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The relationship between surface charge and surface potential at the solid-liquid interface is often
determined by a charge regulation process, the chemisorption of a potential determining ion such as
H+. A subtle ion-specific effect can be observed when other ions compete with the primary potential
determining ion to bind to a surface site. Site competition may involve alternative ions competing
for a first binding site, e.g., metals ions competing with H+ to bind to a negatively charged oxide or
carboxyl site. Second-binding sites with site competition may also be found, including amphoteric
OH+2 sites, or anion binding to amine groups. In this work, a general theoretical model is developed
to describe the competitive adsorption of ions at surface sites. Applied to the calculation of forces,
the theory predicts a 20% increase in repulsion between titania surfaces in 1 mM NaCl, and a 25%
reduction in repulsion between silica surfaces in 0.1M NaCl compared to calculations neglecting ion
site competition. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916519]

I. INTRODUCTION

Ion specific effects, or Hofmeister effects, are ubiquitous
in all fields of physical chemistry.1–6 They are observed in
measurements of electrophoretic mobilities (zeta potentials),7

surface charge titrations,8,9 surface force measurements,10

polymer and protein solubility,11,12 pH,13 and biological
activity.14–19

Ion specific effects cannot be described by classical
electrostatic models of salt solutions. Rather, they came to
be understood as arising from chemisorption, or specific
adsorption,20 of ions to the surface, expressed as a shift in the
effective charge of the surface (distinct from the charge of the
diffuse layer of ions). More recently the role of nonelectrostatic
physisorption of ions has come to be understood, arising
to quantum mechanical van der Waals interactions of ions
acting at a distance from the surface,21–24 or due to size-
dependent ion-water interactions at the cavity of an ion.25–29

The two kinds of nonelectrostatic ion-surface interactions are
connected, with the degree of chemisorption of ions at surface
sites influenced by the degree of physisorption, including
nonelectrostatic physisorption.30

Site binding of the hydrogen ion is the normal mechanism
by which pH-sensitive materials acquire their surface charge,
in which context it is often known as charge regulation.31–35

In principle, the state of the regulated surface charge can
be determined from atomic force microscopy (AFM).36 The
theory of the relationship between hydrogen ion binding
and nonelectrostatic physisorption of the hydrogen ion was
recently developed.30 But that theory considered only site

a)Electronic mail: D.Parsons@murdoch.edu.au

binding of a single ion. Proteins are zwitterionic biomacro-
molecules, that is, carry both negative (i.e., carboxylate or
phenolate) and positive (i.e., amine, imidazole, or guanidine)
charged groups which act as adsorbing sites for other ions
besides H+. This phenomenon is particularly relevant in
physiological conditions where [H+] is only 10−7 M whereas
Na+ and Cl− are 106 times more concentrated. Both sodium
and hydrogen ions compete for the same carboxylate site. In
this paper, we therefore extend the theory of ion site binding
(chemisorption) alongside ion nonelectrostatic physisorption,
to account for ion competition at a surface site. The idea of
ion site competition is illustrated in Fig. 1.

While a model of ion site competition is important for
protein systems, it is also relevant elsewhere. For instance,
measurement of high pH by glass electrodes is confounded by
interfering substances (the “sodium error”), which introduces
error into the pH measurement.37,38 This can be understood as
ion site competition between sodium and hydrogen ions for
oxide sites on the surface of the glass electrode.39

The interaction of H+ ions with oxide surface sites of
metal oxides is often modelled as amphoteric, providing
both positive and negative total surface charges depending
on pH. Therefore in order to cover this case, we build ion
competition for a general amphoteric site, that is, with double
ion binding. The effect of ion competition on surface charge
has been considered previously.40–42 We extend the analysis to
the effect of ion site competition on surface free energy and
surface forces. To illustrate the model, we apply it to a system
of oxide sites on a titania surface with competitive double
binding (amphoteric competition) and on a silica surface
(nonamphoteric). Application of the model to protein systems
will be made elsewhere.

0021-9606/2015/142(13)/134707/10/$30.00 142, 134707-1 © 2015 AIP Publishing LLC
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FIG. 1. Illustrative cartoon of ion site competition. Metal ions compete with
H+ to bind to a charged oxide (or carboxylate) site (a) or a neutral amine site
(b). An anion may bind to a protonated amine site (c). Competitive double
binding may occur at a protonated amphoteric oxide site (d).

Our model does allow for the inclusion of nonelectrostatic
physisorption (general nonelectrostatic ion-surface interac-
tions acting at a distance from the surface) alongside chemi-
sorption (specific site-binding). We argue that the separation
of these two adsorption mechanisms enables a more complete
description of ion adsorption. Nevertheless, nonelectrostatic
physisorption is a secondary consideration in the theory
presented here and is omitted from our illustrative calculations.
We emphasis that the main innovation of this work is to
describe the impact of competitive ion chemisorption at
surface sites.

Calculated surface forces are frequently presented in
terms of the disjoining pressure, which is the force between
two parallel, flat surfaces with separation L between them,
typically calculated (for symmetric surfaces) as

P =

i

ci(L/2) − ci0, (1)

where ci0 is the bulk concentration of ion i and ci(L/2) is its
concentration at the midplane between the two surfaces. Deniz
and Parsons previously found30 that this expression is incom-
plete for charge regulated systems where the single potential-
determining ion experiences nonelectrostatic physisorption
interactions. In this work, we extend that result to the case
of competitive charge regulation. But more than that, we
also reveal an additional pressure term which arises due to
competitive double-binding at amphoteric sites, present even
when nonelectrostatic physisorption is neglected. However,
our analysis takes a thermodynamic approach using the total
free energy of the system,23,43 from which the disjoining
pressure is a derived rather than fundamental quantity.

II. GENERAL ION COMPETITION AT SURFACE SITES

In general, a system may have a number of different types
of chemisorbing surface sites, e.g., protein surfaces contain
both acidic carboxylate and basic amine sites. The total surface
charge is, indexing each type of site with s,

σ =

s

σs. (2)

The surface density of each type of site is Ns. Neglecting
any specific distribution of charge sites across the surface
(which would introduce a lateral dependence of the potential
on the x, y-coordinates parallel to the surface), the mean
electrostatic potential ψ(z) can be calculated by the Poisson-
Boltzmann model from this total smeared surface charge σ.

Consequently the calculation (more precisely, the physics) of
the total physisorption free energy Fps remains, for a given
total σ, unchanged by ion site competition.

To construct a general chemisorption model, we must
choose whether to start from the dissociated or associated state.
The traditional amphoteric model with two acid constants
conceptually started from the doubly associated state.30,32 But
to evaluate the chemisorption free energy for the case of
general ion competition, we must also establish a reference
state. It is convenient to use the neutral uncharged surface as
the reference state. But for different sites this means different
things. For acidic sites, the neutral state is the associated
site (with bound H+). For basic sites, the neutral state is
the dissociated site (no chemisorbed ion). For the sake of
consistency with the commonly used acid constants pKa, we
write the equilibria as dissociation processes,

SXqs+qi
i 
 Sqs + Xqi

i (pKi). (3)

Note the differences from a standard simple amphoteric
description. We allow the site to have its own dissociated
charge qs (qs = 0 for basic sites, qs = −1 for acidic sites).
Likewise for generality, the ion may have an arbitrary charge
qi (the model applies to association of both cations and anions,
univalent and multivalent). The equilibrium constants pKi are
dissociation constants, similar to acid constants. Extension of
charge regulation to ion competition requires a multiplicity of
equilibrium constants.40

Generalised amphotericity is then provided by dissocia-
tion from doubly bound states. In the general case any ion Xj
may bind to a singly bound site SXi, with

SXiX
qs+qi+qj
j 
 SXqs+qi

i + X
qj
j (pKi j) (4)

requiring a matrix of double-binding constants pKi j, which
will not in general be symmetric, Ki j , K j i. Again, pKi j are
dissociation constants, akin to acid constants. Full dissocia-
tion, forbidding binding, is provided within this formalism
(whether for single binding Ki or double-binding Ki j) by
K = ∞, that is, by pK = −∞.

A. Equilibrium surface charge per site

It is convenient to calculate the surface charge σs due to
a given binding site s by using the total amount Γi of ion Xi
bound to the site. The total charge due to site s is then

σs = qsNs +

i

qiΓi. (5)

Γi can be determined from the fraction of sites which
have bound charge. Let αi be the fraction of sites of type s
which are occupied by ion Xi (by single association only),
and let βi j be the fraction of sites to which the two ions Xi
and Xj are bound (double association). A standard acid site
is a purely dissociative site where all βi j = 0 and qs = −1. A
standard basic site likewise has βi j = 0 together with qs = 0.
The fraction γs of bare, nonassociated sites is of course

γs = 1 −

i

αi −

i j

βi j . (6)
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The equilibrium constants for Eqs. (3) and (4) may be
written in terms of site binding fractions,

Ki =
aiγs
αi

(7)

and

Ki j =
a jαi

βi j
. (8)

Here, ai, a j are the activities of ions Xi, Xj in solution. If
the equilibrium constants are taken to be intrinsic equilibrium
constants (relative to local ion concentrations), then ai and a j

must represent the activities of the ions at the surface, that is, at
the location of the surface sites. However, the same formalism
equally applies to site binding of ions in Stern layers displaced
some distance di away from the bulk interface. In this case ai

would refer to the activity of ion i at distance di. Alternatively,
ai and a j may represent bulk activities, in which case the
equilibrium constants must be taken as the effective constants
relative to bulk.44

This allows the site binding fractions to be written in
terms of equilibrium constants and ion activities in solution,

αi =
ai

KiAs
(9)

and

βi j =
aia j

KiKi jAs
, (10)

where As is a measure of the total degree of association,

As = 1 +

m

am

Km

*
,
1 +


n

an

Kmn

+
-
, (11)

As is the inverse of the total degree of dissociation, that is,
γs = 1/As.

For a given set of site occupation fractions αi and βi j, the
total amount of Xi chemisorbed to the site, whether by single
or double association, is

Γi = Ns
*.
,
αi + βii +


j

βi j
+/
-
. (12)

Given the definitions of αi and βi j in Eqs. (9) and (10), we
can write the amount Γi of bound Xi in terms of ion activities,

Γi =
Nsai

AsKi

*.
,
1 +

ai

Kii
+


j

a j

Ki j

+/
-
. (13)

Note that i is included in the sum over j, and that the factor
As is a function of activities ai.

B. Total chemisorption free energy per site

Calculation of the total surface free energy of a single
isolated surface enables, for instance, the theoretically study
of the impact of ionic adsorption on wettability. Calculation of
the interaction free energy between two surfaces separated by
distance L allows surface forces to be evaluated. In either case,
the free energy contribution due to ion binding (chemisorption)
must be included in the total free energy of the surfaces.

We evaluate the chemisorption free energy using the same
philosophy applied previously to hydrogen ion chemisorp-
tion.30 The total free energy Ftotal = Fps + Fcs is comprised
of both physisorption (Fps) and chemisorption (Fcs) compo-
nents. The physisorption free energy contains an electrostatic
contribution (attractive) due to the total surface charge and the
distribution of ionic charges, an entropic contribution (repul-
sive) due to the density profile of ions, and a nonelectrostatic
contribution due to ionic dispersion forces (often, though
not always, attractive) or other nonelectrostatic physisorption
interactions. The physisorption contribution does not depend
on chemisorption except by way of the total surface charge.
Therefore for the sake of brevity, we do not reproduce details
here but refer to Ref. 23. The thermodynamic approach
employed here draws on the analysis of surface forces
presented by Overbeek in 1990.43

The chemisorption free energy integrates the change in
free energy when an amount Γi of ion Xi is transferred between
solution and surface site. The integration is taken between the
amount Γ0

i of ion chemisorbed in the reference state and the
final amount Γ chemisorbed at equilibrium. The reference
state is always taken to be the neutral, uncharged surface,
discussed in more detail below. If Γ̃i is the additional amount
of ion Xi chemisorbed beyond that reference state, then the
total chemisorption free energy for a given site s is

Fs
cs =


i

F i
cs, (14)

where

F i
cs =

 Γi−Γ0
i

0
dΓ̃i∆F i

cs(Γ̃i). (15)

1. Equilibrium with bulk

The incremental change in free energy ∆F i
cs(Γ̃i) is

established by equilibrium with ions in bulk solution. Overall
equilibrium is established when the change in free energy
relative to bulk is zero, that is,

0 = ∆Fi = µAXi − µA − µbulk
i . (16)

This condition applies separately to both single and double
equilibria. That is, in this context, A and AXi represent either
the bare site Sqs and the singly associated site SXi

qs+qi, or the
single and doubly associated sites SXj

qs+qi and SXjXi
qs+qi+q j

(where ion Xj is already bound). ∆F i
cs is defined as

∆F i
cs = µAXi − µA − µ̄ps

i (17)

relative to the Xi ion in solution physisorbed at the surface (at
the location of the site). Here, µ̄ps

i is the total physisorption free
energy of the ion, that is, the chemical potential of the aqueous
ion at the surface. But it is more convenient to write in terms
of the excess chemical potential µps

i relative to bulk, defining
µ

ps
i = µ̄

ps
i − µ

bulk
i . Classically µps

i refers to the electrostatic free
energy of the ion in potential ψ, but in general, it also includes
nonelectrostatic contributions such as ionic dispersion,21,22,45

cavity free energy,27,46 and volume exclusion entropy.47 We
might write µps

i = qiψ + µNES
i . We then take ∆Fi = ∆F i

cs + µ
ps
i .

The bulk equilibrium condition ∆Fi = 0 then provides the
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relation

∆F i
cs = −µ

ps
i . (18)

We assume that this equilibrium condition holds at each charge
transfer point Γ̃i. That is, we assume the ionic diffuse layer is in
equilibrium with bulk ions at each incremental surface charge
state represented by Γ̃i. This means µps

i varies incrementally
with Γ̃i.

2. Chemisorption free energy via ion activities

We evaluate the chemisorption free energy Eq. (15) by
applying the bulk equilibrium condition Eq. (18), obtaining
an integral in


µ

ps
i dΓ̃i. We do not in general know µ

ps
i as a

function of Γ̃i. But we do know the reverse, by way of the
surface activity a′i = abulk

i exp(−µps
i /kT) of the ion.

The chemisorption free energy in Eq. (15) (with Eq. (18))
may be transformed into an integral in


Γ̃idµ

ps
i

′ (a Legendre
transformation,

 X1
0 Y (X ′)dX ′ = X1Y (X1) −

 Y (X1)
Y (0) X(Y ′)dY ′).

But since µps
i

′
= −kT ln(a′i/abulk

i ), we have dµps
i

′
= −kTda′i/a

′
i.

The chemisorption free energy may be evaluated in the form

F i
cs = −µ

ps
i

�
Γi − Γ0

i

�
− kT

 ai

ai0

Γ′i − Γ0
i

a′i
da′i. (19)

Γ′i is the intermediate amount of Xi chemisorbed. That
is Γ′i is given by Eq. (13), replacing all ai and a j with
intermediate values a′i and a′j (within the coefficient As

also). The integration is made from the reference state where
a′j = a j0 to the final state where a′j = a j. We represent the
intermediate state by variable t from 0 to 1, such that each
a′j = a j0 + t(a j − a j0). Evaluation of the chemisorption free
energy is therefore given finally by

F i
cs = −µ

ps
i

�
Γi − Γ0

i

�
− kTΓ0

i ln
ai

ai0
− kT(ai − ai0)

×
 1

0
dt

Γ′i(t)
ai0 + t(ai − ai0) . (20)

Before proceeding with the integration from the refer-
ence to final state, it is convenient to consider the relationship
between the physisorption contribution µ

ps
i and the total

charge. As discussed above, we may split the physisorption
free energy into electrostatic and nonelectrostatic components,
µ

ps
i = qiψ0 + µ

NES
i , where ψ0 is the electrostatic surface

potential at the site. But given the surface charge from
Eq. (5), summing the leftmost physisorption term F[ps]

cs
= −

i µ
ps
i

�
Γi − Γ0

i

�
from Eq. (20) over all ions gives

F[ps]
cs = −ψ0 (σs − σ0) −


i

µNES
i

�
Γi − Γ0

i

�
. (21)

The electrostatic contribution (first term on the right) simplifies
further by taking the neutral, uncharged surface, σ0 = 0, as the
reference state.

3. Reference state: Neutral uncharged surface

The reference state represented by Γ0
i and ion activity

ai0 is the neutral uncharged surface, where σs = 0. When the
surface site has zero charge qs = 0, e.g., a basic site, then the

reference state is the fully dissociated surface with Γ0
i = 0 and

ai0 = 0 for all ions.
If, however, the bare surface site is charged (qs , 0), then

the reference state must be established by chemisorption of
some ions, for which Γ0

i , 0. It is simplest to identify a specific
“native” ion Xv, typically the hydrogen ion. More generally
it could be possible to set the reference state with a mixture
of chemisorbed (multiple ions for which Γ0

i , 0 but σ0
s = 0),

but this would be a specialised situation requiring specific
analysis.

Accepting a single reference ion Xv, the reference state
may be treated as a single ion system where Γ0

i = 0 and ai0 = 0
for all other competing ions i , v . The general total surface
charge in terms of all Γi is given by Eq. (5). The reference
state with σs = 0 and Γ0

v from Eq. (13) provides a quadratic
equation establishing the value of the reference activity av0,

a2
v0

KvKvv

(
2 +

qs

qv

)
+

av0

Kv

(
1 +

qs

qv

)
+

qs

qv
= 0. (22)

It is not constructive to write out the full solution for
av0 for general values of qs. That general solution may
however be interesting for particular surfaces. For instance,
titania48–50 iron oxide50 and alumina51,52 have been modelled
with fractional site charges. The reference activity and ion
chemisorption will have to be evaluated separately for specific
surface models like these.

For the more common case where qs = −qv (e.g., H+ ions
chemisorbing to oxide sites with charge −1), the reference
activity is

av0 =


KvKvv [for qs = −qv]. (23)

This establishes a finite reference activity for an amphoteric
site which includes double association. It reduces to the case
of an acidic site (single association only) where Kvv = ∞,
yielding the acidic reference activity av0 = ∞ (where qs

= −qv).
The case of asymmetric charge (qs , −qv) may be eval-

uated for the case of an acid-like site with single association
(Kvv = ∞),

av0 =
−Kv qs/qv

1 + qs/qv
[for Kvv = ∞]. (24)

The corresponding amount of chemisorbed reference ion,
calculated using Eq. (13), is given by the single expression

Γ
0
v = −Ns

qs

qv
. (25)

This expression for Γ0
v is valid for all cases except double

association with asymmetric charge (i.e., qs , −qv with
Kvv , 0), for which we have not explicitly evaluated av0.

4. Total chemisorption free energy

With the amount of chemisorbed ion Γi and the reference
activities ai0 determined, we can define the total chemisorption
free energy. The free energy per site is

Fcs = Fel
cs + FNES

cs + Fen
cs + Fcomp

cs . (26)
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The initial term is the contribution due to electrostatic
physisorption (first term in Eq. (21)),

Fel
cs = −ψ0σs, (27)

σs is the contribution from this site to the total surface charge
and ψ0 is the electrostatic surface potential.

FNES
cs also refers to a physisorption contribution to the

chemisorption free energy, the second term in Eq. (21). It
arises from the nonelectrostatic physisorption component µNES

i

in the excess chemical potential relative to bulk, of the ion in
solution located at the surface,

FNES
cs = −


i

µNES
i

�
Γi − Γ0

i

�
(28)

summing i over all competing ions. Under classical constant
potential conditions (more precisely, constant chemical poten-
tial), FNES

cs is the only contributing term30 (alongside the elec-
trostatic term of Eq. (27)). Under single-ion equilibrium condi-
tions, Γi − Γ0

i = σ/qi, and the nonelectrostatic physisorption
component may be written as FNES

cs = −µNES
i σ/qi. But this

simplification cannot be made in the general case of competing
ions.

Fen
cs is a site entropy contribution which arises due to the

finite number of sites, Ns. More precisely, it is a contribution
due to the entropy of fully dissociated sites,

Fen
cs = kT Ns ln

γs
γ0
+ kT


i

Γ
0
i ln

ai

ai0
, (29)

γs is the fraction of fully dissociated sites (Eq. (6)). γ0 is
the fraction of fully dissociated sites in the reference state.
Recall that Γ0

i = 0 for all competing ions except the “native”
ion which binds at the neutral reference state, for which in
most cases Γ0

v = −Nsqs/qv (see Eq. (25)). Hence the second
term, due to the reference state (neutral, uncharged surface),
is zero in the case where the site itself is uncharged (qs = 0).

Fcomp
cs arises due to competitive double-binding. That is, it

is present only when multiple ions compete to bind doubly
to site s (i.e., when Ki j is finite for more than one ion).
Fcomp

cs is small if competitive double binding is weak. This
term is sufficiently complex that we give details separately in
Sec. II B 5.

These expressions are valid for the general case of ampho-
teric ion site competition, including the complex case of
amphoteric equilibrium of the reference ion with asymmetric
charge, qs , qv, Kvv , 0, for which we have not explicitly
evaluated av0 and Γ0

v.

5. General competitive amphoteric binding

If the surface site is nonamphoteric (all Ki j = ∞) or if only
a single ion binds to the site (no ion site competition at all),
then the competitive amphoteric (double binding) free energy
term Fcomp

cs = 0. Fcomp
cs is also zero in the case of single ion

amphotericity with competitive single binding, that is, where
the reference ion may doubly bind with a finite Kvv, but where
all other Ki j = ∞ (while multiple Ki are finite).

But for the general case of competitive double binding
with multiple finite Ki j, Fcomp

cs becomes nontrivial. It is

convenient to split Fcomp
cs into two parts,

Fcomp
cs = Fcomp−en

cs + F two−bind
cs , (30)

Fcomp−en
cs provides a correction to the site entropy term Fen

cs .
F two−bind

cs is an entirely new term. Fcomp−en
cs and F two−bind

cs are
typically both large in magnitude (as much as ten times the
magnitude of Fen

cs ) but with opposite signs. When competitive
ion binding is weak (relative, say, to H+ binding), then these
two terms cancel such that Fcomp

cs itself is small relative to the
other chemisorption contributions.

The site entropy correction Fcomp−en
cs is given by

Fcomp−en
cs = −kT NsC ln

γs
γ0
, (31)

with a site entropy correction coefficient,

C = 1 −

i

∆ai [ai0(A2B1 − A1B2) + ∆ai(A0B2 − A2B0)]
2A2Si

.

(32)

Here, ∆ai = ai − ai0,

A0 = 1 +

m

am0

Km

*
,
1 +


n

an0

Kmn

+
-
, (33)

A1 =

m



∆am

Km
+

am0

Km


n

∆an

Kmn
+
∆am

Km


n

an0

Kmn


,

(34)

A2 =

m

∆am

Km


n

∆an

Kmn
; (35)

and

B0 = ai0 *
,
1 +

ai0

Kii
+


m

am0

Kim

+
-
, (36)

B1 = ai0 *
,

∆ai

Kii
+


m

∆am

Kim

+
-
+ ∆ai

*
,
1 +

ai0

Kii
+


m

am0

Kim

+
-
,

(37)

B2 = ∆ai
*
,

∆ai

Kii
+


m

∆am

Kim

+
-
, (38)

Si = Ki

�
A2a2

i0 + A0∆ai
2 − A1ai0∆ai

�
, (39)

A0 is Eq. (11) taken with activities am0 from the reference
state, and therefore γ0 = 1/A0. Note that the total degree of
association (Eq. (11)) is given by As = A0 + A1 + A2.

The second competitive double-binding term is

F two−bind
cs = kT Ns

D
R


arctan

(
A1 + 2A2

R

)
− arctan

(
A1

R

)
,

(40)

where

D =

i

∆ai

A2Si

�
A0A1B2∆ai − A2

1B2ai0 − 2A2
2B0ai0

+ A2 [ai0(A1B1 + 2A0B2) + ∆ai(A1B0 − 2A0B1)]} ,
(41)

with

R =


4A0A2 − A2
1. (42)
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Due to the square root defining R, the terms in Eq. (40) are only
real if A2

1 < 4A0A2. This may be true in some cases, e.g., when
Kv and Kvv are relatively close. But it is not true in general.
When A2

1 > 4A0A2, imaginary constants cancel in R and in the
tan−1 terms (via the relation tan−1(iX) = (i/2) ln[(1 + X)/(1
− X)]), to give the alternative real expression,

F two−bind
cs = kT Ns

D
2R̃

ln
(

2A0 + A1 + R̃
2A0 + A1 − R̃

)
, (43)

where

R̃ =


A2
1 − 4A0A2. (44)

C. Special cases

1. Single ion, symmetric amphoteric site

In the case of a single ion Xv binding to an amphoteric site
with symmetric charge qs = −qv, the site entropy correction
coefficient C and the competitive double-binding coefficient
D are both zero, so both Fcomp−en

cs = 0 and F two−bind
cs = 0.

For this case av0 =
√

KvKvv (Eq. (23)) and Γ0
v = Ns, and the

site surface charge is σs = qv(Γv − Ns). The total amphoteric
chemisorption free energy then reduces to

Fcs = −µps
v

σ

qv
− kT Ns ln

(
1 +

Kv

av
+

av

Kvv

)
+ kT Ns ln *

,
1 + 2


Kv

Kvv

+
-
. (45)

With appropriate algebraic manipulation, this equation equals
the equivalent formula in Table 1 of Ref. 30 (after replacing the
term ln(2K−/Hs + 1) with ln(2Hs/K+ + 1)).53 It also matches
that obtained by Chan54 after identifying Chan’s eψ0 as µ

ps
v

(such that ψ0/ekT = − ln(av/ab), with ab being the bulk
activity of the hydrogen ion, ab = 10−pH).

2. Nonamphoteric ion competition: No double binding

If the site is not amphoteric, with no double binding at all,
then all Ki j = ∞. In this case the competitive double binding
contribution to the chemisorption free energy in Eq. (26) is not
present, that is, Fcomp

cs = 0. The fraction of fully dissociated
sites is γs = 1/(1 +

m am/Km).
For a base-like site where qs = 0, γ0 = 1, and Γ0

i = 0; and
the site-entropic free energy is

Fen
cs = −kT Ns ln *

,
1 +


m

am

Km

+
-

[qs = 0,all Ki j = ∞].
(46)

For an acid-like site with nonzero qs, γ0 = 1/(1 + av0/Kv)
(v representing the native ion which neutralises the surface in
the reference state). The reference activity av0 and reference
binding Γ0

v are given by Eqs. (24) and (25). For the common
acid case of symmetric charge qs = −qv (where av0 = ∞), the
terms in av0 cancel and the site-entropic free energy is

Fen
cs = kT Ns ln

av/Kv

1 +


m am/Km

[qs = −qv,all Ki j = ∞]. (47)

The final general nonamphoteric case takes qs , −qv, with
av0 = −Kv(qs/qv)/(1 + qs/qv). The site-entropic free energy
with all Ki j = ∞ can then be written as

Fen
cs = kT Ns ln

(av/Kv)−qs/qv

1 +


m am/Km

− kT Ns ln
(av0/Kv)−qs/qv

1 + av0/Kv
. (48)

3. Competitive binding at an acidic site

A common application of the site competition model will
be to model a cation (labelled M) competing with a hydrogen
ion for a negatively charged site such as a carboxylate group
or an oxide site. In this case, with qs = −qH , we add the
site-entropy contribution from Eq. (47) to the contributions
arising from electrostatic and nonelectrostatic physisorptions,
Eqs. (27) and (28), to obtain the total chemisorption free
energy for the acidic site,

Fcs = −ψ0σs − µNES
M ΓM − µ

NES
H ΓH + µ

NES
H Ns

+ kT Ns ln
aH/KH

1 + aM/KM + aH/KH
, (49)

where, from Eq. (13),

ΓM =
Ns aM/KM

1 + aM/KM + aH/KH
(50)

and

ΓH =
Ns aH/KH

1 + aM/KM + aH/KH
. (51)

D. Disjoining pressure

The total interaction free energy addressed above is
sufficient for calculating surface forces. In general, the
interaction free energy could be calculated for an arbitrarily
complex surface geometry, for instance with a 3D solution to
the Poisson-Boltzmann equation. The corresponding force is
then computed by differentiation with respect to separation L
between surfaces, f = −dF/dL.

In practice it is common to calculate the interaction energy
between flat surfaces and then convert to an experimentally
relevant force between curved surfaces by applying the
Derjaguin approximation. For instance, AFM measures the
force between a sphere and plane. The surface forces apparatus
(SFA) measures the force between two crossed cylinders. The
Derjaguin approximation provides a theoretical estimate of the
force in both these curved geometries, using the interaction
free energy between two flat surfaces.

Nevertheless, it is common in theoretical analyses
to directly calculate the disjoining pressure P = −dF/dL
(Eq. (1)) rather than the interaction free energy F. When
F is the interaction energy between two flat surfaces, then the
disjoining pressure is the force between those flat surfaces,
distinct from the force between curved surfaces measured by
AFM or SFA. The disjoining pressure can only be converted
(by way of the Derjaguin approximation) into a force between
curved bodies by first integrating into an interaction free
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energy. Both methods of calculation can be useful, for instance
to validate the numerical correctness of the calculated force.

In the case of single ion charge regulation,30 the site
entropic contribution (from Fen

cs ) to the total chemisorption
disjoining pressure was found to partially cancel against
the physisorption component (due to Fel

cs and FNES
cs ), such

that the chemisorption disjoining pressure reduced to Pcs

= ψ dσ/dL + (µNES/q)dσ/dL, where q was the charge of
the (single) ion. The classic disjoining pressure of Eq. (1)
is obtained by cancellation of ψ dσ/dL when nonelectrostatic
physisorption is neglected (i.e., when µNES = 0).

Undernonamphoteric ioncompetition (i.e.,withnocompet-
itive double binding), this cancellation of terms still applies,
except that the nonelectrostatic component cannot be reduced
downtoasingle termin thesite chargeσs.That is, thedisjoining
pressure per site due to competitive chemisorption (with Ki j

= ∞ when i , j) is

Pcs = ψ
dσs

dL
+


i

µNES
i

dΓi
dL

(52)

replacing µNESdσ/dL with a sum over µNES
i dΓi/dL. This

expression is valid for all cases with no competitive double
binding, where crossed double binding does not take place.
That is, it is valid for multiple amphoteric binding (multiple
finite Kii, but Ki j = ∞ for i , j) and of course with competi-
tive single binding (multiple Ki).

In the more general case of competitive double binding ,
some Ki j may be finite (e.g., an anion binding to a protonated
site) and Fcomp

cs is nontrivial. The explicit evaluation of the
disjoining pressure in this case is formidable due to the
complexity of the algebra. But the invalidity of Eq. (52) for
the general case may be evaluated numerically. Calculation
of the free energy directly from Eq. (26), compared against
numerical integration of the pressure from Eq. (52), confirms
that in the general case additional terms due to Fcomp

cs (and
Fen

cs ) do need to be added to the disjoining pressure. If the
classic disjoining pressure of Eq. (1), P =


i ci(L/2) − ci0, is

used under conditions of competitive double binding, then the
calculated disjoining pressure will simply be wrong.

The requirement to use numerical derivatives to calculate
the full disjoining pressure provides a significant argument in
favour of calculating interaction free energies (and therefore
surface forces) directly rather than indirectly via the disjoining
pressure. In the most general case, the disjoining pressure corre-
sponding to Fcomp

cs is simply not available, except by numerical
differentiation of the interaction free energy. But this is the
very quantity that the disjoining pressure is used to calculate!
Furthermore, even where an expression for the terms in the dis-
joining pressure is in principle available, for instance Eq. (52), it
mayrequirederivatives suchas dΓi/dL whichareonlyavailable
numerically. In general it is more precise, and more convenient,
to calculate the interaction free energies directly rather than to
calculate such numerical derivatives for the disjoining pressure.

III. ILLUSTRATIVE CALCULATIONS

A. Titania surface

An ion competition model was formulated by Sprycha
to analyse the surface charge of a titania (anatase) sur-

FIG. 2. Calculated force curves between titania surfaces at pH 7 in 1 mM
NaCl. The solid black curve shows charge regulation with H+ only (no ion
competition); the dashed red curve includes ion site competition with Na+

and Cl− ions.

face.40 Sprycha’s model added Na+ single binding (pKNa
= −3.1) and Cl− double-binding (binding to a protonated site,
pKHCl = −3.1) onto a standard amphoteric site (pKH = 3.1,
pKHH = 3.1). The site density was Ns = 0.1198 sites per Å2.
In order to focus on the impact of competitive site-binding,
we here neglect general nonelectrostatic physisorption, taking
µNES
i = 0. The Hamaker constant for the van der Waals compo-

nent of the total force was taken as A = 14.69 kT, calculated
by nonretarded Lifschitz theory55 using Bergström’s average
dielectric function of titania55 and Dagastine’s dielectric
function for water56 at 298 K.

We evaluated the ion concentration profiles of the ionic
diffuse layer (due to physisorption) using a numerical solution
to the 1-D nonlinear Poisson-Boltzmann equation between two
flat surfaces, applying a charge-regulated boundary condition
(Eq. (2) with Eq. (5)). We computed the total interaction free
energy between two flat surfaces and converted to a force
between curved surfaces using the Derjaguin approximation.

Calculated force curves at pH 7 in low salt (1 mM NaCl)
are shown in Fig. 2, comparing the calculation with full ion
competition (Na+ and Cl−) against the more conventional
calculation with only H+ charge regulation (same pKH and
pKHH for both calculations). Ion site competition introduces
a 20% increase in the height of the repulsive peak. The
precise cause of the difference in forces cannot be ascribed
to any single component. Decompositions of both forces, with
and without ion competition, are shown in Fig. 3. With ion
competition included, both the direct (ionic) electrostatic and
chemisorption electrostatic (Eq. (27)) components become
broadly more repulsive (or less attractive), while the ionic
entropic component becomes less repulsive. The chemisorp-
tion site-entropic changes dramatically, losing its attractive
quality, but only at very short separations less than 5 nm. We
broadly interpret the change in force curve seen in Fig. 2 as
simply a consequence of the shift in surface charge due to ion
site competition.

The force curves calculated in high salt (0.1M NaCl)
are shown in Fig. 4, compared against the van der Waals
(Hamaker) force. On the face of it, the high salt behaviour,
interpreted through conventional DLVO-style thinking, does
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FIG. 3. Components of calculated force curves between titania surfaces at pH 7 in 1 mM NaCl. (a) Charge regulation with H+ only (no ion competition).
(b) Charge regulation with ion competition from Na+ and Cl− ions. “Chem (electrostatic)” refers to Fel

cs, Eq. (27), “chem (site entropy)” is Fen
cs , Eq. (29), “chem

(two-bind)” is F two−bind
cs , Eq. (43).

not seem interesting. High electrostatic screening means
electrostatic (ionic) contributions to the total force are
attenuated, leaving only the van der Waals attractive force.
Consequently no effect due to ion competition would be
expected and is not seen in Fig. 4. The breakdown of the
force into components, Fig. 5, tells a more subtle story. In the
absence of ion competition, repulsion due to hydrogen charge
regulation arises dominantly from chemisorption site entropy.
But its magnitude is not sufficient to oppose van der Waals
attraction. Under ion competition, however, the chemisorption
site entropic contribution Fen

cs , Eq. (29), becomes attractive.
Repulsion is dominated by the competitive double-binding
term F two−bind

cs from Eq. (43). The magnitude of both terms is
comparable to the van der Waals force. But because of the
difference in sign, the chemisorption terms Fen

cs and F two−bind
cs

largely cancel, allowing van der Waals attraction to remain
dominant.

Comparison of Fig. 2 against Fig. 4 suggests that in some
cases the impact of ion site competition is more likely to
be felt at low salt concentrations rather than high salt. But
ion site competition is determined by ion-specific binding

FIG. 4. Calculated force curves between titania surfaces at pH 7 in 0.1M
NaCl. The solid black curve shows charge regulation with H+ only (no ion
competition); the dashed red curve includes ion site competition with Na+

and Cl− ions.

constants. It follows that ion site competition may help explain
the relatively rare observations of Hofmeister series at low
concentrations.57–59 Hofmeister effects are more commonly
observed in high salt conditions above 0.1M.

B. Silica surface

Ion specificity in surface forces between silica surfaces in
various chloride salt solutions has been measured by Chapel,42

following earlier measurements of silica in NaCl solution by
Grabbe and Horn.41 Chapel interprets his measured force curve
in terms of competitive adsorption between H+ and metal ions
at surface oxide sites (no double binding), with 50 Å2 area
per site. From Chapel’s estimates of the surface potentials
of isolated surfaces, the corresponding surface charge may be
evaluated by a nonlinear Poisson-Boltzmann calculation (with
constant potential). A least-squares fit comparing these surface
charges at different NaCl concentrations with the regulated
surface charge from Eq. (5) allows us to estimate the silica
dissociation constants, pKH = 5.378 and pKNa = 0.491. Note
that these estimates differ significantly from Chapel’s own
evaluation, pKH = 6.35 and pKNa = 3.25. Chapel’s binding
constants generate a charge regulated surface potential (of
the isolated surfaces) of only −2 mV in 0.1M NaCl at
pH 5.5, an order of magnitude different from his constant
potential estimate of −45 mV. The reason for the discrepancy
may be understood by considering Chapel’s large coefficient
for sodium binding, pKNa = 3.25, which is six orders of
magnitude greater than Sprycha’s sodium binding constant
to titania. Consequently at high NaCl concentrations (0.1M),
Chapel’s constant results in a discrepantly large amount of
Na+ binding to silica oxide sites, effectively neutralising the
entire surface. We suspect that Chapel’s fitting procedure
may have caught the binding constants in a local minimum,
missing the values which we have found. Our dissociation
constants generate an isolated surface potential of −48.3 mV
in 0.1M NaCl at pH 5.5, close to Chapel’s constant potential
value of −45 mV. As for titania, we here neglect general
nonelectrostatic physisorption (µNES

i = 0) in order to focus
purely on the impact of competitive site-binding.
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FIG. 5. Components of calculated force curves between titania surfaces at pH 7 in 0.1M NaCl. (a) Charge regulation with H+ only (no ion competition).
(b) Charge regulation with ion competition from Na+ and Cl− ions. “Chem (electrostatic)” refers to Fel

cs, Eq. (27), “chem (site entropy)” is Fen
cs , Eq. (29), “chem

(two-bind)” is F two−bind
cs , Eq. (43).

FIG. 6. Calculated force curves between silica surfaces at pH 5.5 in 0.1M
NaCl. The solid black curve shows charge regulation with H+ only (no ion
competition); the dashed red curve includes ion site competition with Na+

and Cl− ions.

The effect of ion site competition on the force between
silica surfaces is illustrated in Fig. 6, showing the force
curve in 0.1M NaCl at pH 5.5 with and without Na+ binding
competing with the main H+ binding. The Hamaker constant
for the van der Waals component of the total force was taken
as A = 1.448 kT , calculated by nonretarded Lifschitz theory
using Grabbe’s dielectric function for silica60 and Dagastine’s
dielectric function for water56 at 298 K. The effect of ion
site competition is strong on silica, with the repulsive peak
suppressed by 2 mN/m, or about 25%. The additional binding
of Na+ on top of H+ binding results in a reduction in the
total surface charge, reducing the degree of entropic repulsion
caused by formation of the ionic diffuse layer.

IV. CONCLUSION

We have derived the contribution to the total free energy
(and hence to surface forces) arising due to competitive
adsorption of ions to sites on a surface. The theory covers
both competitive single ion binding (e.g., acidic or basic sites)
and competitive double binding (e.g., amphoteric sites).

The theory provides a more general expression for
the chemisorption free energy and surface force (disjoining
pressure) developed previously30 for single ion binding. It

also introduces a entirely new term arising from competitive
double binding.

The significance of ion site competition depends on the
strength of the competitive ion binding constants compared
to the binding constants of the hydrogen ion. Compared to
calculations neglecting ion site competition, a 20% increase
is predicted in the repulsive peak of the surface force between
two titania surfaces in 1 mM NaCl at pH 7. But the impact of
ion site competition on titania surfaces is negligible in 0.1M
NaCl at pH 7, suggesting that ion site competition may play
a role in low concentration Hofmeister effects. By contrast, a
25% decrease in repulsion is found between silica surfaces in
0.1M NaCl at pH 5.5.
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