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Bounds for blow-up time in nonlinear
parabolic systems under various boundary
conditions.

M.Marras !

Abstract. ::We . consider blow-up solutions to parabolic systems, coupled
through their non linearities under various boundary conditions with nonlin-
earities depending on‘the gradient solution. To obtain a lower bound to blow
up time ¢* for the vector solution, Sobolev-type inequalities are introduced
to make use of a differential inequality technique. In addition for Dirichlet
systems sufficient conditions are introduced to derive an upper bound for ¢*

and to have a criterion for the global existence of the vector solution.

AMS (MOS) subject classn'icatmn 35K50, 35K60.
Keywords: parabolic systems, non’ hnear prohlems, blow-up solutions.

1 Introduction . .

For the qualitative study of soiuuons to parabohc equations and systems
which solutions present the blow-up phenomena we refer to the book of
Quittner-Souplet [8], where one can find also varicus reaction-diffusion sys-
tems arising as mathematical models in chennstry7 physms and population

dynarmics.
For results about these systems with nonlinearities dependmg on the solution
there is a list of recent papers, we cite only [5], [6] and {7] and the references

therein. Interesting results for-the blow-up time for parabohc problems with
nonlinearities depending on gradient solution are present 'in /1] and in [2].

When the solution blows up at some finite time ¢*, #* cannot:in general be
determined explicitly. In this paper we consider nonlinear parabolic systems
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with different conditions on the boundary, coupled through the nonlinearities
depending on the gradient of the solutions. Our interest is mostly addressed
to obtain explicit lower bounds for #*, since in practical situations upper
bounds are less inferesting. Among the papers firstly appeared on lower
bounds, we cite [10] and [11]. In deriving such lower bounds we introduce
Sobolev—typc inequalities Which pioduce the restr iction Qe R

to obtam al _WGI' bound for * , a criterion to exclude the blow up phenomena
bound for ¢*. A iower bound-for Neumann and Robin systems
are also denved in sec.3 and sec.4 if the spatial domain 2 is convex.

2 Bounds for blow-up time in Dirichlet sys-
tems

We consider the followixig_: ii.r;igiiiial—boundary value problem
(At R(VE) =w i Qx (0,),
Bt AT S 00X (0,0)
w(z,t) = Oézzzg_ozngzﬁ‘-ﬂ- x (0,t),
v(z,£) =0 on 00 x (0,1),
u(z,0) = ug(z) on €,
v{z,0) = 15(z) onO

(2.1} R

\

where {1 is a bounded domain in R®, with smooth boundary 8, * is the
blow-up time and f;, f; are non negative functions: Through the paper we
will refer to system (2.1) with these assumptions on .95, f1, fa, changing
only the boundary and the compatibility conditions. For Dirichlet system we
assume that the functions g, vp are non negative in ) with g(:L) =vg(z) =0
on %), : i
In this section we derive upper and lower bounds for the blo : -up time under
restrictions on nonlinearities and initial data. ' '
Moreover we prove that if the initial data are "small enoﬁgh’?"fhé blow-up
phenomena cannot ocecur.

Lower bound
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For the vector solution of system (2.1) which becomes unbounded at some
finite time £* , we define the auxiliary function '

(2.2) (1) = /Q(u%u?)ﬁpdx, p>1

We prove: the following result:

Theorem 2 L. If the vector solution (u,v) of (2.1) becomes unbounded in
the norm & a :50me finite time t*, and if

(2.3) uf1(|VL|)+bf2(|Vu|) < K{u? + )W A0 (17,2 - Vo),

(2.4)

then 1* is bounded fmm below by

(2.5) g L
' T20,@2(0)
with Cy a positive constant and _
(2.6) 2(0) = [ 66+ i) dr
Q . B

Proof.

We compute-

By the divergence theorem and the boundary conditions in (2 1) we obtain

(2.7) @) = —8p(2p ~ 1) /é(’ff + o)A uVu + oVo) (uVau + vVe)de—

3
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4pf(u2 4+ )P (|Vul? + [ Vo )d + 4p/(u2 + 2P ufy +vfa)de.
3 Q :
Now, by inserting (2.3) in (2.7) we obtain

(2.8) @) < ~8p(2p — 1) [(u? +vH)#P 2 (uVu + Vo) (uVu + vVu)de

~ap [ @+ (Tl 4 Vol
Q

A 1-8 B
+dpK = _(u2 + ’U2)2p—1 [(u2 + vz)PH] [|Vu|2 + |V’u|2} dx.

71, we use in the last term of (2.8) the basic inequality

Following Théo.1 in

(2.9) " < rat+sh, r+s=1 0b>0

We cbhtain

7(2.10) /ﬂ(u? + )2 [(1”—.5) (U2 + oAyt 4 ﬁ(qu!2 + |V1J]2)] dr =

(1 - ,3) /S (u? ﬂ?)?’pdm T ﬁfﬂ(u? +o2)% (|Vui2 + 1%12)}@_

By replacing (2.10)in (2.8) we have

(2.11) @'(¢) < —8p(2p — 1) / (u® -+ 'Ug)zp_z(uVu + vV} (uVu + vVu)dz+
2 A

The inequality i
(2.12) (W2 + ) ([Vul? + |Vo?) > (uVi + 0Vo)(uVat Vo)
can be used in (2.11), since (2.4) holds. It follows that Lt

(2.13)
1

() < —4p* (4 T ﬁ%) /(u2 + )P 2 (uVu + Vo) (uVu + vVu)de
0

4
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+4pK (1 — 5) /ﬂ(u2 + 0¥y,

11 For simplicity we now put

13 (2.14) w = (u® + %)

15 and con_lpuﬁé _

{2.15) - |Vw| = 4p (v + )P (uVu + vVo) (uVau + vVe).

20 We now repiace (2. 14) and (2.15) into (2.13) to write

23 (2.16) (1) g( 1 ﬁE f VaolPde + 4pK (1 — B) / widz,
- o

=

35 Now to estimate [, 2%dz we use the Sobolev -Talenti inequality ( see {9] with
g=06,p=2,m = 3) and we get for Q€R3 .....

20 (2.18) (/Qwﬁdx)‘l* < CT( OIVwJQd:L)g

Where the best Sobolev constant Cp = 27~ 13-%.

46 k1—(455 )andkz —pK(i*ﬁ)

56 5
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If + is an arbitrary positive constant , we write

(2.20) () < ki /Q |Vw12d:r:+4k‘26'q~[%( /ﬂ ‘wzdl’)gJ%(T /ﬂ ;vwf?da:)%

and then use the basic inequality (2.9). It follows that

= 2 3
(221} @'(%) g;rklf |Vwi*dx + %CT(fw%a:) +3kQTC'T/ |Vw|*dz
L, Ja T Q Q

L k. 3
= (3kyrCr — k1) f |vw12dm+%cT( f de:c)
) L Ie) T Q

and choosing in (2.21)

..... - 3}62CT
we obtaln
(2.22) () < o),
with L

343 0,

Cy = (}g) (k2OT) :
An integration of (2.22) from 0 to ¢ results in

l 1 1 < _ S

®(0)?  ®(1)2

and implies that if the solution blows up at time #*, ‘then

1
A OIEk

with ®(0) in (2.6).

Criterion for Global Existence.

In this subsection we introduce restrictions on initial data which, together
with (2.3), imply that blow up cannot occur.

6
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Theorem 2.2 Let (u,v) be the vector solution of problem (2.1). Suppose
(2.3) holds. If the initial daia uo(x),vo(x) satisfy the condition

k12
2 212p 1
(2.23) fﬂ[uo + 5 Pdr < [4szT] VA1,

with ki, ka, Cp as in Theo.2.1 and Ay the first positive ergenvalue of the fized
membmne pmblem

(2.24) ” Aq,b +ap =0, ¥ >0, inQ, ¢ =00n00,

time.

Proof.
Following the pmof of Theo 2.1, with ® defined in (2.2} and the function w
defined in (2.14), (2. 19)_(_3:@11 be rewritten as

3

(225) #'(1) < ]ﬂ |vw,;zg:,;jf'%s{_k1( /ﬂ!vadm)ingc‘T( /g wiar)')

By Rayleigh inequality for Ay 7.

(2.26) A f wide <[ |Vwl?dz,
Q »

replaced in (2.25) we have

(2.27) ®'(t) < (]Q |_Vw2d:z?)i(/ﬂw2dm)};{ Ll,\ +4AQC'T(/Q.w2d$)

By (2.23) and (2.27) we deduce that e
k12

whdz < | = Ao

fg [4A20T] Vi

Then @ is nonincreasing and is bounded for all time.The vector solutlon (u,v)
of (2.1) is then bounded in ® norm for all ¢ > 0.

I

Upper bound for the blow up time.

Under suitable conditions on nonlinearities, we derive now an upper bound
for ¢*.
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Theorem 2.3 Let (u,v) be the vector solution of problem (2.1). Assume
that for some positive constant c

(225) 100+ fo(Vul) > (190 +190])

and assume that the initial data ug, ve are large enough in the following sense:

(2.29) /ﬂ(uwrv )Rdz > 2|?|’

| is the volizme. of the domain and Ay is the first eigenvalue in problem
(2.24). Then :

et max(u,v) = +00
el TEQ

as t — 1* with

- (z5,)]
2(2)\111’0

We add the two equations in (2.1) and by, (2.28) we have

S0t 4
(Au —w) + (Av —w) = —fi(|Vv]) —fg(]Vu]) < —C(IV11.| + |VU|) <
—CIV(U—]—U)|4_ EEO

We define 0 = u + 2.

The function 1 satisfies

A — ,L’[Jt -4 ClV’tz’|4 < 0.
If 1w is the solution of the problem
AD + |Vl =@, inQx{0,),

(2.30) w{z,1) =0 on d0 x (0,t),
w(z,0) = ug(z) +wolz) >0 on O,

8
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we have by comparison principle
w > .

We now consider the auxiliary function:

(2.31) = (L) = / dx.

(2.32) ORE Y w]Vm|2dx+3cfw2]Vw|4dm.
AL 193

In the first term in {2.32) b'y Schwarz inequality we write

(2.33) / B| V5[ 2dy g( / :_@2|vla|4dg;)§m1%.
. o

By Rayleigh’s principle we have

(2.35) ¥(t) >3 /p @EV@[Edm[M 2+ l(ﬁl( fﬂ wIV@J%)}

> 6/?13|V’¢D|2d$[— 1+
0

From (2.29) we deduce that

) 90
2.36 3d: _
(2.36) [ wis > 3
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so that ¥(¢) is a nondecreasing function.
In view of (2.34), we reformulate {2.35), as a differential inequality for ¥(¢):

8\ 1 20)\1

(2.37) V() 2 kI(f)[—l—I— m\ll(t)].

(238) [\Il(t)] R

we have z (t) * TV

Moreover, by “using (2 37) 2(t) satisfies the following differential incquality
16N _su,

(2.40) 2(t) < {2(0) 2"”\1[ o] b

It follows from (2.38) and {2. 40) fhat U(t) blows up at some positive time
to < 1™, with T* defined in .

Since z(0) = ¥, we obtain

3 gl
2.41 < — — In [1 }
(241) ° 8A1 21 Wl

As a consequence, 1™ is also an upper bound for the blow up time of @ and
then of 0 = u +v.

3 Lower bound for the blow up tlmem Neu-
mann systems.

In this section we consider the system (2.1) with Dirichlet boundary condition
replaced by Newmann ones:

(3.1) —(x =2 o) =0, (a,0) €00 x (0,6,

10
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. . .. o a .
with compatibility conditions ,—uo = ,—UO = 0 on L2 In order to obtain a

lower bound for *, we chserve th:?t TheonZl cannot be extended to this case,
since the Talenti-Soblolev inequality used there to estimate [, w®dz , is valid
only under Dirichlet condition on the boundary.

Under the hypothesis of convexity of the domain 2, we introduce now an-
other inequélity of Sobolev type, which can be used with different boundary
conditions..

Lemma 3.1.

Let Q be a bounided convez domain in R®. Let p = mingg(z1;), where v; de-

notes the i-th component of the unit normal vector, and d® = maxq (mm;),1 =

1,2,3, with summation convention over repeated indexes. For an arbitrary

: 343 V27 dyE 3 d\2
with ap 1= \/5(2,0) , Qg 1= Zlﬁ:fg(l—l_;) ’ az = Z\/ﬁ”y(l + ;)2

For the proof of Lemma 3.1, we apply Lemma A2 in [6], with n = 2:

L i ;
. Fody << 2‘,. 1 1_':::': . 2-
(3.3) /QU dr < {mgp/gU dz + (1 = /QU|VU|dx}

Now we introduce in the ltast term of (3.3) the chwarz inequality and the
following basic inequality ' '

(3.4) (a+0)*? < V20 + 53/2)

We obtain .; .
oo [ (8 [ [ )"y

< ﬂ{(—;—p)g(LUzdx)g +(1—1—g)g(LUE'dm)%(LIVUFdz)Z}

11
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Now let v be an arbitrary positive quantity. For any a, b positive, the follow-

ing inequality holds
1 3

1/4 13/4
a0 < 4—7—3 a -+ Z'Y b.

By using it, we rewrite (3.5) as

(3.6) ./S;USde

< {bl([)UQdI)% + by Ll—i/s(/ﬂ U2dzt;)3 + 32 /ﬂ iVUIQd«T} }>

“and ag = nybg and Lemma 3.1 is proved.

Let ®(t) be defined as in (22) We prove the foliowing

bounded in the norm ® at some ﬁmtetzme t*, and if the nonlinearities satisfy
(2.3), then t* is bounded from below by

+oc i-df .
(3.8) > / Sllls
e X172 Fxan’
with e
‘13(0) = /(’LLO + ’Ug)zpdﬂi
o) . SR

(3.9) X1 = 4kyar xo = 4kjan, .

with a1, a2 in Lemma 3.1 and %;, ks in Theo.2.1.

Proof. s
We follow the proof of Theo 2.1 up to (2.16). Since Lemma 3.1 holds,we
insert (3.2) in (2.16) , to obtain with U = (v® + v2)?

(3.11) (1) < -k / |VU|*dz + 4k, [ Udz
Q Q

12
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< —klf VU *dx +4k2{a1(f U%dz)2 + a,2(/ U?dz)® +a3/ iVUIQdQZ}
¥ O Q 0 -
= (—]ﬁl + 41{22&3)/ IVUFdQ? + 437{;2{11‘1)53_3 + 4k2a2¢>3.
34

, the coefficient {—%; + 4ksa3) = 0. Then we get the

If we choose 7= '3b P
252

differentlal mequallty
(312) O(t) < 312 + x20°.

By an integra’t:iss of (3.12) we obtain (3.8) and Theo.3.1 is proved.

Remark 1.
For Neumann systemy 'ou'r method in Theo. 2 3 to derive an upper bound

Remark 2.

In [3] bounds for blow-up time are denved for systems with nonlinearities de-
pending on the vector solution (u,v), w1th_the_.:Lap1a01an operator replaced
by an operator of divergence type. There both lower aud upper bounds are
obtained thanks to the particular choice of the: aux111ary function introduced
to obtain a differential inequality.

13
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4 Lower bound for the blow up time in Robin
systems '

(Au+ f[i(|[Vo]) =uw in Qx(0,7%),
Av+ fHo(|Vul) = in Qx(0,t7),

(4.1) ) %(Iaﬂ=ﬁ1% con 9 x (0,17),
..... g%(w t) = fav, on 90 x {0,1*),

: u(x 0) =uplz) on €, |
: (:1: O) =yg(z) onQ,

AL 8
patlblhty conditions _"9 Bluoj ;G__— ﬂgtg on . We note that (u,v)
n

is non negative in x and t € (0,¢*) by the parabohc maximum principle..
Under suitable conditions on non linearities f1, fa, by introducing an auxiliary

- function and conditions on non linearities, we. derlve a differential inequality

from which 2 lower bound for {* is obtained.

In fact we have to estimate an mtegl al over the boundary of Q2. Firstly we
prove an inequality to be used in deriving the lower bound

Lemina 4.1. i |
Let QO be a bounded and conver domain in R3. Let p = ingo(my) and
d = maxg(z;z;),i = 1,2,3, for any nonnegative C*- function V:(z) defined
in Q, the following megualzty holds

d d
(4.3) Vids < St [ g,y 5 f |VV|*dz,
9]

F519) FooJa

14
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To prove Lemma 4.1, we consider for n = 2 Lemma Al in [5],

L N
My

(4.4) f Vids < 3/v"~dm+2d V |VV]|d.
80 PJn P Jo

-
B

—
(4]

By applying the Schwarz inequality and the ineguality (2.9), we get (4.3).

[ Y
~1 G

Now let ® be defined in (2.1).

We proof the following

MK — -
- O

Theorem 4.1 If ;Q:Efs..a bounded and conver domain in R®, if the vector

solution (u,v) of (4.1) becomes unbounded in the normn @ af some finile time
t*, and if (2.3) and (_2:.4_)_:hold, then t* is bounded below by

N NN
BWN

NN
~ 3

[ .
(e

(1)
(=]

- * = dn
(4,5) | PRt %_L(O)%b_(??_)_

with

W
[N 0 N P

(@) =6 B8 BE 45 80

2
& R

[
~ 3
)
™ |+
Ql
~—

(4.6) ¢ & =4pp

I
3 0o
o
I
i
>
—
[y
[
k=
~—
2
e

N
O
P
o
Il
.
B
N
[
|
™
S
2
L

NS
N —

ay, U e (32)

IS
;R o

Proof.

[
~N 3

We compute i
(4.7) L

s
oo

.
0

O'(t) = 4p / (u® +0*)7 g + vug)dz = 4p f (u® + U2)2p_.1(:;5:4u +vAv)dx
) "

o1 O Oy O
WN—=O

T 4p / (2 + 022 fo(IV0]) + v fol| V)

[S e
(o0 ) Q=N

15
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du ou
24 .2 22—t —_— ‘—d'
p [ (" +v7) (u,n+tan)s

a0 d

—8p(2p — 1) /(u2 + )P 2 (uVu + oVo) (uVu + vV )de
0

4p/9(u +,U2)2p HivupP + Vol de + 4pf(u2 + )P ufr + v fy)dx

""" = dpl; — sp(zp — 1)12 +4p Iy +4p I,

disappear. In fact by the divergence theorem, the boundary cond1t1ons in
(4.1) and by msertu_lg__(ﬂ.c 2), we obtain

In the last integral , v;'é'ap ly Lemma, 4.1 to obtain
3+d |

I < B, /(u —l—vz)zf"d:c + [5’2] |V(u2 + Uz)p}zdﬂ;.
: 0

By using (2.12), we get

By replacing for brevzty (u? 4+ v* )P Wlth V7 and 1nsert111g the 1nequal1t1es for
I;,i=1,3,41in (4.7), after some calculations we obtain . .

(4.8) (1) < 453+ d) f Vidz
P 0

4pfad 1 pBK 9 / 3
+ —(4-=—=— VVI|*dz + 4pK(1 - B Veda.
[ 2 ( Yy P ]/Ql 'ae PE(L ) 0 @@

16
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Since () is convex, Lemma 3.1 can be applied to the last term in (4.8). We
obtain '

Vide + [41’52 — iw* / IVV12da

(4.9) () < ;

[y

4pfa(3 + d)
<

i§ 4;0K(1 - ﬁ) a,l(/ V2dz)t + ag(/ V2dz) + a3/ |VV|2dg;}

”(4 . % . %)} +4pK(1— Fas,

3 GnToEw
with az = %\/ﬁ ’y(l + %) . Ifin (4.11) we choose -y such that

ie. ;;;rr'r'”

(412) PO <p@ o

Finally with an integration of {4.12) from 0 to t* we obtain (4 5) and Theo.4.1
is proved.
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