducer, who may appear sweet and sincere with346
his victims. And music often exalts a paradoxical co-existence of contradictory psychological attitudes.347
All contrasts are emphasized in the quartet by the sordid environment, where a crime is going to be348
committed. Maddalena’s answer to the Duke is based on a fully different theme, a staccato-sequence of349
sixteenth-notes (Figure 7).12

Figure 7. Maddalena.

350

Both the music and the text reflect Maddalena’s ambiguity: she is a prostitute who is playing a traditional351
seductive role; at the same time she is also instrumental to a murder-project. Gilda’s entrance (soon after352

12 Ah! Ah! That really makes me laugh, talk like that is cheap enough.
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Maddalena’s first phrase) determines a sudden dramatic change. What Gilda sings is a cry of sorrow,353
interrupted by some short pauses and appoggiaturas that seem to describe desperate sobs (Figure 8).13

Figure 8. Gilda.

354

One has often discussed the reasons that may have led Gilda to her unreasonable sacrifice for an unwor-355
thy man who had deceived her. Representing Gilda as a naive and modest girl is, however, misleading and356
in contrast with the greatness expressed by the music. Gilda’s death-choice can be perhaps better under-357
stood as a suicide, caused by an unendurable disillusion. Rigoletto’s role in the quartet is musically less358
“visible”. His mind is completely absorbed in the vengeance-project (“la vendetta”) that shall be shortly359
accomplished. From a musical point of view, the quartet is constructed as a polyphonic structure, where360
the four voices are interlaced, each preserving its own musical, semantic and psychological autonomy.361

13 Ah, these are the loving words the scoundrel spoke once to me! O wretched heart betrayed, do not break of sorrow.
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Der Rosenkavalier by Strauss belongs to a musical and literary world that is somewhat far both from362
Fidelio and from Rigoletto. Different forms of ambiguity are exalted in this opera, which is characterized363
by an extraordinary unity of music and text, written by the great poet Hugo von Hofmannsthal. The theme364
of sexual ambiguity is here developed by the character of Octavian, the Rosenkavalier whose role is sung365
by a mezzo-soprano. Although Octavian may recall Mozart’s Cherubino, ambiguities are in Strauss’ opera366
more sophisticated: in two different situations Octavian disguises himself as a woman in order to make367
fun of the rude fiancé of the fascinating girl Sophie. Interestingly enough, some interpreters of the role368
of Octavian have told how often they have been puzzled by their “oscillating identity” during the opera’s369
performance.370

A different and deeper “identity-question” is evoked in a splendid aria sung by the Marschallin in Act371
1. After a passionate night spent with her lover Octavian, the lady is troubled by some sad thoughts about372
the flowing of time and the mysterious co-existence of different identities of one and the same person in373
different stages of life. She sings:374

Aber wie kann das wirklich sein,375

dass ich die kleine Resi war,376

und dass ich einmal die alte Frau sein werd’377

.....................................378

Wie kann denn das geschehen?379

Wie macht denn das der liebe Gott?380

Wo ich doch immer die gleiche bin.381

Und wenn er’s schon so machen muss,382

warum lasst er mich denn zuschaun dabei383

mit gar so klarem Sinn?384

Warum versteckt er’s nicht vor mir?385

Das alles ist geheim, so viel geheim. 14386

One is dealing with an extraordinary poetic and musical representation of a “hard” scientific and387
philosophical problem, that modern philosophers of science usually call “the genidentity-question”.15388

The trio performed at the end of the opera by three female voices (the Marschallin, Sophie, Octavian) is389
a wonderful polyphonic construction, where the three characters express different thoughts and feelings,390
which are not generally associated to some specific musical themes (unlike the case of Rigoletto’s quartet).391
The main theme is sung at the very beginning by the Marschallin (Figure 9).16392

By this deeply moving musical phrase the Marschallin expresses her extreme act of love, which is to393
renounce love. Her choice might recall what Violetta Valery sings in Verdi’s La Traviata:394

Dite alla giovine sı̀ bella e pura17395

14 But how can it be that I was the little Resi and that I shall be the old lady. .... How can it come to pass? How can God decree it so? While, in fact, I am
always the same. And if indeed it must be so, why does he let me look at it so clearly? Why does he not hide it to me? All this is a mystery, a great mystery.
15 The term “genidentity”, which refers to the problematic identity of individuals through time has been introduced by Kurt Lewin (in his doctoral thesis in
1922) and has been further investigated by Hans Reichenbach and many other scholars. See, for instance, Reichenbach, 1928.
16 I promised to love him in the right way, even to love his love for another woman.
17 Tell the beautiful and pure girl
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Figure 9. The Marschallin.

although Violetta and the Marschallin are, of course, completely different characters.396

Sophie’s entrance in the trio is, in a sense, surprising. She joins in, in the final part of the Marschallin’s397
first phrase, just upon the critical word “andern” (“other”). Her intervention creates a sudden brief disso-398
nance (a minor-second chord), which immediately disappears when the two womem (who are both in love399
with Octavian) harmonically conclude the phrase at a distance of a minor-third. What Sophie perceives400
is a strange religious atmosphere that she cannot really understand, since she is not aware of the liason401
between Octavian and the Marschallin. The incipit of the main theme (the characteristic imprinting of the402
whole trio) is then immediately transposed to a different key (from D flat major to A major) by Octavian,403
whose initial attitude seems to be mainly dominated by embarassing doubts and questions. But finally the404
reasons of love prevail over all doubts. At the end of the trio, while the two young lovers sing an expected405
“dich habe ich lieb” (“I love you”), the Marschallin concludes with an enigmatic phrase:406

als wie halt Männer das glücklich sein verstehen.18407

singing the last note alone over a perfect tonic chord.408

The three examples of polyphonic constructions, created by Beethoven, Verdi and Strauss, are all chara-409
cterized by strong unitary conceptions, based on complex parallel networks of harmonic, melodic, timbric410
and semantic relationships (which have been extensively analyzed in musicological literature19). At the411
same time, one can easily recognize some significant differences that distinguish the three cases, both412
from the musical and from the semantic point of view. The structure of Fidelio’s quartet is very close to413
a canon-form, where the entrance of each voice is associated to a specific semantic connotation. Rigo-414
letto’s quartet is, instead, dominated by strong musical contrasts that reflect the conflicting feelings of415
four human beings, living in a highly dramatic situation. Finally, Strauss’ trio seems to propose a kind416
of musical and semantic “peaceful resolution”. The trio is perceived by the listener as a strongly unitary417
musical idea that evolves in time. The three female voices are in a sense “entangled”, sometimes creating418
the illusion that a single voice is singing (as happens in the case of some entangled quantum objects,419
whose parts are indistinguishable). Such musical situations can be naturally represented in the framework420

18 as far as men can understand happiness.
19 See, for instance, Solomon, 1998, Budden, 1983, Principe, 2004.
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of the quantum musical semantics, where musical thoughts are dealt with as holistic ideal objects that421
vaguely allude to a (possibly infinite) variety of co-existing ideas.422

The analysis proposed in this article has concerned questions that belong to worlds apparently “far423
apart”: the theory of quantum computers, psychology, logical semantics and music. A common pattern424
that arises in all these fields is a frequent and sometimes essential emergence of some characteristic paral-425
lel structures. We have seen how the quantum-theoretic concepts of superposition and entanglement have426
inspired the development of a “bridge-theory” (based on the quantum computational semantics) that can427
be usefully applied to a formal representation of different kinds of phenomena where parallelism plays a428
relevant role.429
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