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Abstract in extreme excess modeling, one fits a generalized Pareto (GP) distribution to rainfall excesses
above a properly selected threshold u. The latter is generally determined using various approaches, such as
nonparametric methods that are intended to locate the changing point between extreme and nonextreme
regions of the data, graphical methods where one studies the dependence of GP-related metrics on the
threshold level u, and Goodness-of-Fit (GoF) metrics that, for a certain level of significance, locate the lowest
threshold u that a GP distribution model is applicable. Here we review representative methods for GP
threshold detection, discuss fundamental differences in their theoretical bases, and apply them to 1714
overcentennial daily rainfall records from the NOAA-NCDC database. We find that nonparametric methods
are generally not reliable, while methods that are based on GP asymptotic properties lead to unrealistically
high threshold and shape parameter estimates. The latter is justified by theoretical arguments, and it is
especially the case in rainfall applications, where the shape parameter of the GP distribution is low; i.e., on
the order of 0.1-0.2. Better performance is demonstrated by graphical methods and GoF metrics that rely
on preasymptotic properties of the GP distribution. For daily rainfall, we find that GP threshold estimates
range between 2 and 12 mm/d with a mean value of 6.5 mm/d, while the existence of quantization in the
empirical records, as well as variations in their size, constitute the two most important factors that may
significantly affect the accuracy of the obtained results.

1. Introduction

Due to its importance in quantifying hydrologic risk, statistical estimation of extreme rainfall has been a
pressing and widely studied problem in engineering hydrology [see e.g., Bernard, 1932; Demarée, 1985;
Coles and Tawn, 1996; Koutsoyiannis et al., 1998; Katz et al., 2002; Koutsoyiannis, 2004a, 2004b; Cooley et al.,
2007; Veneziano et al., 2006, 2007, 2009; Veneziano and Yoon, 2013; Deidda, 2010; El Adlouni and Ouarda,
2010; Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013; Serinaldi and Kilsby, 2014, among others].
While several efforts have been devoted to modeling rainfall extremes using scaling representations of rain-
fall and their corresponding linkages to large deviation (LD) theory [see e.g., Schertzer and Lovejoy, 1987;
Hubert et al., 1993; Lovejoy and Schertzer, 1995; Deidda et al., 1999, 2004, 2006; Deidda, 2000; Veneziano and
Langousis, 2005; Veneziano et al., 2006, 2009; Langousis and Veneziano, 2007; Langousis et al., 2009, 2013;
Veneziano and Lepore, 2012; Veneziano and Yoon, 2013, and the review in Veneziano and Langousis, 2010],
the statistical analysis of annual maxima series (AMS) and partial duration series (PDS) still remains the main
pillar for practical estimation of hydrologic extremes from empirical records (i.e., under preasymptotic con-
ditions). To obtain the AMS from empirical observations, one extracts the block-maxima over different years
[see e.g., Bernard, 1932; Demarée, 1985; Cunnane, 1973; Madsen et al., 1997a,1997b; Koutsoyiannis et al.,
1998; Katz et al., 2002; Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014], while PDS are con-
structed by retaining all excesses above a sufficiently high threshold u (thus, this last approach is also
referred to as peaks over threshold, POT) [see e.g., Davison and Smith, 1990; Wang, 1991; Rosbjerg and Mad-
sen, 1992, 1995; Madsen et al., 1997a, 1997b, 2002; Lang et al., 1999; Willems, 2000; Deidda and Puliga, 2006;
Cooley et al., 2007; Veneziano et al., 2007; Deidda, 2010; Serinaldi and Kilsby, 2014].

The wide use of AMS and PDS for the estimation of hydrologic extremes stems from extreme value (EV) and
extreme excess (EE) theories, respectively. According to EV theory, if under suitable normalization the
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cumulative distribution function (CDF) of the maximum M,, = max{X;, X5, X3, ..., X} of n independent copies
of random variable X converges to a nondegenerate distribution Gp,ax as n—oo, then this distribution
should have the generalized extreme value (GEV) form [see e.g., Fisher and Tippett, 1928; Gnedenko, 1943;
Jenkinson, 1955, and more recently Coles, 2001, and Lucarini et al., 2016]:

Gmax(}’)=exp{—{1+k<y;¢)}W} M

where k, 2, and  are the shape, scale, and location parameters of the distribution, respectively.

Under a similar setting, extreme excess (EE) theory suggests that if the CDF Fx, (x) = {Fx(x + u) — Fx(u)}/
{1 — Fx(u)} of the scaled excesses X, = [X — u|X > u] of random variable X above threshold u converges to a
nondegenerate distribution Q, as u increases and Fx(u) — 1, then this distribution should have the general-
ized Pareto (GP) form [see e.g., Balkema and de Haan, 1974; Pickands, 1975; Leadbetter et al., 1983, and more
recently Coles, 2001, and Lucarini et al., 2016]:

—1/¢
Quy)=PX—u < y]X>u=1- (1 +5al) P)
u
where, similar to equation (1), £ and a, are the shape and scale parameters of the distribution, respectively,
with the latter depending on the threshold u used to determine the excesses Y = X — u of random variable X.

The specific form of the distributions in equations (1) and (2) depend on the upper tail of the distribution of
random variable X (usually referred to as the parent distribution); see e.g., Gumbel [1958], and more recently
Coles [2001]. For k, ¢=0, equations (1) and (2) reduce to the Gumbel (i.e, EV type 1,
F(y) = exp{—exp(—(y — ¥)/A)}) and exponential (i.e., F(y) = 1 — exp(—y/a,)) forms, respectively; for k, £>0,
the corresponding distributions have heavy upper tails that behave like power functions with exponents
—1/k and —1/¢, respectively; whereas for k, £ <0, the distributions in equations (1) and (2) exhibit finite
upper bounds. For the GEV case, k> 0 and k < 0 correspond to the so-called Frechet and Weibull (i.e., EV 2
and 3) distribution forms, respectively.

Clearly, the GP and GEV families have important theoretical connections. As shown by Pickands [1975],
when the threshold u increases and Fx(u) — 1: (1) the distribution of the scaled excesses X, = [X — u| X > u]
converges to a nondegenerate distribution Q, if and only if the maximum of n — oo independent copies of
X is attracted to a nondegenerate distribution G,,.,, (2) Q, has the generalized Pareto form in equation (2)
with the same shape parameter as G,.y in equation (1) (i.e., ¢ = k), and (3) the location and scale parameters
of Q, and G, are theoretically linked through [see e.g., Coles, 2001, p. 771

ay=7 + Eu—y) (3)

Although the AMS and PDS approaches should lead asymptotically to the same results, one expects that
the PDS approach is more suitable for extreme quantile estimations from empirical records than the AMS
approach. For example, when implementing the AMS approach using continuous rainfall data, one retains
solely the block (e.g., yearly) maxima discarding a large portion of the available hydrologic information. This
makes the estimated distribution parameters to exhibit significant variability and be sensitive to outliers
[see e.g., Coles and Tawn, 1996; Coles et al., 2003; Koutsoyiannis, 2004b; Deidda, 2010; Langousis et al., 2013].
To that extent, several studies dedicated significant efforts in quantifying the performance of AMS and PDS
approaches.

Cunnane [1973] was the first to compare the two methods, using an exponential distribution model (i.e., a
GP model with shape parameter £ = 0) for the excesses of flood magnitudes, and a Gumbel distribution
(i.e., a GEV model with shape parameter k = 0) for yearly flood maxima. The analysis concluded that the PDS
approach leads to quantile estimates with smaller variance, if the length of the PDS exceeds 1.65N, where N
is the number of years in record. Using Monte Carlo techniques, Madsen et al. [1997a] generalized the find-
ings of Cunnane [1973] to the most general case of GP and GEV distributions (i.e., shape parameters ¢,
k+0), and showed that the relative performance of the two approaches depends on the parameter estima-
tion method used (i.e., probability weighted moments, maximum likelihood, and method of moments) and
the value of the shape parameter. The study concluded that for heavy-tailed distributions (i.e., & k> 0),
commonly met in hydrologic applications, the PDS approach with a GP distribution model (PDS/GP)
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performs better than the AMS approach with a GEV distribution model (AMS/GEV), independent of the esti-
mation method used. Similar findings have been reported by Wang [1991], Madsen et al. [1997b], and
Tanaka and Takara [2002] among others.

Since the PDS/GP approach is more efficient for hydrologic applications, several studies have focused on
developing new, or improving existing, methods for fitting a GP distribution model to data. For example,
Hosking and Wallis [1987] derived the equations for GP parameter estimation using probability weighted
moments (PWM) and, for the case when |£]| < 0.5, compared the obtained estimates to those of maximum
likelihood (ML) and simple moments (SM). The study concluded that ML estimation, although asymptoti-
cally unbiased, does not display its competitive advantage for sample sizes smaller than 500, SM is generally
reliable except for the case when £ > 0.2, while PWM estimation has better overall performance for heavy-
tailed distributions (i.e., ¢ > 0) commonly met in hydrologic applications.

Improvements to the classical ML and SM methods have been proposed by Grimshaw [1993], Dupuis [1998],
Dupuis and Tsao [1998], Martins and Stedinger [2001a, 2001b], Juarez and Schucany [2004], and Zhang [2007]
among others; for a detailed review, see Rosbjerg and Madsen [2004] and Deidda and Puliga [2009]. For
example, Grimshaw [1993] used a univariate transformation of the ML equations to develop a computation-
ally efficient approach to fit a GP distribution model to data, while Dupuis [1998] used a weighting scheme
to introduce a generalization of the ML equations, referred to as optimal bias-robust estimator (OBRE) [see
also Huber, 1964; Hampel, 1968, 1974; Hampel et al., 1986]. Dupuis and Tsao [1998] introduced a hybrid esti-
mator based on SM and PWM, which incorporates a simple auxiliary constraint on the feasibility of the esti-
mates, and Martins and Stedinger [2001a, 2001b] introduced a robust version of the classical ML estimator
for small samples (referred to as Generalized Maximum Likelihood approach), which uses Bayesian priors to
restrict the estimated parameters within reasonable ranges. Generalizations of the ML equations for GP
parameter estimation have been suggested, also, by Juarez and Schucany [2004] and Zhang [20071.

While several advancements have been suggested for fitting a GP distribution model to data, application of
the PDS/GP approach requires prior determination of the threshold u. The latter is a nontrivial issue that signifi-
cantly affects the validity of the obtained estimates [see e.g., Rosbjerg and Madsen, 1992; Lang et al., 1999; Coles,
2001; Deidda and Puliga, 2006; Tancredi et al., 2006; Deidda, 2010; Chavez-Demoulin and Davison, 2012; Scarrott
and MacDonald, 2012] and cannot be easily tackled through standard inference techniques. For high thresholds
and, thus, small sample sizes, the obtained estimates are characterized by small bias and increased variance
[see e.g., Coles, 2001], whereas for small thresholds, the obtained estimates can be significantly biased due to
deviations of the empirical distribution from a perfect GP model [see e.g., Adamowski, 2000].

In order to detect a proper threshold u to extract PDS from data and fit a GP distribution model, several sta-
tistical methods have been proposed (see e.g., Scarrott and MacDonald [2012] for an extended review),
which can be grouped into three broad categories: (1) nonparametric methods that are intended to locate
the changing point between extreme and nonextreme regions of the data [see e.g., Gerstengarbe and
Werner, 1989, 1991; Werner and Gerstengarbe, 1997, Domonkos and Piotrowicz, 1998; Lasch et al., 1999;
Cebrian et al., 2003; Cebrian and Abaurrea, 2006; Karpouzos et al., 2010, among others], (2) graphical meth-
ods where one searches for linear behavior of the GP parameters (or related metrics) with increasing thresh-
old level [see e.g., Davison and Smith, 1990; Lang et al., 1999; Tanaka and Takara, 2002; Cebrian et al., 2003;
Deidda, 2010; Scarrott and MacDonald, 2012; Das and Ghosh, 2013, among others], and (3) Goodness-of-Fit
(GOF) tests that, for any given level of significance, locate the lowest threshold u that a GP distribution
model is applicable. The latter category of methods can be subdivided in two groups: (a) statistical tests
that use some type of quadratic error metric to quantify the departure between the empirical and fitted dis-
tributions [see e.g., Stephens, 1986; Ahmad et al., 1988; Dupuis, 1998; Choulakian and Stephens, 2001; Laio,
2004; Deidda and Puliga, 2006; Deidda 2007; Serinaldi and Kilsby, 2014], and (b) Hill-assumption-based meth-
ods, which detect the lowest threshold u that the log-transformed data exhibit some type of (asymptotic)
exponential behavior [see e.g., Beirlant et al., 1996, 2006; Goegebeur et al., 2008, among others].

The variety of existing methods for GP threshold detection, the fundamental differences in their theoretical
bases, and their relative performance when dealing with different types of data (e.g., heavy-tailed versus
light-tailed distributions, and continuous versus quantized samples) make threshold detection an open
question that can be addressed solely on the basis of a specific application. For example, two recent studies
by Deidda and Puliga [2006, 2009] showed that independent of the GP parameter estimation method used
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Figure 1. Application of Gerstengarbe and Werner (GW) plot to: (a) 200 synthetic i .
realizations drawn from a GP distribution with threshold u = 0, scale parameter In section 2, we start by reviewing the

do: = dy—o = 15 and shape parameter ¢ = 0.1; (b) the positive rainrates extracted theoretical basis of each category of
from a 126 year record of daily rainfall observations from Australia. methods and discuss their limitations.

Section 3 presents details on the
NOAA-NCDC rainfall data set, and discusses the results obtained when applying the GP threshold detection
methods to empirical rainfall records. Our findings show that in the case of rainfall, where the shape param-
eter ¢ is low (i.e., on the order of 0.1-0.2, see sections 2.4 and 3.3 and Appendix B for a theoretical investiga-
tion), threshold detection methods based on GP asymptotics underperform relative to other methods,
leading to significant biases. Graphical and GoF methods based on GP preasymptotic properties are more
reliable and also lead to similar results, with the former category being less sensitive to data quantization
and variations of the sample size. Section 4 discusses the main findings of this work, and points toward
future research directions.

2. GP Threshold Detection Methods

2.1. A Nonparametric Method: Gerstengarbe and Werner (GW) Plot

Gerstengarbe and Werner [1989] used the sequential version of Mann-Kendal (MK) test [see e.g., Sneyers,
1963, 1975; Maasch, 1988; Gerstengarbe and Werner, 1999; Karpouzos et al., 2010] to devise a nonparametric
method, referred to as Gerstengarbe and Werner (GW) plot, that is intended to detect the starting point of
the extreme region of a sample. The latter can be used as the threshold u to extract the PDS from data [see
e.g., Gerstengarbe and Werner, 1989; Werner and Gerstengarbe, 1997; Domonkos and Piotrowicz, 1998; Lasch
et al,, 1999; Cebrian et al., 2003; Cebrian and Abaurrea, 2006]. In what follows, we review the basic assump-
tions of the GW method, and discuss its theoretical limitations.

Define the series of differences A;=Xi 1, —X;n, i=1, ..., n—1, of the (ascending) order statistics
Xin<Xon<...<X,nin asample of size n (i.e, A, i=1,...,n—1,is the series of differences between adja-
cent values in the sorted sample). In the case when random variable X is not upper bounded, it follows from
probability theory that as one moves further into the upper tail of the distribution of X and i increases, the
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expected value E[A] (corresponding to the magnitude of the differences), also increases. Based on this the-
oretical result, Gerstengarbe and Werner [1989] suggested to detect threshold u (i.e., the starting point of
extreme behavior in a sample) as the point x* where series {A; i=1, ..., n — 1} exhibit a statistically signifi-

1
cant change. For the latter purpose, Gerstengarbe and Werner [1989] defined variable H:= Z n(i=1,...,
k=1
n — 1), where n, is the rank of value A, in the series of the differences {A;, j=1, ..., k}, and applied the
sequential version of the MK test to check the null hypothesis that the differences {A;, j=1, ..., i} are inde-
pendent and identically distributed (iid) and, therefore, no change in the data exists. Under the null hypoth-

esis, ny follows a uniform distribution in the interval [1, K] (i.e., U[1, K1), Eln,] = k;‘, Var[n,] = kﬂ—? and, hence,
i i
E[H;1= Z E[ng] = @, VarfH,1= ZVar[nk}= w For large values of i (say i >10) [see e.g., Kendall,
k=1 k=1
1938; Mann, 1945], the standardized random variable: H; = (H,»’ — b))/ \/ci, where b; = @ and ¢;= %
can be approximated by a standard normal distribution.

Following the sequential MK test procedure [see e.g., Sneyers, 1963, 1975; Maasch, 1988, and more recently
Karpouzos et al., 2010], Gerstengarbe and Werner [1989] approximate the starting point of change in the
series of differences {A;, i=1, ..., n— 1} (i.e, the starting point of extreme behavior), as the sample value
that corresponds to the intersection point h* of series H; and the retrograde of series —H,, (see Figure 1a
and discussion below). H,, is calculated by applying the same procedure used to obtain series H;, to the
series of differences from end to start; i.e, {A, p=1, ..., n—1={A, i=n—1, ..., 1}. The level of signifi-
cance that the null hypothesis (i.e., of no change in the series of differences) is rejected equals the probabil-
ity 1 — P[|H,| < h*].

Although the idea of detecting the extreme behavior in a sample based on the statistics of the differen-
ces of the sorted series seems logical, application of the sequential version of the MK test to check the
null hypothesis of no change in the data exhibits an important theoretical limitation: unless the observa-
tions x;, i=1, ..., n are uniformly distributed (i.e., they are described by a constant probability density
function, PDF) the differences A;=Xii1,—Xin, i=1, ..., n—1, of the order statistics
Xi0 <Xon <...<X,p are by definition not identically distributed. Thus, the null hypothesis of random-
ness in the series of differences {A;, i=1, ..., n — 1}, tested using the sequential version of the MK test, is
rejected on the basis of probability theory for any sample drawn from a nonuniform distribution. This
theoretical result applies to the whole sample, and not just beyond a specific point that denotes transi-
tion to an extreme region. Consequently, the procedure suggested by Gerstengarbe and Werner [1989] to
detect the starting point of extreme behavior in a sample lacks statistical meaning and, therefore, its
application should be avoided.

To illustrate the above arguments, Figure 1a shows the H; and the retrograde of —H,, series obtained from a
synthetic sample of size n = 200, drawn from a GP distribution (see equation (2)) with threshold u = 0, scale
parameter ag :=a, -, =15 and shape parameter £ = 0.1. One sees that intersection of the two curves
occurs at i =142, which corresponds to threshold u =18.8. The obtained value significantly overestimates
the GP threshold u = 0, which according to EE theory denotes transition to extreme behavior.

In the case of quantized data (i.e, a common case in rainfall applications [see e.g., Deidda and Puliga, 2006,
2009; Deidda, 2007, 2010, and references therein]), the GW method leads to strange results; see Figure 1b and
discussion below. More precisely, independent of the level of data quantization, the series of differences {4,
i=1,...,n— 1} calculated from the sorted sample incorporate large chunks of zeros, which preclude series H;
and —H,, from intersecting. As an example, Figure 1b illustrates an application of the GW method to the posi-
tive rainrates of a 126 year record of daily rainfall observations in Australia, obtained from NOAA-NCDC rainfall
database (station ID name: ASN00021043; see section 3.1 for details on the data). Although the quantization of
rainfall data is small (i.e,, on the order of 0.1 mm/d; see section 2.3 and discussion in section 3.1), it suffices to
prevent the two H-curves from intersecting, making the GW method inapplicable.

It follows from the discussion above that the nonparametric method of Gerstengarbe and Werner [1989],
which has been used to detect the starting point of the extreme region of a sample [see e.g., Gerstengarbe
and Werner, 1989, 1991; Werner and Gerstengarbe, 1997, Domonkos and Piotrowicz, 1998; Lasch et al., 1999;
Cebrian et al., 2003; Cebrian and Abaurrea, 2006, among others], is theoretically incorrect and may lead to
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25 ‘ spurious results, especially in

© data the case of quantized samples.
For these reasons, its extended
application to rainfall records
from the NOAA-NCDC database
(see section 3) is meaningless
and, therefore, skipped.

— WLSfit

20

-
(9]

E[X-u| X>u)

2.2, Graphical Methods: Mean
Residual Life Plot

551 The most popular graphical
method for threshold estima-

i w*=2mm/d L .
| tion is based on the mean resid-
% 10 20 30 40 50 60 70 ual life plot (MRLP) [see e.g.,
threshold u (mm/d) Davison and Smith, 1990; Lang
et al., 1999; Coles, 2001; Cebrian
Figure 2. Application of the mean residual life plot (MRLP) method, using the stepwise et al, 2003; Scarrott and
E;c:;j:iere; |cjescribed in section 2.2, to the positive rainrates of the 126 year rainfall record MacDonald, 2012; Das and

Ghosh, 2013, and references

therein]. As shown in Appendix
A, if the scaled excesses X,» = [X — u*|X > u*] of random variable X above threshold u* are GP distributed
then, for any threshold u > u*, the scaled excesses X, = [X — u|X > u] are also GP distributed with the same
shape parameter ¢&, scale parameter g, that depends linearly on u:

ay=ay +&(u—u") (4)
and mean value:

a ay-+E(u—u*
e(u)=E[X—ulX > u]=—“=w =Au+B (5)
1=¢ 1=¢
where a, and a,: are the scale parameters of the distribution when fitted to the excesses above
thresholds u and u*, respectively, and A= ¢&/(1 — &), B=(a, — &u*)/(1 — &) are the slope and inter-
cept of the linear relation.

Based on equation (5), one can obtain a proper threshold u* to extract PDS from data in order to fit a GP dis-
tribution model, by: (a) plotting the mean of the excesses e(u) as a function of the threshold u (referred to
as mean residual life plot), and (b) identifying the lowest threshold u* above which e(u) increases linearly
with u. By doing so, one keeps the sample size sufficiently large to reduce the statistical variability of the
obtained results, while minimizing deviations of the distribution of the excesses from a perfect GP model.
As an example, Figure 2 shows the MRLP applied to the positive rainrates of the historical rainfall record
used in Figure 1b. One sees that above thresholds u on the order of 2-2.5 mm/d, e(u) depends linearly on u,
indicating that the scaled excesses can be effectively approximated by a GP distribution model. For values
of u larger than 25-30 mm/d, the sample size of the excesses reduces significantly, leading to a consider-
able increase of the estimation variance.

Despite its simplicity and being particularly suited for fitting a GP distribution model to data, an apparent
limitation of MRLP is that threshold detection is conducted on the basis of subjective criteria; i.e., usually
through visual inspection of the expected linear behavior [see e.g., Coles, 2001; Scarrott and MacDonald,
2012]. This limitation (common to all graphical methods) becomes important when the number of series to
be analyzed is large, as it is the case in this study, where we consider more than 1700 daily rainfall records
from the NOAA-NCDC database; see section 3.1. In an effort to automate threshold detection, we applied
the procedure outlined below:

a. We estimated the mean value of the excesses e(u)= E[X — u|X > u] above different thresholds u; = X,
i=1,2,...,n—10 (see points in Figure 2), where X;, denotes the ith (ascending) order statistic in a
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sample of size n (selection of X,,_;q, as maximum threshold ensures a minimum of 10 excesses to calcu-
late the conditional mean e(u)).

b. Foreachu;(i=1,2,...,n — 20) from (a), we used the method of weighted least squares (WLS) to fit a lin-
ear model to all points (u; e(u)) that satisfy j > i (selection of u.,o as maximum threshold ensures a mini-
mum of 10 conditional means, i.e., e(u) points, for the linear regression). To account for the increase of
the estimation variance of e(u) with increasing threshold u, the weight w; applied to each point (u;, e(u))
was taken to be inversely proportional to the variance of e(u), assuming independence of the excesses.
In this case, w; = (n — j)/Var[X — ujX > uj.

c. We determined the threshold u* as the lowest threshold u; (i=1, 2, ..., n — 20) which corresponds to a
local minimum of the weighted mean square error (WMSE) function of the linear regression.

After threshold u* is determined, estimates of the shape ¢ and scale a,- parameters of the distribution can
be obtained using the slope A and intercept B of the linear fit:

E=A/(1 +A),a, =B(1—&)+éu* (©)

For the case presented in Figure 2, the aforementioned procedure resulted in u* =2 mm/d, A=0.287,
B =5.632 mm/d, and using equation (6), one obtains ¢ = 0.223 and a,- = 4.822 mm/d. Similar values for the
GP distribution parameters (i.e., ¢ = 0.226 and a,- = 4.776 mm/d) were obtained by applying the maximum
likelihood (ML) method [see e.g., Hosking and Wallis, 1987; Grimshaw, 1993] to the excesses above threshold
u* = 2 mm/d, suggesting that the resulting PDS can be effectively approximated using a GP model (see also
Figure 6 and discussion in section 3.3).

2.3. Goodness-of-Fit (GoF)-Based Methods

In an effort to maximize the retained information when extracting PDS from river flow records, Choulakian
and Stephens [2000, 2001] suggested the use of goodness-of-fit statistics to identify the lowest threshold u
above which the excesses can effectively be approximated by a GP distribution model. In their method,
referred to as “failure-to-reject”, one simultaneously increases the threshold used to extract PDS from data
(e.g., starting from the smallest nonzero sample value), until the null hypothesis (Ho) of GP distributed
excesses is not rejected at a desired significance level. To do so, Choulakian and Stephens [2001] used the
W? Cramer-von Mises and A% Anderson-Darling statistics [Anderson and Darling, 1952, 1954]:

1 n

2
2i—1
Wr=_—+ F(Xin)— 7

12n & [ (%in) 2n ] 7

Az:_,,_zn:ZIT_](|og [F(Xin)] + 10g[1=F (Xns1-1n)]) ®

where X7, < X5, <...<X,n are (ascending) order statistics, and F is the theoretical CDF tested for fitting.

Both W? and A? quantify the deviations between a selected theoretical distribution model, F, and the empir-
ical CDF, Fgﬂfp, calculated from a sample of size n, and belong to the Cramer-von Mises family of quadratic
statistics [see e.g., Anderson and Darling, 1952, 1954; Stephens, 1986; Ahmad et al., 1988; Deidda and Puliga,
2006, and references therein]:

+oo

- J (£ 00 —F(0)] w0 ©)

—0o0

where /(x) is a weight function. W? is obtained by setting 1/(x) = 1 and weights equally the whole distribu-
tion, while A% corresponds to the case when (x)= {F(X)[1 — F(x)]}_'. Hence A? assigns larger weights to
observations located in the (upper or lower) distribution tail.

Choulakian and Stephens [2000, 2001] used theoretical arguments and Monte Carlo simulations to study the
distributions of W? and A? statistics in equations (7) and (8) for samples drawn from a GP distribution, and
for the case when either one or both distribution parameters (i.e., scale and shape) are estimated using the
method of maximum likelihood (ML). Based on theoretical arguments, they concluded that asymptotically
as n — oo, the distributions of W? and A? are invariant under changes of the GP scale parameter and, fur-
ther, produced tables of the quantiles of the asymptotic distributions for different values of the shape
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Table 1. Quantiles of the Cramer-von Mises (W?) Statistic in Equation (7), Calculated Using 10,000 Synthetic Realizations of Samples With Sizes n = 500, 5000, and 10,000, Drawn From
a GP Distribution With Threshold u = 0, Scale Parameter aq: = a,—o = 10, Different Values of the Shape Parameter ¢ =0, 0.1, 0.2, 0.3, and Levels of Quantization A = 0 (Continuous
Sample), 0.1, 0.5, and 1

WZ

90% Quantiles 95% Quantiles 99% Quantiles
Shape ¢ n =500 n = 5000 n = 10,000 n =500 n = 5000 n = 10,000 n =500 n = 5000 n = 10,000 Data Type
0 0.121 0.121 0.122 0.150 0.151 0.152 0.220 0.221 0.222 Continuous (A = 0)
0.1 0.115 0.116 0.116 0.143 0.143 0.143 0.209 0.210 0.209
0.2 0.112 0.111 0.111 0.137 0.137 0.137 0.200 0.199 0.199
0.3 0.107 0.107 0.108 0.132 0.132 0.132 0.191 0.191 0.191
0 0.128 0.165 0.207 0.158 0.199 0.249 0.229 0.288 0.334 Quantized A = 0.1 (A/a, = 0.01)
0.1 0.118 0.156 0.196 0.143 0.187 0.233 0.211 0.262 0.323
0.2 0.116 0.151 0.186 0.141 0.181 0.220 0.201 0.264 0.306
0.3 0.110 0.143 0.179 0.137 0.173 0.215 0.202 0.242 0.291
0 0.218 1.000 1.817 0.256 1.074 1915 0.349 1.231 2.099 Quantized A = 0.5 (A/ao = 0.05)
0.1 0.212 0.947 1.718 0.248 1.016 1.805 0.343 1.169 1.994
0.2 0.199 0.895 1.625 0.236 0.968 1.705 0323 1.109 1.869
0.3 0.189 0.852 1.550 0.223 0913 1.633 0.295 1.053 1.803
0 0.476 3.284 6.274 0.533 3412 6.434 0.653 3.659 6.765 Quantized A =1 (A/a, = 0.1)
0.1 0.447 3.072 5.881 0.500 3.182 6.034 0.606 3414 6.326
0.2 0.423 2.891 5.531 0.471 2991 5.670 0.578 3.208 5.961
0.3 0.399 2.736 5.226 0.448 2.835 5.361 0.551 3.043 5.624

parameter &. For finite samples with size n > 25, they concluded that the asymptotic quantiles are very close
to what one obtains using Monte Carlo simulations.

In a more recent study, Deidda and Puliga [2006] used Monte Carlo simulations to study how the asymptotic
distributions of W? and A? are influenced by the parameter estimation method used (i.e., maximum likeli-
hood, ML; simple moments, SM; probability weighted moments, PIWM) and, more importantly, the level of
quantization in the data. In accordance with the findings of Hosking and Wallis [1987], their results show
that for values of the shape parameter ¢ > 0.2, SM underperforms relative to the other two methods (i.e.,
due to moment divergence). In addition, the study concluded that contrary to the case of continuous sam-
ples where the asymptotic distributions of W? and A? are invariant under scale changes, in the case of quan-
tized samples, the asymptotic distributions of W? and A® depend on the ratio A/a,, where A is the level of
data quantization, and a,, is the scale parameter of the GP model; see equation (2).

As an illustration, Tables 1 and 2 show quantiles of W? and A? statistics at different probability levels, calcu-
lated using 10,000 synthetic realizations of samples with sizes n =500, 5000, and 10,000, drawn from a GP
distribution with threshold u = 0, scale parameter a, : = a,—o = 10, different values of the shape parameter

Table 2. Same as Table 1, but for the Anderson-Darling (A% Statistic in Equation (8)

AZ

90% Quantiles 95% Quantiles 99% Quantiles
Shape ¢ n =500 n = 5000 n = 10,000 n =500 n = 5000 n= 10,000 n =500 n = 5000 n = 10,000 Data Type
0 0.793 0.794 0.799 0.971 0.969 0.977 1.403 1.397 1.415 Continuous (A = 0)
0.1 0.763 0.766 0.766 0.933 0.937 0.934 1.346 1.349 1.338
0.2 0.743 0.742 0.741 0.905 0.904 0.901 1.299 1.295 1.297
0.3 0.719 0.719 0.720 0.876 0.874 0.871 1.257 1.248 1.245
0 0.870 1.596 2408 1.058 1.857 2.715 1.523 2470 3.324 Quantized A = 0.1 (A/ao = 0.01)
0.1 0.803 1.557 2.334 0.965 1.792 2.636 1.376 2312 3.276
0.2 0.799 1.535 2.278 0.965 1.757 2.530 1.356 2.283 3.132
0.3 0.773 1.481 2.232 0.947 1.701 2498 1.336 2.267 3.082
0 1.962 11.973 22.706 2.197 12.490 23423 2.787 13.535 24.794 Quantized A = 0.5 (A/ag = 0.05)
0.1 1.907 11.634 21.958 2.150 12111 22.604 2.766 13.130 23.871
0.2 1.830 11.247 21.283 2.090 11.782 21.906 2.620 12.784 23.119
0.3 1.768 10.889 20.678 1.983 11.370 21.257 2475 12322 22.516
0 4.264 33.684 65.469 4.596 34.459 66.495 5.354 35.985 68.526 Quantized A =1 (A/ap, = 0.1)
0.1 4.090 32.229 62.716 4414 32973 63.743 5.017 34.375 65.679
0.2 3.937 30918 60.254 4.231 31.612 61.204 4.849 32.995 63.211
0.3 3.789 29.825 58.014 4.068 30.515 58.941 4.694 31.871 60.591
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5 : ‘ (a) ¢=0, 0.1, 0.2, 0.3, and levels of

O data L .
continuous data quantization A =0 (continuous
==== quantized data sample), 0.1, 0.5, and 1. In our

calculations, both shape and
scale parameters of the GP distri-
bution were considered
unknown and estimated using
the method of ML [Grimshaw,
1993]. An observation one
makes is that, in the case of con-
tinuous samples, the calculated
W? and A% quantiles are insensi-
] tive to the sample size n (e,
95% confidence limits o denoting fast convergence of
. the distributions of W? and A” to
those under asymptotic condi-
tions, as n — oo), whereas in the

95% confidence limits

o (b

u*=9.3mm/d

case of quantized data, the cor-

0 2 4 6 8 10 fz 1;1 16 1‘3 20 responding quantiles increase
threshold u (mm/d) with increasing sample length n

and quantization ratio A/ag. The

Figure 3. Application of the “failure-to-reject” method to the positive rainrates of Figure observed behavior should be

1b, using: (a) the W2 Crémer-von Mises statistic (equation (7)), and (b) the A? Anderson- .
Darling statistic (equation (8)). In both subplots, the solid black lines denote the 95% attributed to the fact that, for
quantiles of the corresponding statistics as obtained from Choulakian and Stephens [2001, any nonzero quantization level,
Table 2] (i.e., asymptotic conditions and continuous data). The dashed black lines denote as the sample size increases the
the 95% quantiles under preasymptotic conditions and in the presence of data quantiza-

tion, calculated through Monte Carlo simulations. emplrlcal CDF (e, havmg the

form of a step function, due to

quantization) is densified nonun-
iformly at prespecified discrete locations along the observation axis, with decreasing number of densifica-
tion points as the quantization level A increases. Under this setting, it follows from equations (7) and (8)
that an increase of A/a, for fixed sample size n, or an increase of the sample size n for fixed A/a,, would
necessarily lead to an increase of the calculated W? and A% quantiles at any given probability level. As a con-
sequence, in the case of heavily quantized data, no limiting distributions for W? and A? should exist.

Based on the aforementioned findings, and since quantization is quite common in rainfall records [see e.g.,
Deidda and Puliga, 2006, 2009; Deidda, 2007, 2010, and references therein], one concludes that application
of the “failure-to-reject” method using the asymptotic distributions of W? and A? for continuous data should
lead to an overestimation of the proper threshold u* to extract PDS; see below and section 3.

As an example, Figures 3a and 3b present estimates of W? and A? in equations (7) and (8), respectively, as a
function of threshold u, for the positive rainrates of the historical rainfall record used in Figure 1b. The solid
lines denote the 95% quantiles of W? and A?, obtained from Choulakian and Stephens [2001, Table 2] (i.e.,
asymptotic conditions and continuous data), as a function of the shape parameter, ¢, estimated using the
ML method for each threshold u. Note that use of ML for the estimation of the GP shape parameter is com-
pulsory, as the quantiles reported in Choulakian and Stephens [2001, Table 2] have been obtained using ML.
The dashed lines denote the 95% quantiles of W? and A? under preasymptotic conditions and in the pres-
ence of data quantization observed in the historical record. To obtain the dashed lines, for each threshold u,
we calculated the corresponding quantiles of W? and A® using 10,000 synthetic realizations of GP distrib-
uted samples of length n, equal to that of the PDS extracted from the historical rainfall record, and parame-
ters (a,, &) estimated by applying the method of maximum likelihood to the extracted series. To match the
quantization mixture observed in the historical rainfall record, 77.8% of the simulated values were rounded
at quantization level A =0.1 mm/d, and the remaining 22.2% at A = 0.2 mm/d. The aforementioned esti-
mates were obtained by applying the rounding-off rule estimator (RRE) developed by Deidda [2007] to the
historical record of rainfall observations, to obtain the fractions of rainfall measurements that can be
grouped into different categories of data quantization levels.

LANGOUSIS ET AL.
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One sees that while the solid lines (i.e., referring to continuous data) are approximately horizontal (i.e., small
variations are due to the variability of ¢ estimates), the dashed lines (i.e., accounting for data quantization)
decrease fast with increasing threshold level, as larger threshold values lead to reduced PDS lengths; see
also Tables 1 and 2. To better evaluate the effect of data quantization on GP threshold detection, note that
when neglecting data quantization (i.e., solid lines) the calculated thresholds at the 95% confidence level
are 4.9 mm/d for W? (see Figure 3a) and 9.3 mm/d for A? (see Figure 3b), whereas when accounting for
quantization in the historical data (i.e., dashed lines) both statistics lead to threshold estimates of 2.1 mm/d,
similar to the MRLP method (see Figure 2 and section 2.2).

An extended application of the “failure-to-reject” method to NOAA-NCDC rainfall dataset is presented in
section 3, where we compare the results of GP threshold detection under asymptotic conditions (i.e., as
n — oo) assuming continuous data (e.g., solid lines in Figures 3a and 3b), and in the presence of data quan-
tization found in the historical samples (e.g., dashed lines in Figures 3a and 3b).

2.4. Hill-Assumption-Based Methods
Let Y be a Pareto-type random variable with CDF [see e.g., Beirlant et al., 2004, 2006; de Haan and Ferreira,
2006; Goegebeur et al., 2008]:

Fr(y)=1—y "“l(y),y > 0 (10)

where ¢ > 0 is the shape parameter of the distribution (1/¢ is also referred to as Pareto tail index), and /¢ is a
slowly varying function at infinity that satisfies:

lr(Zy)
" lr(y)

=1, forany 1> 0 (1

In the specific case of the GP distribution in equation (2),

Ie(y) = (1/y+&/ay) "¢ (12)

It follows from equation (10) that under asymptotic conditions as y — oo, 1 — Fy(y)  y~ "/ and, hence, a
log-transformed Pareto-type variable is attracted to an exponential distribution.

Based on this asymptotic link between Pareto type and exponential distributions, Hill [1975] [see also
Beirlant et al., 1996, 1999; Vandewalle et al., 2007] suggested the following estimator (usually referred to as
Hill estimator) for the shape parameter ¢&:

m

1T & 1
EZ Iog Xn —j+1, n |09 (anm,n)} = EZ/['OQ (Xn*j+1,n) 7|09 (anj,n)} (1 3)
j=1 j=1

where X; , < X5, <...<X,, are ascending order statistics in a sample of size n, and m may take integer val-
ues from 1 to n — 1, denoting the number of the largest values in the sample used for estimation. The link-
age between equation (13) and the aforementioned asymptotic result becomes more evident if one views
Ef mn @s an estimator of the mean excess function ejgx(log u*) = EflogX — logu*X>u*] of the log-
transformed data above threshold u* = X,,_,, ,: the m + 1 largest value in a sample of size n.

Strictly speaking, the estimator in equation (13) is unbiased only asymptotically as m, n — oo and m/n — 0
[see e.g., Goegebeur et al., 2008]. However, Beirlant et al. [1996] [see also Kratz and Resnick, 1996; Beirlant
et al, 1999] suggested its use also under preasymptotic conditions: within the range (i.e., the m largest val-
ues in a sample) that the complementary CDF (CCDF) of the data displays a log-log linear behavior. In this
case, detection of the proper threshold u* to extract PDS from data can be done by: (a) plotting -loglj/
(n+ 1)] (i.e., the negatively signed logarithmically transformed empirical exceedance probability of the jth
largest value in a sample, using a Weibull plotting-position formula) against log[X,,1,.l, forj=1,2,3,...,n
(usually referred to as Pareto quantile plot) [see e.g., Beirlant et al., 1996, 1999; Kratz and Resnick, 1996,
among others], and (b) setting u* = X,,., ,: the n —m ascending order statistic beyond which approximate
linearity of the Pareto quantile plot holds. The latter is usually quantified on the basis of subjective criteria,
including visual inspection [see e.g., Hall, 1990; Hall and Welsh, 1985; Resnick and Starica, 1997; Scarrott and
MacDonald, 2012], or addressed as a diagnostic regression problem using WLS [see e.g., Beirlant et al., 1996,
1999; Kratz and Resnick, 1996].
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In an effort to statistically delimit the region of approximate linearity in Pareto quantile plots for tail index
estimation, Goegebeur et al. [2008] adjusted two well-known goodness-of-fit (GoF) kernel statistics (devised
to test exponentiallity of empirical samples), namely the Jackson [Jackson, 1967] and Lewis [Lewis, 1965] ker-
nel statistics. Their derivations were based on the aforementioned asymptotic link between log-
transformed Pareto-type and exponentially distributed variables, leading to:

- J S J
K Z; 1 K Z;
; J(m-H) ! ’"; L(m-H) !
B s Llyn=vVm— mm}——

fm,n im,n

3=

-’m,n = \/ﬁ (14)

where J,, , and L,, , are the Jackson and Lewis modified kernel statistics, respectively, calculated using the
m largest values in a sample of size n, K,(0) = —1 — log(0) and K,(0) = 0 — 0.5 are appropriate kernel func-
tions [see Beirlant et al., 1996], Z; = jllog(Xsj+1,,) — log(X,,)], and Em,n is Hill's estimator in equation (13).
Given the asymptotic normality of Em‘,, at the limit as m, n — oo and m/n — 0 [see e.g., Hall, 1982; Davis
and Resnick, 1984; Csorgé et al., 1985; Csorgé and Mason, 1985; Haeusler and Teugels, 1985; Beirlant and
Teugels, 1987; Beirlant et al., 1996], the modified Jackson and Lewis kernel statistics in equation (14) are also
normally distributed with (approximately) zero mean (depending on the particular form of function /) [see
Goegebeur et al., 2008] and variance 1 and 1/12, respectively.

To identify the optimal threshold u* to extract the sample fraction (i.e., the PDS) for tail estimation, one
simultaneously increases the threshold used to extract PDS from data (this is equivalent to decreasing the
number of values m used to estimate the slope in a Pareto quantile plot), until the null hypothesis (Ho) of
exponentially distributed excesses of the log-transformed sample (suggesting linearity of the Pareto quan-
tile plot) is not rejected at a desired significance level.

While the study of Goegebeur et al. [2008] sheds light on tail index estimation under asymptotic conditions,
use of asymptotic arguments under preasymptotic conditions may influence the obtained results. This is
especially the case when convergence of the limit in equation (11) is slow [see Beirlant et al., 1999, 2004;
Scarrott and MacDonald, 2012]. More precisely, the modified Jackson and Lewis kernel statistics do not test
the GP assumption (as the Cramer-von Mises and Anderson-Darling statistics presented in section 2.3), but
rather the null hypothesis of linearity in a Pareto quantile plot above some high threshold value. Since expo-
nentiality of a log-transformed GP variable is established only asymptotically as one moves into the upper
tail of the distribution, one concludes that the modified Jackson and Lewis kernel statistics should lead to
significantly higher thresholds than those estimated using methods based on GP distribution properties
valid, also, under preasymptotic conditions (see sections 2.2 and 2.3). As shown in Appendix B, for given
sample size n, the amount of threshold overestimation increases with decreasing shape parameter £. The
latter determines the convergence rate of the log-transformed GP quantiles to those of an exponential dis-
tribution, as the exceedance probability level decreases.

To illustrate the above arguments, Figure 4a shows a Pareto quantile plot obtained from a synthetic sample
of size 10°, drawn from a GP distribution with threshold u = 0, scale parameter a, : = a,—, =10, and shape
parameter & =0.1. As discussed in section 3.3 below, values of the shape parameter ¢ on the order of
0.1-0.2 are representative for rainfall applications [see also Koutsoyiannis, 2004b; Deidda and Puliga, 2006;
Deidda, 2007, 2010; Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014]. One clearly sees that
even in the case of 10° sample values (i.e,, corresponding to more than 1350 years of daily rainfall data,
with an average wet-day fraction of 20%), the threshold u; estimated using the modified Lewis kernel statis-
tic in equation (14) at the 5% significance level is much larger than zero (i.e., u; =56.9; for the modified
Jackson kernel statistic—not shown here—the estimated threshold is: uj = 58.9), justifying that linearity in
Pareto quantile plots is a much stricter condition than the applicability of a GP distribution model, leading
to significant overestimation of the corresponding thresholds.

An additional observation one makes is that even for large threshold values (i.e., u; = 56.9) obtained using
the modified Lewis kernel statistic, Hill's estimator in equation (13) overestimates the shape parameter of
the GP distribution by 120% (i.e., £, = 0.221 instead of 0.1). This becomes apparent if one compares the
dashed black line in Figure 4a, corresponding to the slope calculated by applying Hill's estimator in equa-
tion (13) to the excesses above threshold u; = 56.9, to the black solid line, which refers to the theoretical
slope. Similar findings have been obtained, also, when using the modified Jackson kernel statistic (not
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shown here for brevity), where Hill's
estimator applied to the excesses
above threshold uj =589 leads to
&,=0.226.

Figure 4b shows similar results to Fig-

¢,=0.221 ure 4a, but for the case of a synthetic

sample of size 10’ (i.e, more than
135,000 years of daily rainfall data,
-5 o data ] with an average wet-day fraction of
" ==== Hill’sslope 20%). The detected thresholds are con-
| —— theoretical slope (a) siderably larger this time (i.e,
u; =130.0 and uj =127.1), indicating
10 the approximate validity of the
¢.=0.16 obtained estimates under preasymp-
el totic conditions, as the calculated
; thresholds increase considerably with
¢=0.1 increasing sample size. This is further
supported by the fact that the relative
error of the obtained Hill estimates
remains very high, on the order of 60%
-5 (i.e., & =0.163 and &, = 0.165, instead
of 0.1), indicating that even 135,000
(b) years of daily rainfall observations do
'100 2 4 6 8 10 12 14 16 not suffice for the asymptotic condi-
tions to be reached.

-10

u,"=130.0

-log[j/(n+1)]
Evidently, for low shape parameter val-

ues ¢ (i.e, on the order of 0.1-0.2),
commonly met in rainfall applications,
the slow convergence of the log-
transformed GP quantiles to those of
an exponential distribution with
increasing probability level leads to significant overestimation of the calculated thresholds and GP shape
parameters. For the interested reader, a detailed theoretical investigation of the above remarks is given in
Appendix B.

Figure 4. (a) Application of Pareto quantile plot to a synthetic sample of size

n = 10>, drawn from a GP distribution with threshold u = 0, scale parameter

do: = dy—o = 10, and shape parameter ¢ = 0.1. The black line denotes the theoreti-
cal slope (i.e., ¢ = 0.1), whereas the dashed line corresponds to that obtained by
applying Hill's estimator (equation (13)) above threshold u,*. (b) Same as Figure
4a but for sample size n =107,

3. Application of GP Threshold Detection Methods to NOAA-NCDC Rainfall
Data Set

3.1. Data

To apply the threshold detection methods reviewed in section 2, we use daily rainfall data from the NOAA-
NCDC (National Oceanic and Atmospheric Administration-National Climatic Data Center) open-access data-
base, http://www.ncdc.noaa.gov/oa/climate/ghcn-daily. The latter includes daily rainfall records collected
from more than 75,000 stations in 180 countries and territories, located (mainly) in the United States, South
Pacific, and Europe. Both the record length and period of record vary by station and cover intervals ranging
from less than a year to more than 175 years. A complete list of the stations, together with their geographi-
cal coordinates and other metadata, can be found at ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/.

To ensure validity of the obtained results, in our analysis, we considered only 1714 stations with more than
110 years of available observations, and then tested the robustness of each threshold detection method by
randomly selecting and eliminating daily values corresponding to 70 years of observations.

Since data quantization affects some of the obtained results (see section 2.3), we used the rounding-off rule
estimator (RRE) developed by Deidda [2007] to estimate the level of quantization in the rainfall records ana-
lyzed. We found that more than 80% of the analyzed stations exhibit quantization levels on the order of
A= 0.1 mm/d, for a fraction of the recordings that in most cases exceeds 75%. The remaining data fractions
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. shown next, even in this case, quanti-
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" 3.2. Methodology
As noted in section 2.1, the nonparamet-
E 4l ric method of Gerstengarbe and Werner
A [1989] is theoretically incorrect and may
9 lead to strange results, especially in the
case of quantized samples. Hence, in
0 3 > what follows, we focus solely on apply-
-0.2 . . . ing the remaining three methods.

15 ‘ For the mean residual life plot (MRLP)
method, we followed the procedure
described in section 2.2, where the
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é from data is determined as the lowest

threshold that corresponds to a local
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i square error (WMSE) function of the

ol \, e (©) associated linear regression. While the
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Figure 5. (a) Probability density function of thresholds u*, estimated by applying arguments (ie., a limitation common
the reviewed methods to 1714 rainfall records from NOAA-NCDC database, with to all graphical methods), it produces
more than 110 years of available observations; see main text for details. (b) Same acceptable results for all stations ana-

as Figure 5a but for the shape parameter &. (c) Same as Figure 5b but for the rep- . X .
arameterized scale parameter do. lyzed, allowing for direct comparisons

with the remaining threshold detec-
tion methods.

When applying the “failure-to-reject” method of Choulakian and Stephens [2000, 2001] (see section 2.3) to
each rainfall record, we simultaneously increased the threshold used to extract the PDS (i.e., starting from
the smallest nonzero sample value), until the null hypothesis of GP distributed excesses was not rejected at

Table 3. Ensemble Mean Value and Standard Deviation of GP Model Parameters, Estimated by Applying the Reviewed Methods to
1714 Rainfall Records From NOAA-NCDC Database, With More Than 110 Years of Available Observations

Methods
MRLP [1] A% [2] W2 [3] A2 4] W2, [5] Lewis [6] Jackson [7]

Threshold u* (mm/d) Mean 6.68 13.91 10.11 6.50 6.37 34.68 39.43

St. dev. 6.69 8.14 7.25 747 6.59 16.71 20.01
Shape ¢ Mean 0.140 0.138 0.144 0.177 0.167 0.320 0.301

St. dev. 0.060 0.088 0.096 0.096 0.092 0.054 0.053
Scale a, (mm/d) Mean 10.12 10.94 10.35 9.22 9.38 11.54 12.30

St. dev. 5.03 437 4.27 4.54 441 5.62 6.21
ao (mm/d) Mean 9.17 8.96 8.77 8.25 845 0.67 0.75

St. dev. 436 543 6.08 4.28 4.14 0.40 0.59
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the 5% significance level. Fitting of the GP distribution model to rainfall excesses above different thresholds
was done using the maximum likelihood (ML) method, as suggested by Grimshaw [1993].

To study the effects of data quantization on the estimated threshold values, we first applied the “failure-to-
reject” method using the W? and A% quantiles reported in Choulakian and Stephens [2001, Table 2] for con-
tinuous data, and then using the corresponding quantiles referring to the level of data quantization present
in the historical series. The latter were obtained independently for each of the analyzed records, following
the Monte Carlo approach described in section 2.3.

Concerning Hill-based methods (i.e., the modified Jackson and Lewis kernel statistics; see section 2.4), the
optimal threshold to extract PDS from data was estimated by simultaneously increasing the threshold (i.e.,
starting from the smallest nonzero sample value), until the null hypothesis of exponentially distributed
excesses of the log-transformed PDS (i.e., suggesting linearity of the Pareto quantile plot) was not rejected
at the 5% significance level.

For the MRLP and “failure-to-reject” methods, estimation of the shape ¢ and scale a, parameters above dif-
ferent thresholds u was done using the ML method, as suggested by Grimshaw [1993] for (a,, £) unknown.
For the modified Jackson and Lewis kernel statistics, estimation of the GP shape parameter was done using
Hill's estimator in equation (13), while estimation of the scale parameter was done using the Grimshaw
[1993] ML estimator for known ¢&.

3.3. Results and Discussion

Table 3 and Figure 5 summarize the results obtained when applying the threshold detection methods
reviewed in sections 2.2-2.4 to the 1714 rainfall records with more than 110 years of empirical observations
from the NOAA-NCDC data set.

Table 3 shows the ensemble mean value and standard deviation of the estimated thresholds u*, together
with the ensemble mean values and standard deviations of the shape ¢ and scale a,- parameters of a GP
distribution model fitted to rainfall excesses above u*. Additional insertions that allow for direct interpreta-
tion of the obtained results are the ensemble mean value and standard deviation of the reparameterized
GP scale parameter ay = a,- — Eu* to zero threshold (as suggested by Deidda [2010]; see also equation (4)
and Appendices A and B). Since the scale parameter a,, of a GP distribution model is linked to the threshold
u through equation (4), the aforementioned reparameterization allows for direct comparisons of the results
obtained from methods producing significantly different threshold estimates (e.g., the Jackson and Lewis
modified kernel statistics relative to the remaining methods).

An important observation one makes is that the estimated thresholds using the Jackson and Lewis modified
kernel statistics (see last two columns in Table 3) are more than 3 times larger relative to those calculated
by the remaining methods (see columns [1]-[5] in Table 3), while the associated Hill's shape parameter esti-
mates are 2 times larger than those produced by other methods. As noted in section 2.4 (see also Appendix
B for a theoretical investigation), the observed differences are due to the slow convergence of a logarithmi-
cally transformed GP variable to an exponential distribution, when the GP shape parameter ¢ is small; i.e.,
on the order of 0.1-0.2, commonly met in rainfall applications (see columns [1]-[5] in Table 3 and
Koutsoyiannis [2004b], Deidda and Puliga [2006], Deidda [2007, 2010], Papalexiou and Koutsoyiannis [2013],
and Serinaldi and Kilsby [2014]). To visually illustrate the aforementioned results, Figures 5a-5c present the
probability density functions (PDFs) of thresholds u*, shape parameters &, and reparameterized scale param-
eters a, resulting from application of each of the reviewed methods to the 1714 analyzed series. One sees
the considerable shifts of all distributions of GP model parameters, when estimation is done based on GP
asymptotic arguments (i.e., Hill's assumption; see section 2.4 and Appendix B).

Concerning the MRLP graphical method, and the Crdmer-von Mises (W?) and Anderson-Darling (A%) GoF
methods (i.e., applied using the asymptotic distributions for continuous data [Choulakian and Stephens,
2001, Table 2]), they all produce results that are of the same order; see columns [1]-[3] in Table 3, Figures
5a-5¢, and discussion below. This is due to the fact that the theoretical bases of the three methods lie on
properties of the GP distribution model valid, also, under preasymptotic conditions. Two things to notice
are: (a) the Anderson-Darling (A%) GoF method produces slightly higher thresholds relative to Crémer-von
Mises (W?); compare columns [2] and [3] in Table 3 and the solid and dashed blue lines in Figures 5a.
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(b) Both Anderson-Darling (A% and

Ty <——— u*for (4.9 mm/d) Cémer-von Mises (W?) GoF methods
2
u*for MRLP \\/ and 42 (9.3 mm/d) produce slightly higher thresholds rel-
2
10" in;rﬁlg/’g W < u*for Hill based ative to the MRLP graphical method
' \ \ methods ~ 17.5 mm/d (i.e., column [1] in Table 3 and solid
black line in Figure 5a).

a 102 The first finding should be attributed
3 o data to the fact that the Anderson-Darling
MRLP A? statistic assigns larger weights to

A? .
5 == Hill based observations located at the (upper or
107 Ao methods - lower) distribution tail [Choulakian and
- Lewr Stephens, 2001] and, hence, leads to
— — — Jackson more conservative (i.e., higher) thresh-
10" E— b > . old estimates. The second finding is
10 10 10 10 10 related to the quantization present in
mm/d the historical rainfall series. To illustrate
Figure 6. Log-log plots of the empirical and theoretical complementary cumula- this, we reapplied the Anderson-

tive distribution functions (CCDFs) obtained for the positive rainrates of the 126
year daily rainfall record from Australia, used also in Figures 1b, 2, and 3.

Darling and Cramer-von Mises GoF
methods to all rainfall records, using
numerically derived distributions (i.e.,
based on Monte Carlo simulations; see sections 3.2 and 2.3) accounting for the level of quantization present
in each of the analyzed series. We refer to these results in Table 3 (i.e., columns [4] and [5]) and Figures 5a—
5¢ (solid and dashed green lines) as A2, and W2, respectively. One sees that when the effect of data
quantization is incorporated in the corresponding statistics used for threshold detection, the differences in
the calculated thresholds using the MRLP and the Cramer-von Mises and Anderson-Darling GoF methods
become notably smaller. However, the aforementioned reduction of the calculated thresholds when
accounting for data quantization is accompanied by a slight increase (decrease) of the estimated GP shape
(scale) parameter. We have investigated this issue in some detail, and found that it is related to a slight
increase of the frequency of small threshold estimates (i.e., below 1-1.5 mm/d), which causes the ensemble
mean value of the estimated shape parameters to increase.

To illustrate the quality of GP distribution fits to empirical data using the reviewed methods, Figure 6 shows
log-log plots of the empirical and theoretical CCDFs obtained for the positive rainrates of the 126 year daily
rainfall record from Australia, used also in Figures 1b, 2, and 3. One sees that all methods produce similarly
good fits, except for the Jackson and Lewis modified kernel statistics. The latter two are based on Hill's
assumption, and lead to much higher GP threshold and shape parameter estimates, causing significant
overestimation of the empirical quantiles.

To study the robustness of the reviewed methods on the number of available years in record, for each of
the analyzed series, we randomly eliminated daily values corresponding to 70 years of observations, and
repeated the aforementioned analysis. The obtained results are summarized in Table 4 and Figure 7.

The first thing to notice is that the results of MRLP are almost identical before and after random thin-
ning of the empirical records, indicating the robustness of the method in record length variations.
Concerning the modified Jackson and Lewis kernel statistics (i.e., compare the results in the last two
columns of Tables 3 and 4, and the red solid and dashed lines in Figures 5 and 7), reduced sample
sizes result in smaller thresholds and larger shape parameter estimates. This is in accordance with the
theoretical remarks made in section 2.4, as for larger samples one moves farther into the upper tail of
the distribution, with subsequent reduction of the estimated slope (i.e., GP shape parameter) from the
Pareto quantile plot (see Figures 4a and 4b and discussion in section 2.4), whereas for small sample
sizes, the validity of asymptotic assumptions weakens, making the obtained results less accurate (see
Appendix B).

Regarding the “failure-to-reject” method of Choulakian and Stephens [2000, 2001], one sees a decrease
of the ensemble mean value of the calculated thresholds, with decreasing sample size (i.e.,, compare the
results in columns [2]-[5] of Tables 3 and 4, as well as the blue and green solid and dashed lines in
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Figure 7. Same as Figure 5, but after randomly eliminating daily values corre-
sponding to 70 years of observations from all analyzed series.

Figures 5 and 7). This is true inde-
pendent of whether one accounts for
guantization in the empirical samples
(i.e.,, columns [4] and [5] in Table 4,
and green solid and dashed lines in
Figure 7) or not (i.e., columns [2] and
[3] in Table 4, and blue solid and
dashed lines in Figure 7). The
decrease in the obtained threshold
estimates is related to the higher
probability of type 2 errors of the
“failure-to-reject” method with
decreasing sample size [see Choula-
kian and Stephens, 2001, section 4
and Table 6], which leads to less con-
servative (i.e, smaller) threshold
estimates.

In summary, the obtained results show
that for rainfall applications, where the
GP shape parameter & is on the order
of 0.1-0.2 (see Tables 3 and 4),
Hill-assumption-based kernel statistics
lead to significantly higher GP thresh-
old and shape parameter estimates.
The “failure-to-reject” method of
Choulakian and Stephens [2000, 2001],
which is based on the goodness of fit
of a GP distribution to rainfall excesses
above different thresholds, produces
similar results to the MRLP method,
but it is quite sensitive to the presence
of quantization in the empirical data,
while its statistical power is reduced as
the sample size decreases. Finally, the
MRLP graphical method is less sensi-
tive to variations of empirical record

lengths, and to low levels of data quantization; i.e., for values of A/a, on the order of 0.01-0.02 used in this

study.

Overall, in the light of the theoretical bases and limitations of each of the reviewed methods, and the
results presented in Tables 3 and 4 and Figures 5 and 7, one concludes that: (a) the existence of quan-
tization in rainfall records, along with variations in their length, constitute the two most important

Table 4. Same as Table 3, but After Randomly Eliminating Daily Values Corresponding to 70 Years of Observations From All Analyzed

Series
Methods
MRLP [1] A [2] W2 [3] A2 14] W2 [5] Lewis [6] Jackson [7]

Threshold u*(mm/d) Mean 6.63 7.53 5.53 3.67 3.69 27.96 31.33

St. dev. 6.70 422 3.74 3.29 3.32 13.49 15.00
Shape ¢ Mean 0.137 0.150 0.159 0.192 0.186 0.359 0338

St. dev. 0.073 0.096 0.094 0.103 0.103 0.068 0.066
Scale a, (mm/d) Mean 10.14 9.78 9.31 8.50 8.61 10.51 11.15

St. dev. 5.12 3.64 3.65 3.94 3.86 495 5.37
do (mm/d) Mean 9.29 8.62 842 7.94 8.04 0.79 0.87

St. dev. 478 4.88 4.60 3.69 361 0.50 0.63
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factors that (depending on the method used) may significantly affect the accuracy of the obtained
results. (b) For daily rainfall applications, GP threshold estimates range between 2 and 12 mm/d, with
a mean value around 6.5 mm/d, leading to GP shape ¢ and reparameterized scale ay parameter esti-
mates on the order of 0.15 and 9 mm/d, respectively. The observed variation of threshold estimates
may be partially attributed to the dependence of rainfall statistics on large-scale climatic features
(e.g., near-surface temperature [see Wasko et al., 2015; Wasko and Sharma, 2015]) observed at differ-
ent locations of the globe. (c) While several studies [see e.g., Madsen et al., 1997a,b; Acero et al., 2011;
Villarini et al., 2011, 2013; Serinaldi and Kilsby, 2014, among others] have used high enough thresholds
(i.e., maintaining less than 5% of the empirical observations) to extract PDS from data, much lower
threshold values are also effective leading to reduced estimation variance of GP distribution parame-
ters. For the 1714 overcentennial daily rainfall records analyzed in this study, the mean annual exceed-
ance rate estimated using the MRLP method is on the order of 40 year™ ', corresponding to the upper
11% of the empirical observations.

4, Conclusions

To quantify hydrological risks, one needs to accurately model extreme rainfall. Among different approaches
that have been suggested, the use of partial duration series (PDS) with a generalized Pareto (GP) distribu-
tion model fitted to rainfall excesses above a properly selected threshold u* has attracted much attention in
recent years [see e.g., Wang, 1991; Rosbjerg and Madsen, 1992, 1995; Madsen et al., 1997a, 1997b, 2002; Lang
et al,, 1999; Willems, 2000; Deidda and Puliga, 2006; Cooley et al., 2007; Veneziano et al., 2007; Deidda, 2010;
Serinaldi and Kilsby, 2014]. This can be attributed to the fact that it is supported by both theoretical argu-
ments [see e.g., Balkema and de Haan, 1974; Pickands, 1975; Leadbetter et al., 1983; Smith, 1985; Leadbetter,
1991; Stedinger et al., 1993; Coles, 2001; Lucarini et al., 2016] and empirical evidences [see e.g., Martins and
Stedinger, 2001a, 2001b; Deidda and Puliga, 2006; Veneziano et al., 2007, 2009; Deidda, 2010; Veneziano and
Yoon, 2013; Papalexiou et al., 2013; Serinaldi and Kilsby, 2014], while retaining a larger portion of the empiri-
cal data relative to extracting and analyzing solely annual maxima; see section 1.

To consistently apply the PDS/GP approach for extreme excess (EE) modeling, one needs to determine a
proper threshold u* to extract PDS from data, and fit a GP distribution model to rainfall excesses. Selection
of u* is a nontrivial issue, as the selected threshold should be high enough to ensure validity of the GP
assumption and, at the same time, maintain a sufficient amount of data to avoid unnecessary increase of
the estimation variance of GP distribution parameters.

In this study, we reviewed the theoretical bases of representative GP threshold detection methods com-
monly met in the relevant literature, discussed their limitations, and applied them to the NOAA-NCDC daily
rainfall database.

The nonparametric method suggested by Gerstengarbe and Werner [1989] (see also Werner and Gerstengarbe
[1997], Domonkos and Piotrowicz [1998], Lasch et al., [1999], Cebrian et al., [2003], and Cebrian and Abaurrea
[2006] for representative applications of the method), which uses the sequential version of Mann-Kendal
test to detect the starting point of the extreme region of a sample, was proved theoretically incorrect and
capable of leading to strange results, especially in the case of quantized samples; see section 2.1.

Hill-assumption-based methods (see section 2.4), although theoretically correct, make use of asymptotic
properties of the GP distribution model, which do not always apply under preasymptotic conditions. An
example is the case of rainfall, where the low values of the shape parameter ¢ (i.e., on the order of 0.1-0.2)
cause slow convergence of the log-transformed GP quantiles to those of an exponential distribution. As a
consequence, goodness-of-fit methods based on Hill's assumption, such as the Jackson and Lewis modified
kernel statistics reviewed in section 2.4, when applied to empirical rainfall records (i.e., of finite length) lead
to significant overestimation of GP thresholds and shape parameters.

The “failure-to-reject” method of Choulakian and Stephens [2000, 2001], which is based on the recursive
application of Crdmer-von Mises (W?) or Anderson-Darling (A%) goodness-of-fit tests to rainfall excesses
above different thresholds, was proved quite sensitive to the presence of quantization in the empirical data,
with statistical power that reduces with decreasing sample size; see sections 2.3 and 3.3. The sensitivity of
the method even to small levels of data quantization does not allow for routine applications, requiring:

LANGOUSIS ET AL.

THRESHOLD DETECTION FOR THE GENERALIZED PARETO DISTRIBUTION 17



@AG U Water Resources Research 10.1002/2015WR018502

(a) identification of the level of data quantization in the analyzed series (e.g., using the approach of Deidda
[2007]), and (b) use of Monte Carlo simulations to obtain the required distributions of the Cramer-von Mises
(W2,,) and Anderson-Darling (A%,,) statistics, as a function of the sample size in the presence of data quanti-
zation. Also, for heavily quantized data, no limiting distributions for W? and A? should exist.

Finally, the mean residual life plot (MRLP) graphical method is quite simple to apply, it is based on GP distri-
bution properties valid (also) under preasymptotic conditions, while demonstrating reduced sensitivity to
the length of the available data, and to low levels of data quantization (i.e., for values of A/a, on the order
of 0.01-0.02). The latter should be attributed to the fact that data quantization, unless pronounced, does
not alter considerably the mean value of the excesses above different thresholds, making the power of the
method rather insensitive to low quantization levels.

Note, however, that the aforementioned competitive advantages of MRLP, relative to the other methods
reviewed, were revealed only after the method was brought in a form that avoids visual inspection of the
data, facilitating automation. Evidently, there is still room for significant improvements, as the stepwise
diagnostic procedure described in section 2.2 to identify the optimal threshold, can be refined to include
statistical arguments. This, as well as the maximum level of data quantization that MRLP can be effectively
applied, will form the subjects of a future communication.

We conclude by saying that in the case of highly quantized data, estimation of GP model parameters exhib-
its important convergence-related issues [see e.g., Deidda and Puliga, 2009], pointing toward the use of
more robust estimation methods such as the Multiple Threshold Method (MTM) suggested by Deidda
[2010]. MTM fits a GP distribution model to data using a range of possible thresholds, rather than a single
one. For the latter purpose, a reliable range of possible threshold estimates for daily rainfall series is
between 2 and 12 mm/d, as suggested by the conducted analysis using more than 1700 overcentennial
daily rainfall records collected worldwide.

Appendix A: Derivations on the Generalized Pareto (GP) Distribution Model

Define Z= X,- = [X — u*|X > u*] to be the scaled excesses of random variable X above threshold u*. If Z has
generalized Pareto (GP) distribution with complementary cumulative distribution function (CCDF)

—/¢
PlZ> 2]=P|Z > z|z>o]=(1+5ai) 2>0 (A1)
v
where a,- and £ are the scale and shape parameters of the distribution, respectively, then for any threshold

u>u*and z>u-u*=u" >0, one has

PlZ>znZ>u"| PlZ>z] P|[Z>2z|Z>0

PIZ > ut] PIZ>u*] PZ>u*|Z>0 (A2)

P[Z > 2|Z > u"]

By combining equations (A1) and (A2), one obtains

-1/t
1+4+E-2 N /¢ Py —1/¢
Plz>2Z> u*] =< %) —<1+5(Z - )) =<1+—€(2 u’) )) (A3)

N Lt
<1+557> ayg-+cu

and by defining Y =Z — u* = X — u, equation (A3) receives the form:
PlY >y] =P[Y >y|Y > 0] =<1+£al) ,y>0 (A4)
u

where a, = a, +&U — u¥).

Equation (A4) suggests that if the scaled excesses X, = [X — u*|X>u*] of random variable X above
threshold u* are GP distributed with shape and scale parameters ¢ and ay:, respectively, then the
scaled excesses X, = [X — u|X > u] of random variable X above any threshold u > u* are also GP distrib-
uted with the same shape parameter, and scale parameter that depends linearly on u [see also Coles,
2001; Deidda, 2010]:
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ay= ay-+E&(u—u") (A5)

Further, the expected value of the scaled excesses X, = [X — u|X > u] is calculated to be
e(u)=EX—u [X > u]= | ydQu(y)=
0

ay _agt&u—u*)

1-¢ 1-¢

=Au+B (A6)

where Q,(y) is the CDF in equation (2), a, and a,- are the scale parameters of the distribution when fitted to
the excesses above thresholds u and u*, respectively, and A= &/(1 — &) and B=(a,» — &u*)/(1 — &) are the
slope and intercept of the linear relation.

Appendix B: Hill's Assumption

In section 2.4, we referred to the asymptotic exponentiality of log-transformed Pareto-type variables; i.e.,
satisfying equations (10-12). Then we linked it to Pareto quantile plots, as a means of detecting the sample
value (i.e., threshold) above which the complementary CDF (CCDF) of the data displays a log-log linear
behavior (also referred to as Hill's assumption, see section 2.4). Finally, we used Monte Carlo simulations to
illustrate the significant biases of the obtained estimates, when threshold detection and shape parameter
estimation are done by applying goodness-of-fit (GoF) kernel statistics based on asymptotic arguments to
finite samples (i.e., under preasymptotic conditions). In what follows, we use theoretical arguments to intro-
duce an indicator for the threshold and shape parameter overestimation induced by Hill's assumption, in
the case of a generalized Pareto (GP) distribution.

Suppose that the scaled excesses X, = [X — u|X > u] of random variable X above threshold u follow a GP dis-
tribution model with shape parameter ¢ > 0, and scale parameter g, (see equation (2)):

y —-1/¢
PX—u < y\X>u]=1—(1+£a—) ,y >0 (B1)
u

Letting x =y + u in equation (B1) and solving for x, one obtains:

_au
=Y

Xup = [(1=p") " =1] +u,xp > u (B2)

where x,, denotes the p’-quantile of random variable [X|X > u].

Based on the GP threshold invariance property discussed in Appendix A, and using equations (B2) and (A5),
one can easily show that for any x,, , > u:

a _x
XuAp':tp:?O [(1-p) C_1] (B3)
where t, denotes the p-quantile of a GP distributed random variable, 7, with shape parameter &, zero thresh-
old, and scale parameter ao = a, - £u. In this case, the probabilities p’(x) = PIX < x|X > u] and p(t) = P[T < t]
in equations (B2) and (B3), respectively, are linked through:

(= PR P(Y)

, forany x >u (B4)
1-p(u) g

where p(t) = PIT<tl=1— (1+&5)7/°.

Consider now the standardized random variable T = £T/ao, which is also GP distributed with shape and
scale parameters equal to ¢. It follows from equation (B3) that the log-transformed p-quantile of T satisfies:

log(t)) =2z,+ log[1—(1—p)°] (B5)

where z, = —¢& log(1 — p) is the p-quantile of an exponentially distributed random variable Z with mean value
equal to &. The second term at the right-hand side of equation (B5) can be viewed as an additive bias that van-
ishes as p —1 or, equivalently, t, — co. Hence, at the limit as p — 1, the standardized log-transformed GP vari-
able T is attracted to an exponential distribution, with mean value equal to the GP shape parameter &. This
corresponds to a linear Pareto quantile plot with slope equal to ¢ (see also section 2.4).
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Using equation (B5), equation (B3) can be written as:
a
Xy p =tp= ?O exp(lpzp) (B6)

where /, denotes the quantile ratio:

log [1-(1-p)’]

W (B7)

o= log (t;) /Z,=1 +

An alternative way to view I, in equation (B7) is as the multiplicative bias of the log-transformed p-quantile
of the standardized GP variable T" under preasymptotic conditions, relatively to what one expects asymp-
totically as p —1 (i.e, note that as p —1, [,—1). Hence, I, can be used as an indicator for the level of conver-
gence to GP asymptotics (i.e., linearity in a Pareto quantile plot), under preasymptotic conditions.

It follows from equations (B6) and (B7) that the estimation accuracy of both the threshold u* and shape
parameter ¢ from finite samples (i.e., under preasymptotic conditions), by applying the Jackson and Lewis
modified kernel statistics and Hill's estimator in equation (13), respectively, is determined by the value of
the ratio /,; where p can be set to the largest empirical probability value in a sample of size n. For rainfall
applications, and in the case when a Weibull plotting position formula is used, p = n,/(n,, + 1), where n,, is
the number of positive values in the record (i.e., corresponding to wet conditions).

To study the sensitivity of the ratio /, in equation (B7) to the GP shape parameter £ and the size of the sam-
ple, Figure B1 shows plots of /, as a function of the wet-sample size n,, = p/(1 — p), for indicative values of ¢.
The thick curve has been obtained using ¢ = 0.15, corresponding to an average value for the GP shape
parameter estimates obtained from the NOAA-NCDC data set (see Table 3). One sees that |, increases with
increasing wet-sample size n,,, approaching 1 (i.e., asymptotic conditions) as n,, — oc. An important note to
make, is that the convergence rate of I, to 1 increases with increasing shape parameter ¢.

For example, in the theoretical case when ¢ > 0.3, convergence to GP asymptotics is quite fast, with
approximate validity even in the case of relatively small samples (i.e., /,>0.95 for n, =2 X 103 see
Figure B1). Under this setting, use of Jackson and Lewis modified kernel statistics and Hill's estimator
would lead to relatively accurate GP threshold and shape parameter estimates, even for sample lengths
on the order of 30 years (i.e., assuming an average wet-day fraction of 20%). However, for values of
£=0.1-0.2 descriptive of daily rainfall records (see sections 3 and 4), I, converges slowly to 1 with
increasing wet-sample size n,,, leading to significant biases in the obtained estimates. Since values of ¢
on the order of 0.3 and higher are not common in rainfall records, Hill-assumption-based methods (as
the Jackson and Lewis modified kernel statistics reviewed here) should be avoided as they are expected
to produce significantly biased results.

quantileratio /,
o
~

o

0.2
(] &0l
0/ 2] &02
[3] &03
[data] &=0.15
0.2 :
10° 10* 10° 10° 107 108 10°

wet-sample size n,,

Figure B1. Quantile ratio /, in equation (B7) as a function of the number of the positive values in record, n,,, for different values of ¢.
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Similar concepts to those used in deriving equations (B6) and (B7) can be applied to any Pareto-type dis-
tribution, other than the GP. The derivations are beyond the scopes of this paper and are left to the
reader.
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