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A Markov chain representation
of the multiple testing problem

Stefano Cabras

Abstract

The problem of multiple hypothesis testing can be represented as a Markov process where a new

alternative hypothesis is accepted in accordance with its relative evidence to the currently accepted

one. This virtual and not formally observed process provides the most probable set of non null

hypotheses given the data; it plays the same role as Markov Chain Monte Carlo in approximating a

posterior distribution. To apply this representation and obtain the posterior probabilities over all

alternative hypotheses, it is enough to have, for each test, barely defined Bayes Factors, e.g. Bayes

Factors obtained up to an unknown constant. Such Bayes Factors may either arise from using default

and improper priors or from calibrating p-values with respect to their corresponding Bayes Factor lower

bound. Both sources of evidence are used to form a Markov transition kernel on the space of hypotheses.

The approach leads to easy interpretable results and involves very simple formulas suitable to analyze

large datasets as those arising from gene expression data (microarray or RNA-seq experiments).
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1 Introduction

Multiple hypotheses testing (MHT) consists of a set of statistical techniques in which m> 1
statistical tests are stated jointly and the objective is to estimate the partition of the m hypotheses
into two sets of sizes m0 and m1¼m– m0 regarded as the set of true nulls and true alternatives,
respectively. For instance, the analysis of the outcome of gene expression measurements is a typical
statistical problem of MHT, where m> 1, gene expression levels are compared across two biological
populations, by testing a corresponding number of statistical hypotheses with the objective of
discovering those genes whose expression level is related with a biological population.

The main input of any MHT procedure is the individual or marginal evidence from each test to
obtain some type of joint evidence for all tests. A consistent estimation of the null and alternative
sets has the objective of controlling for some type of error rates based on the number of false
positives, e.g. false null rejections or false discoveries, while also maintaining a low number of
false negatives, e.g. missed null rejections. The typical error rates controlled in MHT procedure
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are the False Discovery Rate (FDR) and the False Non-rejection Rate (FNR). These can be broadly
defined as the ratio among the number of false discoveries over all discoveries (FDR) and the ratio
between the number of missed rejections among all non-rejections (FNR).

The most commonly known and used MHT methods are based on the evidence provided by
suitable test statistics through the corresponding p-values. The m p-values resemble the evidence
gathered from observed quantities (i.e. gene expression levels) and the statistical model. In fact, these
p-values may arise from basic sampling models, such as the test of the equality of the mean in two
independent populations, as well as from very complicated ones such as for instance non-parametric
models or even from models with a complicated hierarchical structure. It is well known that when
the null hypothesis is simple or when the test statistic is ancillary, the theoretical sampling null
distribution of the p-value is the uniform distribution U(0,1) and the p-value is said to be calibrated.
The m p-values are usually assumed to be calibrated with respect to the U(0,1) distribution and thus
MHT inference procedures are reliable with respect to such an assumption. This could be one of the
main reasons why p-values are so popular in MHT. However, besides the effort in using more
complicated and realistic statistical models, the settings in which p-values are calibrated are
essentially very few and for very simple statistical models. Even asymptotic arguments in favor of
such uniformity calibration are unsustainable in light of the fact that, for these kinds of massive
experiments such as gene expression studies, replications are usually expensive. Therefore, a part of
specific situations, the use of p-values in MHT, is problematic as shown in ‘Note on multiple testing
for composite null hypotheses’–a paper authored by me.1 In fact, when p-values sampling null
distribution deviates from the U(0,1), then usual MHT are biased in that no upper bounds on
FDR or FNR are guaranteed. To this purpose,2,3 proposed a MHT procedure (Efron’s
procedure in the sequel) which estimates, within an empirical Bayes setting, the unknown
theoretical sampling null distribution of the p-values which may differ from U(0,1).

To work around the difficulties of using p-values, barely defined Bayes Factors (BFs in the
sequel), cB1, . . . , cBm, can be used in MHT, where Bi is the ith BF of the alternative against
the null hypothesis in test i 2 f1, . . . ,mg and c is the unknown indetermination constant assumed
to be equal for all tests. In fact, in Bertolino et al.,4 it is shown that individual fully defined and
interpretable BFs are not even necessary in MHT. This avoids the heavy computational techniques
required for estimating c to properly calibrate or adjust individual BFs to be individually
interpretable. Such types of uncalibrated BFs arise from the fact that BFs in MHT require the
elicitation of at least 2m priors on models with only an unknown scalar parameter, i.e. one
marginal prior for each model under testing. As m is large, the choice of such priors is usually
forced to be one, among those that come from formal rules. These types of priors are typically
improper and so the BF for single hypothesis testing is undetermined due to the ratio among priors
pseudo-constants c¼ c1/c0, where c0 and c1 are the prior normalizing constant for the parameters of
null model, H0, and the alternative one H1, respectively. Such prior constants are equal for all tests
and this comes from the mathematical fact that all 2m models for null and alternative hypotheses,
share the same parameter spaces and the same priors. If one were interested in eliminating BF
arbitrariness due to c, several approaches in the literature could be considered, such as those in
the literature.5–11 Unfortunately, these methods are based on large sampling theory and their
application would be extremely problematic in MHT, as the computational effort necessary for
BF single calibration would be necessary for each one of the m tests. Another approach that
leads to priors from formal rules which are proper, i.e. c0 and c1 are known, is that of the
conventional prior approach in Bayarri et al.12 If, for some reason, there were interest in having
individual interpretable BFs in linear models, the approach of conventional priors12 can still be
employed in MHT with moderate m (say, m< 100) as a substitute for the one considered below.
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However, for large m, the approach proposed here may be considered in conjunction with the
conventional prior approach, as well as the not very recommended one that says just use ‘‘vague
proper priors.’’12

The set of undetermined BFs, cB1, . . . , cBm may also arise from calibrating p-values with respect
to the infimum of their respective BFs as explained in Sellke et al.13 and reported here. Let pvi be the
ith p-value for test i, with pvi< 1/e, then the corresponding infimum of the BF for the alternative
against the null is

cBi ¼
½�epvi lnð pviÞ�

�1, for pvi 5 1=e

1, otherwise

(
, ð1Þ

where c denotes, with an abuse of notation, the calibration constant of the true and unknown BF Bi

with respect to its lower bound, i.e. Bi � cBi, for which we only know the product cBi, but not c or
Bi, separately. In this case, c is the same for all i because of the following mathematical fact: the
infimum of BFs lower bounds are calculated with the same model for all i. In fact, equation (1)
comes from assuming that if the test statistic has been appropriately chosen, then its density under
the alternative model is decreasing with the p-value. Therefore, considering the class of Betað�, 1Þ
densities for 05 � � 1 for the p-value under the alternative model and the U(0, 1) density under the
null one, then the infimum of the BF over 05 � � 1 is (1) for p-values smaller than 1/e.13 For all
p-values larger than 1=e � 0:37, we assume that the evidence of the alternative against the null model
does not differ from that for pvi 2 ½1=e, 1�. It is worth noting that p-values larger than 0.37 never
induce any MHT procedure to reject the corresponding null hypotheses for m, which is also large, as
in the case of gene expression measurements (microarray or RNA-seq experiments). The p-value
calibration in (1) can also be further improved by considering the sample size in each test with the
approach developed in Pérez and Pericchi.14

For the sake of comparison, Efron’s, Benjamini–Hochberg (BH), and Benjamini–Yekutieli (BY)
procedures are considered. The BY procedure is aimed at controlling the mean FDR under weak
dependence assumptions among tests15 with respect to the original BH procedure.16 The taxonomy
of MHT procedures can be divided into two sets: adaptive and non-adaptive procedures. Efron’s
procedure belongs to the class of adaptive procedures, as the null distribution of p-values is
evaluated conditionally on the observed sample of pvi, i ¼ 1, . . . ,m, while the BH and BY
procedures belong to the class of non-adaptive MHT methods because they rely on asymptotic
results that are unconditional to the observed p-values. By no means, we do mean that such
MHT procedures represent the state of the art of MHT, although they certainly are popular
choices in MHT. A broad review of the most popular MHT literature is beyond the scope of this
work and there are several articles that we invite the reader to consult such as Dudoit et al.17 and
Farcomeni,18 along with the references therein.

It is worth noting that from a Bayesian perspective, in which the model for the observable data
accounts for all m hypotheses, multiple comparisons do not need to be explicitly considered as
illustrated in Gelman et al.19 This is because the effect of the prior on parameters, which
represent the m hypotheses, allows posterior parameter distributions to be shrunk in such a way
that the multiplicity of tests is trivially accounted for Gelman et al.19 Alternatively, the MHT may be
posed as a model selection problem in a regression setting as in Bayarri et al.,12 where 2m models
may be competed in estimating the probability of belonging to one of the two biological populations
under comparison. In this setting, priors on model parameters and priors on model space become
relevant as illustrated in the literature,12,20,21 where BFs consistency is studied for asymptotic in both
sample size and m. However, although the above approach to Objective Bayesian model selection
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deals with almost analytical solutions for BFs, comparing 2m models, when m is potentially of the
order of say millions, it still implies millions of models in the log2 scale! For this reason, we here
focus on classical approaches with the main aim of post processing the results of studies that have
been conducted with separate analyses for each hypothesis under test. Such results may be expressed
either in terms of significant evidence from significance testing or conditional to the sample in
the case of calibrated p-values or BFs, respectively. The advantage of the approach pursued here
is that very complicated analyses can be embedded into one single analysis, where such
multiplicity of significance tests (and/or BF evidences) have a Markov chain (MC) representation
with the purposes of obtaining the posterior probability of the set of non null hypothesis. The
interpretation of this MC representation is not necessary to obtain such a posterior probability,
because it comes from a mathematical result, i.e. the definition of the equilibrium distribution for
a discrete space and discrete time Markovian process. This way of proceeding also applies when
employing Markov Chain Monte Carlo (MCMC) methods to approximate a posterior distribution.
In fact, there is not a physical interpretation of the stochastic process used to approximate
a posterior, as its equilibrium distribution is interpreted as the posterior distribution. Despite this,
we argue that an interpretation of the proposed Markovian process, underlying the estimation of the
posterior distribution of non-null hypotheses, can be stated as the process underlying an imaginary
or maybe real, but certainly not formalized, discovery process for which there is no explicit reference
in the current literature. Specifically, this random process is with regard to a researcher aiming to
contrast hypotheses over some real phenomena, e.g. a gene related to a disease. He/she starts from
assuming as true a certain hypothesis i and considers a different one j which can better explain the
real phenomena. The process of discarding hypothesis i in favor of j is a random Markovian process
where the probability of i! j, �ij, is proportional to the evidence of hypothesis j against i only.
The equilibrium distribution of such a process provides the probability of each hypothesis being a
true discovery. With such equilibrium distribution, it is possible to set-up a decision rule aimed
at estimating the null and alternative sets, possibly controlling FDR and FNR under such an
equilibrium distribution.

The rest of the article is organized as follows: Section 2 describes in more details the
representation process, transition probabilities, equilibrium distribution, and finally a very simple
decision rule. Section 4 illustrates the above theory validating it through theoretical results and a
simulation study for a parametric toy example. Section 5 considers a more complex model with an
application to cancer risk factor analysis and gene expression measurements in which evidence from
BFs and p-values are compared. Section 6 illustrates another more elaborated decision rule that,
differently from the previous one, requires a tuning parameter to be fixed beforehand. Conclusions
are left to Section 7.

2 A MC representation of the discovery process

The aim of this section is to formally describe the MC representation process and how to obtain
jump probabilities from uncalibrated BFs and the equilibrium distribution. Finally, a very simple
decision rule is described with a more elaborate one in Section 6.

2.1 The discovery process

Let H ¼ H01
1 ,H01

2 , . . . ,H01
i , . . . ,H01

m

� �
be the set of tests of cardinality m, always involving

two hypotheses in each one: the null and the alternative. The set H of tests represents m states of
nature in which a discovery process may sojourn, in the sense that there is a set of states of nature
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that implies accepting the corresponding alternative hypotheses as true ones or true discoveries.
Parallel to gene expression analysis, we have a set of m genes all compared among them in which
only a subset is supposed to be related to the phenotype (e.g. a disease) or the two biological
populations under comparison.

The problem indeed is that the analyst is not capable of comparing all hypotheses in H in a
bunch, but is only able to explore the setH as follows: at time t a certain alternative hypotheses in i is
considered as the true one, that is, i is a discovery or the null hypothesis in i is rejected. At time tþ 1,
an alternative hypothesis j is picked up at random and considered as the new true one if the
probability of the alternative hypothesis in j relative to i, �ij 2 ½0, 1� is large enough. Otherwise, at
time tþ 1, i is still the hypothesis declared as the true one. This Markovian process, over the state-
space H, is assumed to be repeated infinite times (or by infinite researchers), that is, as t!1 and
the most visited set of hypotheses is considered to be the most probable set of true alternative
hypotheses. This Markovian process plays the same role in approximating the probabilities of
true discoveries as MCMC does in approximating a posterior distribution in the usual Bayesian
practice. As for the MCMC, there is no interpretation in terms of modeling observable quantities;
then the above interpretation, in terms of analyst behavior in assessing discoveries, is not essential as
the proposed Markovian process does not directly model any observable quantities. However, we
think that such an interpretation provides an intuitive and immediate viability of the resulting
probabilities of true discoveries for applied science.

2.2 Jump or transition probabilities

The described Markovian process sustains the idea that the discovery process consists of a random
jump process from one explanation of the reality to another. The probability of jumps from
explanations are proportional to how relatively likely the new explanation is with respect to that
at hand. Specifically, we set the jump probabilities as,

�ij ¼ min
Bj

Bi
, 1

� �
, ð2Þ

where the unknown constant c simplifies and disappears from the problem. Table 1 reports the
transition kernel among hypotheses.

The interpretation of (2) is that the collected and analyzed data provide the relative evidence from
one hypothesis to another. This is defined even if it is not calibrated and/or the evidence is

Table 1. Transition kernel among hypotheses.

Hypotheses

Hypotheses 1 � � � j � � � m

1 1 � � � �1i � � � �1m
..
. ..

. ..
. ..

. ..
. ..

.

i �i1 � � � �ij ¼ min
Bj

Bi
,1

n o
� � � �im

..

. ..
. ..

. ..
. ..

. ..
.

m �m1 � � � �mj � � � 1
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interpretable in a single test. This sheds new light on the importance of the BFs in MHT even if their
own individual scale is not interpretable.

2.3 Equilibrium distribution

Jump probabilities in (2) define a Metropolis algorithm in which the proposal distribution, over the
discrete space H, is for the sake of simplicity, the discrete uniform on 1, . . . ,mf g where the
probability of state j to be proposed is 1/m and the probability to jump is �ij. In this case,
standard theory for MCMC leads us to state that the equilibrium distribution over the discrete
state-space H is given by the following steady-state probabilities:

p ¼ pi
� �m

i
, pi ¼

BiPm
i¼1 Bi

, for i ¼ 1, . . . ,m ð3Þ

The interpretation of pi is that the evidence for alternative hypothesis i is directly proportional to its
own non-calibrated evidence and inversely proportional to that of all other hypotheses at hand.
In such an interpretation, the important argument in MHT comes into play, according to which the
evidence of a single hypothesis must account for the evidence of all other hypotheses being tested.
Note that while cBi=ð1þ cBiÞ cannot be interpreted as the posterior probability of the alternative
hypothesis in test i because of the presence of c, formula (3), despite having an intuitive
interpretation, it has, at the moment, no statistical justification except under the Markovian
process illustrated above.

2.4 A basic decision rule

The posterior probabilities that each of the m alternative hypotheses can be considered as the true
ones, p, can be used as the base for a decision rule to estimate the null and alternative sets. Such rules
can be more or less complicated depending on the assumption about test dependence or other
considerations from a decision theory perspective. Such features of a decision rule are common to
all MHT procedures discussed in the literature. Here, we consider a very simple but effective one,
leaving the reader to Section 6 for a more elaborate procedure. The reasoning about which
hypotheses should be considered as true discoveries is based on an orthodox rule for an Objective
Bayesian statistician, that is, on the well known insufficient reason principle for a discrete decision
space and applied here conditionally on the given set of m hypotheses. It consists in stating that if
there is not sufficient reason to believe that one hypothesis is more probable than another, then 1/m
prior probability to each one should be assigned before collecting evidence. Therefore, the decision
rule consists in rejecting null hypothesis i if

pi 4 1=m ð4Þ

This also means that alternative hypotheses for which pi> 1/m should be considered as true
discoveries. Such a decision rule has no tuning parameters, given the insufficient reason principle,
in contrast to the usual ones in MHT where at least an FDR level must be fixed to have a decision.
Of course, rejecting all pi> 1/m does not guarantee the control of FDR in a finite sample. However,
it can be shown that asymptotically, for large sample sizes and a large number of tests, the FDR is
negligible (see Appendix 1). This simple rule, while it controls the FDR, does not control the FNR.
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To achieve such a goal it is necessary to introduce a tuning parameter as explained in Section 6.
Empirical results shown below are compatible with this theoretical result.

3 Illustrative example

To illustrate the method for a possible typical biomedical application, consider the study in Garcı́a-
Arenzana et al.22 and also discussed in the book of McDonald23 for illustrating multiple
comparisons. This study consists in testing associations of 25 types of diets with mammographic
density, which is an important risk factor for breast cancer in Spanish women. The p-values for the
association study are published in Garcı́a-Arenzana et al.22 and reported in Table 2, which contains
the unscaled BFs from (1) and the probabilities p.

Three MHT procedures are considered and at the threshold of 20%, the ‘‘Total calories’’ can
always be associated with mammographic density, while the ‘‘olive oil’’ dietary variable only is

Table 2. Results for the association study in Garcı́a-Arenzana et al.22 of 25 dietary variables with mammographic

density in Spanish women.

Dietary variables p-values cBi p Loc. FDR BH BY l

Total calories 0.001 53.256 0.567 0.027 0.025 0.095 <1

Olive oil 0.008 9.524 0.101 0.289 0.100 0.382 5

Whole milk 0.039 2.908 0.031 0.589 0.210 0.801 8

White meat 0.041 2.809 0.030 0.591 0.210 0.801 12

Proteins 0.042 2.763 0.029 0.592 0.210 0.801 16

Nuts 0.060 2.179 0.023 0.600 0.250 0.954 21

Cereals and pasta 0.074 1.909 0.020 0.605 0.264 1.000 29

White fish 0.205 1.132 0.012 0.730 0.491 1.000 40

Butter 0.212 1.119 0.012 0.742 0.491 1.000 46

Vegetables 0.216 1.111 0.012 0.749 0.491 1.000 53

Skimmed milk 0.222 1.101 0.012 0.760 0.491 1.000 63

Red meat 0.251 1.060 0.011 0.822 0.491 1.000 79

Fruit 0.269 1.042 0.011 0.865 0.491 1.000 99

Eggs 0.275 1.036 0.011 0.880 0.491 1.000 105

Blue fish 0.340 1.003 0.011 1.000 0.533 1.000 138

Legumes 0.341 1.003 0.011 1.000 0.533 1.000 169

Carbohydrates 0.384 1.000 0.011 1.000 0.565 1.000 180

Potatoes 0.569 1.000 0.011 1.000 0.782 1.000 222

Bread 0.594 1.000 0.011 1.000 0.782 1.000 313

Fats 0.696 1.000 0.011 1.000 0.870 1.000 387

Sweets 0.762 1.000 0.011 1.000 0.907 1.000 522

Dairy products 0.940 1.000 0.011 1.000 0.986 1.000 685

Semi-skimmed milk 0.942 1.000 0.011 1.000 0.986 1.000 1147

Total meat 0.975 1.000 0.011 0.303 0.986 1.000 2397

Processed meat 0.986 1.000 0.011 0.122 0.986 1.000 >10,000

For each dietary variable, the table contains: p-value for the association study, the corresponding unscaled BFs from (1) and the

probabilities p. Three MHT procedures are considered: Efron’s procedure for which we reported the value of the corresponding

Local FDR (Loc. FDR), the BH and BY procedures for which we reported the corresponding adjusted p-values (columns BH and BY).

The last column is the value of the cost parameter l for the loss function illustrated in Section 6.

FDR: False Discovery Rate; BH: Benjamini–Hochberg; BY: Benjamini–Yekutieli.
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associated with the BH procedure. Using the proposed cut-off of 1=m ¼ 1=25 ¼ 0:04 both total
calories and olive oil can be considered as associated with mammographic density according to
the proposed approach. The last column relates to the decision rule approach, as illustrated in
Section 6.

4 Evidence from BFs

Let x ¼ ðx1, . . . , xmÞ be a realization of experiments each with m different features, i.e. m genes
expression. The vector xi contains n replications corresponding to the ith experimental feature,
for i ¼ 1, . . . ,m. The MHT problem can be formalized as a multiple model selection problem as
follows:

Hi0 : fi0ðxij�i0Þ, �i0ð�i0Þ, �i0 2 �i0

Hi1 : fi1ðxij�i1Þ, �i1ð�i1Þ, �i1 2 �i1

�
i ¼ 1, . . . ,m,

where �i0ð�i0Þ and �i1ð�i1Þ are default prior distributions and f�i0,�i1g is a partition of
�i � R

K, K � 1. We propose using default and improper priors derived from the same formal
rule applied to each fikð�j�Þ, k¼ 0, 1. For the sake of simplicity, we assume that fi0ð�j�Þ and fi1ð�j�Þ
are members of the same parametric family for each hypothesis i, namely f0ð�j�Þ and f1ð�j�Þ,
respectively. In this case, we have,

�i0ð�i0Þ ¼ �0ð�0Þ / c0g0ð�0Þ

�i1ð�i1Þ ¼ �1ð�1Þ / c1g1ð�1Þ

�
, ð5Þ

where c0 and c1 are the normalizing pseudo-constants as g0ð�0Þ, g1ð�1Þ could be non integrable
functions (i.e. improper priors). Prior predictive distributions for null and alternative hypotheses
are assumed to exist and are

mikðxiÞ ¼

Z
�k2�k

fkðxij�kÞ�kð�kÞd�k, for k ¼ 0, 1, i ¼ 1, . . . ,m:

The BF of Hi1 against Hi0 is

cBi ¼
mi1ðxiÞ

mi0ðxiÞ
¼

c1
c0
�

R
�12�1

g1ð�1Þ f1ðxij�1Þd�1R
�02�0

g0ð�0Þ f0ðxij�0Þd�0
, ð6Þ

which is unscaled because of the arbitrary ratio c¼ c1/c0. We define the unscaled BF as,

Bi ¼

R
�12�1

g1ð�1Þ f1ðxij�1Þd�1R
�02�0

g0ð�0Þ f0ðxij�0Þd�0
: ð7Þ

Even if Bi has no interpretation in a single test, it can be used in a comparative approach; in fact,
suppose having two tests, i and i0, if

cBi

cBi0
¼

Bi

Bi0
4 1 for all i, i0 2 f1, . . . ,mg,
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the evidence in favor of Hi1 versus Hi0 is larger than that of H0i1 versus H0i0 whatever c is. To
characterize asymptotically the proposed procedure, it is important to state the consistency of pi
as defined in (3). That is, for n,m!1, pi! 1 if i is in the set of true alternatives and pi ! 0,
otherwise (see Appendix 1).

4.1 Toy example: Testing zero normal means with unknown variance

We illustrate the proposed method using the following toy example.4 Let Xi 	 Nð�i, �
2
i Þ,

i ¼ 1, . . . ,m be m independent normal populations with unknown variance �2i . Suppose testing

fH0i : �i ¼ 0 versus H1i : �i 6¼ 0, 8�2i 4 0g, i ¼ 1, . . . ,m:

Sufficient statistics are �Xi ¼ 1=n
Pn

j¼1 Xij and S2
i ¼ 1=n

Pn
j¼1 ðXij � �XiÞ

2, whose observed values are
denoted by �xi and s2i , respectively.

We assume the usual default and improper priors,

�0ð�i, �
2
i Þ ¼ c0�

�2
i � 1f0g
R

þð�i, �
2
i Þ,

�1ð�i, �
2
i Þ ¼ c1�

�2
i � 1R
R

þð�i, �
2
i Þ,

where 1A(x) is an indicator function for the event x 2 A. The full BF is cBi ¼ c1=c0Bi, where

Bi ¼
�ðn�12 Þ

�ðn2Þ

ffiffiffiffiffiffiffiffi
�S2

i

q
1þ

�X2
i

S2
i

� �n=2

, ð8Þ

is the unscaled BF. The calculation of p in (3) is immediate.
To have a flavor of the FDR and FNR resulting from the proposed method in this specific

parametric toy-example, we consider a study of the following scenarios with, �2i ¼ 1 and 1000
simulated datasets in each one:

. n¼ 10, 20, 50, 100;

. m¼ 100, 1000, and 2000;

. m0/m¼ 0.9, 0.95, and 0.99;

. �i¼�A where �A¼ 0.5, 1, 2, and 3.

For each simulated data set, we calculate the FDR and FNR generated by the procedure based
on BFs or p-values that in this case is the p-value of the Student’s t-test on the mean with unknown
variance. Such a p-value is calibrated and its BF lower bound is derived according to (1).

Figure 1 reports the resulting FDR. First of all, we can see that the procedure is consistent for
n!1 regardless of the proportion of null hypotheses m0/m and it also improves as the signal �A

becomes larger. Second, we can appreciate how BFs improves generally over p-values in reporting
the evidence of each test. In fact, the FDR using BFs is consistently not larger than those obtained
with p-value. This is due to the fact that the BF, explicitly compares two alternative hypothesis in
each test, namely the zero mean hypothesis against the alternative. The same cannot be said for the
p-value.4 On the contrary, the use of p-value with this simple rule tends to be less conservative and
the FNR is smaller using the calibration of p-values instead of BFs as illustrated in Figure 2.

The fact that the procedure becomes less conservative or more liberal is due to the underlaying
Bayesian machinery and in particular to the prior, which is relevant in the inference when the
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evidence is not conclusive. In fact, a priori, it is assumed that at least 1 hypothesis over m is the true
alternative, regardless on which one it is. However, it deserves to note that within the Bayesian
machinery it is possible to assign different prior probabilities to the each one of the m hypotheses
instead of the non-informative 1/m and check if a posteriori their probability is increased up to a
value that it is judged enough. Essentially the approach here proposed opens many lines of
researches in this directions.

Finally, note that for large signals and large n, the procedure consistently estimate the set of true
alternatives, as a consequence of BFs consistency. Therefore, both FDR and FNR tends to 0 for
large samples and large signals, while in small samples and weak signals things are less clear.

Figures 3 and 4 compare the actual FDR and FNR against that standard procedures, namely
BH/BY/Efron and the Bonferroni Procedure, which controls the Family Wise Error Rate (FWER)
using the nominal threshold level equal to 5%.

From Figures 3 and 4, it is possible to see that the increment in the sample size n, benefits more
the proposed procedure in terms of less FDR and less FNR with respect to the standard ones. This is
again the consequence of BFs consistency and hence that of p consistency. At lower sample sizes, the
proposed method, with the simple decision rule, is more liberal as the FDR is larger, but the FNR is
lower.

Figure 1. Approximated FDR from simulations. Top scale is the true proportion of null hypotheses m0/m, right scale

is m and bottom scale is the sample size n. Monte Carlo Standard deviation in 1000 simulations is negligible and not

reported.

FDR: False Discovery Rate.
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5 Applications

Differently from the above toy example, we consider a another parametric test that is more realistic
for applications to, for instance, gene expression measurements data: that is, testing the equality of
the mean of two independent normal populations with all parameters unknown. More formally, let
m be the number of features and denote with xm
nx the outcome in population X with nx replications
and ym
ny the outcome in population Y with ny replications. Let Xi 	 Nð�Xi

, �2Xi
Þ and

Yi 	 Nð�Yi
, �2Yi
Þ for i ¼ 1, 2, . . . ,m. The set of hypotheses, for �2Xi

4 0, �2Yi
4 0 unknown, is the

following:

fH0i : �Xi
¼ �Yi

¼ �i versus H1i : �Xi
6¼ �Yi

, 8�2Xi
4 0, 8�2Yi

4 0g, i ¼ 1, . . . ,m:

Under the usual default priors:

�0ð�i, �
2
Xi
, �2Yi
Þ / ��2Xi

��2Yi
� 1

R
R
þ
R

þð�i, �
2
Xi
, �2Yi
Þ,

�1ð�Xi
,�Yi

, �2Xi
, �2Yi
Þ / ��2Xi

��2Yi
� 1R
R
R

þ
R
þð�Xi

,�Yi
, �2Xi

, �2Yi
Þ,

Figure 2. Approximated FNR from simulations. Top scale is the true proportion of null hypotheses m0/m, right scale

is m and bottom scale is the sample size n. Monte Carlo Standard deviation in 1000 simulations is negligible and not

reported.

FNR: False Non-rejection Rate.
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the unscaled BF for H1i against H0i is
4

Bi ¼
Betaðnx�12 , 1

2Þ Betað
ny�1

2 , 1
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
Xi
S2
Yi

q
R
�i2R

1þ ð �Xi � �iÞ
2=S2

Xi

	 
�1
2nx

1þ ð �Yi � �iÞ
2=S2

Yi

	 
�1
2ny
d�i

, ð9Þ

where Beta(a,b) is the beta function evaluated in a, b and �Xi, �Yi,S
2
Xi
,S2

Yi
are sample means and

variances for group X and Y, respectively.
With this model at hand, it is possible to apply the above MHT procedure to the analysis of

microarray or RNA-seq experiments. Here, we revisit two old microarray experiments: the first is a
calibration experiment where the true differentially expressed (DE) genes are known, whereas the
second is a larger study also analyzed, with different approaches, in Singh et al.24 and Efron.2 In
both cases, we assume that evidence may come either from BFs or from p-values of the usual
Student’s t-test with the Welch correction for �2Xi

6¼ �2Yi
. This is just an asymptotic correction that

does not guarantee uniform p-values in finite samples. To be used in the BH/BY and Efron
procedures, such p-values are not further calibrated with respect to their BF lower bounds.

The third example is a post analysis of a more recent outcome of an RNA-seq experiment:
probabilities p are calculated from the set of m p-values calibrated with respect to their BF lower
bounds according to (1).

Figure 3. Approximated FDR from simulations for standard procedures and the proposed one. Top scale is the true

proportion of null hypotheses m0/m, right scale is m and bottom scale is the sample size n. Monte Carlo Standard

deviation in 1000 simulations is negligible and not reported. The nominal level for all standard procedures is 5%.

FDR: False Discovery Rate.
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5.1 Microarray: A controlled experiment

We compare results obtained using unscaled BFs and p-values when analyzing gene expression levels
of the old Affymetrix HGU95A Latin Square dataset (http://www.affymetrix.com), which has been
originally used as the calibration experiment of Affymetrix HGU95A chips. Here, m¼ 12626 and 16
genes have been spiked at controlled levels ranging from 0 to 1024 picoMolar (pM) as shown in
Table 3.

A subset of the original 16 replications is considered here to evaluate differences in small samples,
specifically the number of replications for X and Y is nx¼ ny¼ 12. In this spiked-in calibration
experiment, genes 1597_at and 38734_at are the least DE, whereas gene 684_at is the most DE,
because it is absent from population Y and it has the highest concentration in population X. This
gene has been eliminated from the analysis as it has a unusually high fold change while that of the
not reported genes is between 0.8 and 1.2 fold change. We analyze expression level data obtained
from summaries of probe level pairs in the log2 scale. Such summaries are obtained by pre-
processing original microarray measures according to the procedure illustrated in Irizarry et al.25

Results of the analysis are reported in Figure 5. For each gene, we reported p obtained with BF
and p-values. Red points indicate genes that are declared as discoveries jointly by Bonferroni/BH/
BY/Loc. FDR—Efron procedures. Of course there are still differences among these procedures at
20% of nominal cut-off and with the proposed one. Actual FDR and FNR for all methods are

Figure 4. Approximated FNR from simulations for standard procedures and the proposed one. Top scale is the true

proportion of null hypotheses m0/m, right scale is m and bottom scale is the sample size n. Monte Carlo Standard

deviation in 1000 simulations is negligible and not reported. The nominal level for all standard procedures is 5%.

FNR: False Non-rejection Rate.
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reported in Table 4. The actual FDR for the three procedures is a good deal above the nominal 20%,
which just highlight that the interpretation of the nominal 20% is in mean 20%, where the mean is
with respect to an infinite resampling. On the contrary, the proposed procedure must be interpreted
given the observed sample. There are still a few DE genes that are very difficult for any possible

Figure 5. Results from the analysis of a Microarray controlled experiment. Values of the steady-state probabilities

for each gene in log10 scale along with the cutoff log10ð1=mÞ (dashed lines). A total of 17 genes are jointly declared as

discovery using all BH/BY/Loc. FDR: Efron procedures with the threshold of 20%. Cut off points are explicitly

reported for Efron Local False Discovery Rate BH and BY procedures.

FDR: False Discovery Rate; BH: Benjamini–Hochberg; BY: Benjamini–Yekutieli.

Table 3. pM concentrations of 16 spiked-in genes in X and Y populations used in this study.

Gene pM X pM Y Gene pM X pM Y

37777_at 512.00 1024.00 36202_at 8.00 16.00

684_at 1024.00 0.00 36085_at 16.00 32.00

1597_at 0.00 0.25 40322_at 32.00 64.00

38734_at 0.25 0.50 407_at 512.00 1024.00

39058_at 0.50 1.00 1091_at 128.00 256.00

36311_at 1.00 2.00 1708_at 256.00 512.00

36889_at 2.00 4.00 33818_at 64.00 128.00

1024_at 4.00 8.00 546_at 8.00 16.00
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detection as they have very low probabilities to be visited by the assumed virtual Markovian
discovery process.

5.2 Microarray: Prostate data

We compare unscaled BFs with p-values in the analysis of gene expression levels for prostate cancer
data.24 In this study, m¼ 6033 genes with nx¼ 50 healthy males are compared with ny¼ 52 prostate
cancer cases. Results are shown in Figure 6. The larger sample size of this data set reduces
differences between BFs and p-values and so the differences between the proposed procedure and
Efron procedure or the BY procedure.

In fact, Figure 6 shows that the proposed procedure with 1/m cut-off is in between the Efron and
BY procedures, with the BH procedure being more conservative. The main message of this example
is that for large n, differences among the proposed procedures and the one considered for
comparison tend to be small. This is consistent with the simulation study in Section 4.1, namely
Figures 3 and 4.

5.3 A RNA-seq experiment: Bovine macrophage response
to Mycobacterium bovis infection

In this study, the raw data consists of 3.6 trillion reads of RNA sequences to generate counts of
identical sequences that are supposed to represent the abundance of target sequences in the mRNA.
Counts are collected for the two biological populations under comparison: bovines infected and
non-infected by Mycobacterium bovis.26 Such counts are then used to evaluate the differential gene
expressions between said biological populations (see, for instance, Rapaport et al.27). After data
normalization, there are m¼ 11131 genes that have been compared for differential expression and
their corresponding p-values have been calibrated with respect to their BF lower bound (1). The
results are compared with Table 1 in Nalpas et al.,26 which shows the most DE RNA
sequences according to their log2 fold change (LFC in the sequel) and also with Table 2 in
Nalpas et al.26 that compares fold-changes in gene expression based on RNA-seq, microarray,
and real-time qRT-PCR.

According to our procedure the first two most related sequences are (see Table 5):
ENSBTAG00000022396 with probability pi almost 1 and ENSBTAG00000001725 with a
LFC¼ 5.67 that has a raw p-value of 10–75. This latter one has a probability pi of only 1.1810–42,

Table 4. Actual FDR and FNR for the microarray controlled experiment with the

considered FDR procedures.

Procedures

Nominal

cut-off FDR FNR

Efron 20% 5/18¼ 0.28 2/12607¼ 0.0002

BH 20% 4/17¼ 0.24 2/12608¼ 0.0002

BY 20% 9/23¼ 0.39 1/12602¼ 0.00008

Bonferroni 20% 9/23¼ 0.39 1/12602¼ 0.00008

pi> 1/m (on p-value calibration) none 0/6¼ 0 9/12619¼ 0.0007

pi> 1/m (on BFs) none 1/11¼ 0.09 5/12614¼ 0.0004

BH: Benjamini–Hochberg; BY: Benjamini–Yekutieli.
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with a p-value and/or adjusted p-values which are around 1030 times higher than those of
ENSBTAG00000022396. This means that, according to our basic procedure only
ENSBTAG00000022396, also reported in Table 1 of Nalpas et al.,26 can be considered the most
DE RNA sequence.

Results in Nalpas et al.26 come from very well established and popular analysis workflow for
RNA-seq data, that is, quantification of transcripts using a Python package HTseq followed by
identification of DE genes using a R package edgeR. The final result is a sorted list of possible
sequences claimed to be DE because of a low enough p-value, according to some MHT
procedure28–30 and large LFC. In Nalpas et al.,26 2584 genes have been declared as DE, namely
those with adjusted p-value with the BH procedure less than 0.05.

There are two differences between the very conservative results obtained here with the simple
decision rule and that in Nalpas et al.26 The first difference is related to Boole’s inequality that
appears in Proposition 2 of the Appendix 1, which makes the simple rule pi> 1/m conservative
because dependence among all tests is assumed to as strong as possible, which may not be so.
Indeed, such a conservativeness can be avoided by introducing a tuning parameter as explained
in Section 6 which is usual in MHT approaches implemented in the edgeR package. In fact, if one is

Figure 6. Results from the analysis of Prostate cancer data. Values of the steady-state probabilities for each gene in

log10 scale along with the cutoff log10ð1=mÞ (dashed lines). Only nine of the most differentiated genes are jointly

detected using all procedures. Cut off points are explicitly reported for Efron Local False Discovery Rate BH and BY

procedures with the threshold of 20%.

BH: Benjamini–Hochberg; BY: Benjamini–Yekutieli.
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Table 5. RNA-seq experiment: 10 most significant genes.

Rank Gene ID Related protein LFC p-value Bonferroni BH BY

Loc.

FDR p lnðlÞ

1 ENSBTAG00000022396 Serum amyloid A 7 �117 �113 �113 �112 �109 0 0

2 ENSBTAG00000001725 Chemokine 6 �75 �71 �71 �70 �69 �42 107

3 ENSBTAG00000013167 Sialic acid 5 �70 �66 �67 �66 �65 �47 111

4 ENSBTAG00000008612 Complement c1 5 �68 �64 �64 �63 �63 �49 116

5 ENSBTAG00000016061 Radical S-adenosyl 5 �65 �61 �62 �61 �60 �52 120

6 ENSBTAG00000034954 Beta-defensin 5 6 �65 �61 �62 �61 �60 �52 121

7 ENSBTAG00000038639 Chemokine 6 �65 �61 �62 �61 �60 �52 122

8 ENSBTAG00000005603 Chemokine 7 �64 �60 �61 �60 �59 �53 124

9 ENSBTAG00000020602 Indoleamine 2 5 �64 �59 �60 �59 �59 �53 125

10 ENSBTAG00000018119 Acyloxyacyl hydrolase 5 �63 �59 �60 �59 �58 �54 127

Columns report for each gene, from left to right: the gene rank according to p and l (see Section 6); gene identification and related

protein; LFC, raw p-value and adjusted ones according to: Bonferroni, BH, BY; the corresponding Local FDR. Last two columns

report p and lnðlÞ. All values are in Log10 scale, except LFC and lnðlÞ which are in ln2 and natural ln scales, respectively.

LFC: Log2 Fold Change; BH: Benjamini–Hochberg; BY: Benjamini–Yekutieli.

Figure 7. RNA-seq experiment: function cm1ðlÞ. The cutoff horizontal lines represent the first 10 genes of Table 1 in

Nalpas et al.,26 the 2584 genes claimed to be differentially expressed according to the BH procedure at the nominal

level of 5%. The l values are reported in natural log scale.

BH: Benjamini–Hochberg.
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willing to consider larger set of possible DE genes, Section 6 would allow this by
providing also relative cost of a missed rejection with respect to a false discovery that compete to
such a set of possible DE genes. This cost opportunity is represented by the l parameter, which is
reported in Figure 7 as the argument of the function of the number of genes declared as DE, cm1ðlÞ.

We can see that l is almost constant for the first 10 genes, suggesting that there could be signal
there or even slightly more genes, while 2584 genes appears to be excessive as the derivative of cm1ðlÞ
is almost maximum.

To further illustrate the outcome of this experiment and the role of l, next Figure 8 reports LFC
and unadjusted p-value.

We can see that for low values of l, signal from genes DE is quiet strong and it decreases with l,
that is either LFC decreases or p-values increase.

Looking then at the list of the 10 most DE genes in Table 5, it is interesting to note that apart
from the first gene, we have few genes related to the chemokine protein, which has also been
mentioned in Table 2 in Nalpas et al.,26 where a comparison of fold-changes in gene expression
based on RNA-seq, microarray, and real-time qRT-PCR was performed.

Finally, it is worth to discuss the second difference between the approach here proposed and that
in Nalpas et al.26 Such a difference is more on the basis of the involved fundamentals of statistics.
Essentially, the edgeR implements, for large samples, the use of p-values alone to assess the
significance of a hypothesis. This is a very popular statistical practice although a questionable
one, to the point that some journals started banning p-values.31 However, this practice, in
the proposed procedure, is not repudiated, but embraced under the posterior probability principle
(PPP) instead of the significance principle.14 Under the PPP, p-values have been calibrated with
respect to the minimum probability of the hypothesis of non differential expression (1) given all
observed evidence.

6 Remarks: Another decision rule

This section is devoted to illustrating another decision rule based on the vector of steady-state
probabilities p. Assume that H1 and H0 are the sets of alternative hypotheses declared as true
(m1 in total, with 0 � m1 � m) and false (m–m1), respectively (e.g. H ¼ H1 [H0 and
H1 \H0 ¼ ;). There can be different ways of partitioning H, but let us assume that it is defined
upon the ordered vector of steady-state probabilities 1 � pi1 � pi2 � . . . � pim1

� . . . � pim � 0
and thus on a given number of rejected null hypotheses m1, that is H1 ¼ i : i 2 i1, . . . , im1

� �
and

H0 ¼ H nH1 ¼ i : i =2 i1, . . . , im1

� �
.

The FDR is the expected proportion of false discoveries in H1, that is,

FDRðH1Þ ¼
EpðFalse Discoveries in H1Þ

CardðH1Þ
¼

1

m1

X
i2H1

ð1� piÞ, ð10Þ

for m1> 0 and FDRðH1Þ ¼ 0 for m1¼ 0. Analogously, the FNR is the expected proportion of missed
discoveries in H0, that is,

FNRðH0Þ ¼
EpðMissed Discoveries in H0Þ

CardðH0Þ
¼

1

m�m1

X
i2H0

pi, ð11Þ
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A suitable way to partition H is by fixing m1 to minimize the following loss function32:

Llðm1Þ ¼ FDRðH1Þ þ lFNRðH0Þ,

where l4 0 is a user specified constant which expresses the relative cost of a missed rejection with
respect to a false discovery. It can also be interpreted as the cost-complexity parameter in
classification as also l represents the cost that we have to pay to complicate the explanation of
the reality with an increasing set of possible causes labeled as discoveries. For l fixed, m1 can be
estimated, conditionally on l using, cm1 ¼ argminL1ðm1Þ ð12Þ

It is worth noting that l, in this decision rule, is the only tuning parameter and the function cm1ðlÞ is
very informative to choose a cutoff value for l that leads to the optimal decision in the sense that
minimizes Ll. The arguments regarding the choice of such a cutoff are the same as those related to
the choice of an optimal cost-complexity parameter in classification.

To have an idea of the behavior of the function cm1ðlÞ, we consider the toy example illustrated in
Section 4.1 with m¼ 100, m1¼ 10, n¼ 10, �2i ¼ 1 and �1, . . . ,�m1

¼ �A. We analyze four simulated
scenarios where �A¼ 0, 1, 2 or 3 in each scenario. These have different signal intensities as in the first
there is no signal and in the last one the mean for the alternative hypotheses is three standard
deviations from that under the null.

Figure 8. RNA-seq experiment: LFC and unadjusted p-values as functions of l.

LFC: Log2 Fold Change.
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The evolution of cm1ðlÞ for the above scenarios is reported in Figure 9, while the actual and
estimated FDR and FNR are reported in Figure 10.

Even if these are four examples of MHT, Figure 9 shows quite well the comparative behavior ofcm1ðlÞ functions at increasing signal levels that illustrate a general behavior. In fact, when there is
no signal, (i.e. �A¼ 0) all hypotheses are true nulls; then they can be considered to explain the
phenomena at hand and there is no price that can be paid for missing a discovery. As long as
the signal grows, the price of complicating the explanation by considering more hypotheses jointly
becomes higher. For example, with �A¼ 3, the data do not practically support more than eight true
alternative hypothesis as for l> 800 we can pay more, but such payments do not correspond to any
new hypothesis that can be considered as true discovery. Of course, for l!1 all m hypotheses can
be considered as true alternatives, but the price with respect to false discoveries may be unaffordable.
Essentially, wide flat regions of cm1ðlÞ, indicate possible cut-off values for l and hence the size of the
first cm1 most probable hypotheses to be considered as true discoveries. For example, for �A¼ 3, it is
clear that a reasonable range to be considered is l 2 ð800, 2000Þ, that is, the first eight most probable
hypotheses should be jointly rejected with a realized FDR of 0% and a FNR of 2% (see Figure 10).
At �A¼ 2, we would consider no more than six or seven hypotheses (l 2 ð100, 400Þ) as at larger
values of l the data do not support any reasonable small set of true alternative hypotheses. Finally,
it is clear that when there is no signal, no hypotheses should be really considered as true alternatives
because at l! 0 data suggest that all m hypotheses should be rejected.

Note that the cut-offs induced by cm1ðlÞ are data dependent and this is a relevant difference from
the usual MHT procedures in which cut-offs are fixed beforehand.

Figure 9. Function cm1ðlÞ for testing zero normal means with unknown variance. We have m¼ 100 hypotheses

where m1¼ 10 hypotheses come from the alternative model. The four samples are of size n¼ 10, �2
i ¼ 1 and for

value of the signals �1,. . . ,�m1 ¼ �A, where �A ¼ 0,1,2, or 3.
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Finally, we return to the last column of Table 2 that reports the values of l for the 25 dietary
variables. We can appreciate how reasoning in terms of loss function Llðm1Þ leads to similar
conclusions, which is that if the cost of a false discovery is no larger than that of a missed
rejection then only ‘‘total calories’’ should be considered as related to the mammographic density.
To also consider the ‘‘olive oil’’ dietary variable, we should assume that costs for missed rejection are
5 times larger than those for a false discovery. The behavior of the function cm1ðlÞ for the 25 dietary
variables is reported in Figure 11.

The detail for the first 15 most evident dietary variables does not suggests any cut-off as the
increment in cm1ðlÞ is almost constant across values of l between 1 and 62. After that, there seems to
be stationary steps, but the only strong signal seems to be between all dietary variables up to ‘‘Total
meat’’ and ‘‘Processed meat.’’ Of course, if the analyst is willing to consider as related to
mammographic density all dietary variables except ‘‘Processed meat,’’ then it means that he/she is
also willing to consider missed discoveries to be 2397 times more expensive than false discoveries.
Such a value of l, depending on the application, may be too high.

7 Conclusions

The decision rule discussed above is just an example of a possible more sophisticated MHT
procedure based on the vector of true discovery probabilities p. However, the key point of our

Figure 10. FDR and FNR realized (always unknown) and estimated conditionally on l with equations (10) and (11)

for testing zero normal means with unknown variance. We have m¼ 100 hypotheses where m1¼ 10 hypotheses

come from the alternative model. The four samples are of size n¼ 10, �2
i ¼ 1 and for value of the signals

�1,. . . ,�m1 ¼ �A, where �A ¼ 0,1,2, or 3. The small figure reports the same but with the full vertical scale.

FDR: False Discovery Rate; FNR: False Non-rejection Rate.
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exposition is the Markovian representation of the MHT problem that can be applied to virtually any
source of evidence for the single test and is suitable for very large data bases, as the involved
formulas are very simple. The strong point of this approach is the straightforward interpretation
of p as probabilities that hypotheses can be considered as true discoveries given the collected data
and the involved statistical models used to analyze them. This is not trivial with current MHT
procedures as the interpretation of, say, adjusted p-values requires deep knowledge of statistical
reasoning for an applied scientist. Finally, it is important to stress that the proposed Markovian
process is to MHT as MCMC is to posterior approximation.
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Appendix 1

In this appendix, we show that the proposed procedure is asymptotically consistent for sample size n
and the number of tests m in the sense that FDR is negligible for large enough n and m.

First, assume that the original setH is partitioned intoH1 andH0 which are the sets of true nulls and
alternative hypotheses, respectively (e.g. H ¼ H1 [H0 and H1 \ H0 ¼ ;) of cardinality m1¼m– m0

and m0, respectively, with m1 55m0. The following Proposition assures asymptotic consistency of pi
with respect to the m, n under H0 and H1.

Proposition 1: For m, n!1 and i 2 H0, then pi ! 0, while if i 2 H1, then pi ! 1.
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Proof. The proof is based on the well known BFs consistency (see e.g. Berger and Pericchi9), for

n!1, that is if i 2 H0 then cBi ¼
mi1ðxiÞ

mi0ðxiÞ
! 0, while if i 2 H1 then cBi ¼

mi1ðxiÞ

mi0ðxiÞ
! 1 Therefore, by

(3) pi ¼
Bi

Biþ
Pm

j2Hni
Bi

! 0 for m0<m. For m0¼m and because of the fact that evidence is evaluated

under the same model f ð�Þ and/or same calibration scale (e.g., calibration formula (1)) if i 2 H0

pi ! 1=m and finally for m!1 pi ! 0. If i 2 H1 by (3) pi ¼
Bi

Biþ
Pm

j2Hni
Bi

! 1 for m1¼ 1 while for

m1> 1 for the same argument as above, that the evidence is evaluated under the same model f ð�Þ

and/or same calibration scale pi ! ðm�m0Þ=m and finally for m!1 pi ! 1 under i 2 H1. «

The simple rule of declaring as discoveries all pi> 1/m controls the FWER and hence the FDR.16

To show this, let �ð piÞ be the proposed prior of pi and �ð pijDataÞ be the posterior distribution
of pi conditioned to the observed evidence (either from BFs or p-values.). Under the
insufficient reason principle �ð piÞ ¼ 1=m, while the consequence of Proposition 1 implies that

Pr�ð pijDataÞð pi 4 1=mÞ ! 0 for i 2 H0 and Pr�ð pijDataÞð pi 4 1=mÞ ! 1 for i 2 H1 when m, n!1.

The following corollary, necessary to prove the next propositions, clarifies that under the set of
null hypotheses and a posteriori the probability of having pi> 1/m is asymptotically negligible.

Corollary 1: For m, n!1 and for any set of i 2 H0 then Pr�ð pijDataÞð\i2H0
fpi 4 1=mgÞ ! 0.

Proof. In fact, Pr�ð pijDataÞð\i2H0
fpi 4 1=mgÞ �

P
i2H0

Pr�ð pijDataÞfpi 4 1=mg ! 0 as the upper

bound tends to 0 because of Proposition 1, which refers to tests under H0 and H1,

where
P

i2H0
Pr�ð pijDataÞfpi 4 1=mg ¼ 1�

P
i2H1

Pr�ð pijDataÞfpi 4 1=mg, with
P

i2H1
Pr�ð pijDataÞ

fpi 4 1=mg ! 1. «

Proposition 2: For m, n!1 the simple rule in (4) controls the FWER a priori and a posteriori.
Proof. By definition we have

FWER ¼ Pr
G
[H0

pi 4 1=m
� �� �

�
X
H0

Pr
G

pi 4 1=mð Þ, by Boole Inequality,

where G is the probability measure on the random variables pi. If G ¼ �ð piÞ then FWER¼ 0 for
every m and n and the a priori control is assured. For a posterior control, once evidence has been
collected then G ¼ �ð pijDataÞ and by Proposition 1 FWER! 0 for m, n!1 because probabilities
are calculated under the null set H0. «

The following Proposition shows that it is even possible to be more explicit for the control of
FDR, although that of the FWER would be enough to bound the FDR.

Proposition 3: For m, n!1 the simple rule in (4) controls the FDR.
Proof. By definition of FDR in Benjamini and Hochberg16 with expectation calculated under

�ð pijDataÞ we have, using Proposition 1
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FDR ¼ E
#FalseDiscoveries

#Alldiscoveries

 �
¼ E

P
H0
Ifpi 4 1=mgP

H Ifpi 4 1=mg

 �
¼ E

X
H0

Ifpi 4 1=mgj
X
H

Ifpi 4 1=mg ¼ r

 !
=r, see ð16, pag: 292Þ

¼
X

Pr
H0

pi 4 1=mj
X
H

Ifpi 4 1=mg ¼ r

 !
=r

! 0, for any r4 0 and n,m!1:

«
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