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Abstract The characteristic holistic features of the quantum theoretic formalism and
the intriguing notion of entanglement can be applied to a field that is far from micro-
physics: logical semantics. Quantum computational logics are new forms of quantum
logic that have been suggested by the theory of quantum logical gates in quantum
computation. In the standard semantics of these logics, sentences denote quantum in-
formation quantities: systems of qubits (quregisters) or, more generally, mixtures of
quregisters (qumixes), while logical connectives are interpreted as special quantum
logical gates (which have a characteristic reversible and dynamic behavior). In this
framework, states of knowledge may be entangled, in such a way that our information
about the whole determines our information about the parts; and the procedure can-
not be, generally, inverted. In spite of its appealing properties, the standard version
of the quantum computational semantics is strongly “Hilbert-space dependent”. This
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certainly represents a shortcoming for all applications, where real and complex num-
bers do not generally play any significant role (as happens, for instance, in the case of
natural and of artistic languages). We propose an abstract version of quantum com-
putational semantics, where abstract qumixes, quregisters and registers are identified
with some special objects (not necessarily living in a Hilbert space), while gates are
reversible functions that transform qumixes into qumixes. In this framework, one can
give an abstract definition of the notions of superposition and of entangled pieces
of information, quite independently of any numerical values. We investigate three
different forms of abstract holistic quantum computational logic.

Keywords Quantum computation · Entanglement · Holistic semantics

1 Introduction

There is something paradoxical in the history of entanglement-phenomena and of the
EPR-situations. As is well known, in the Thirties, the notion of entanglement had
been often described as one of the basic mysteries that cause the strange behavior of
quantum objects. Later on, however, most of the features that had been represented
as negative consequences of the quantum formalism have been converted into theo-
retic and practical advantages, even from the technological point of view. We need
only think that quantum computation, teleportation and quantum cryptography sys-
tematically use, in a positive way, some characteristic quantum phenomena that are
essentially connected with entanglement-situations.

A less investigated application of the notion of entanglement concerns a field that
is apparently far from microphysics: logical semantics. Interestingly enough, logi-
cians are now beginning to understand how the enigmatic quantum entanglement
can be also applied to a formal analysis of some characteristic semantic phenom-
ena, where holistic and contextual aspects play a relevant role. As is well known,
the traditional semantic theories, based on classical logic, are essentially analytical
and antiholistic. A basic principle in these theories is a compositionality-assumption,
according to which the meaning of any compound expression is determined by the
meanings of its parts. Furthermore, meanings are always supposed to be precise and
non-ambiguous. As a consequence, classical semantics turns out to hardly applica-
ble to an adequate formal analysis either of natural languages or of the languages
of art, where contextuality and ambiguity seem to represent essential features. We
need only think how difficult is dealing with contextual meanings in the framework
of computer-translations! The quantum-theoretic formalism, instead, gives rise to en-
tangled states of knowledge where our information about the whole determines our
information about the parts. And the procedure cannot be, generally, inverted: in other
words, it is impossible to reconstruct the global information as a mere combination
of the partial pieces of information about the component elements. Once broken into
its parts, the puzzle cannot be put back together!

Quantum computation has recently suggested some new forms of quantum logic
that have been called quantum computational logics (QCL′s). The basic semantic
idea underlying these logics can be described as a natural generalization of classical
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logic. Let us refer to an “information-theoretic” presentation of classical semantics
(and of classical circuit theory). In this framework, sentences are supposed to denote
classical bits (either 1 or 0), while the Boolean connectives (not , and , or) repre-
sent logical gates: functions that permit us to process information. The sentences of
QCL′s, instead, are supposed to represent quantum pieces of information that are
generally uncertain: systems of qubits (also called quregisters), or more generally
mixtures of quregisters (also called qumixes). At the same time, the logical connec-
tives are interpreted as quantum logical gates.

What are exactly quantum logical gates? As is well known, in quantum theory the
dynamic evolution of quantum objects is governed by Schrödinger-equation. Accord-
ingly, for any times t0 and t1, a pure state |ψ(t0)〉 of an object at time t0 is transformed
into another pure state of the same object at time t1 by means of a unitary operator U

(which represents a reversible transformation):

|ψ(t1)〉 = U(|ψ(t0)〉).
Quantum logical gates (briefly, gates) are special examples of unitary operators that
transform quregisters into quregisters in a reversible way. Hence, from an intuitive
point of view, the application of a sequence of gates to an input-quregister can be
regarded as the dynamic evolution of a quantum object that is processing a given
amount of quantum information. By definition gates are unitary operators whose do-
mains consist of vectors of convenient Hilbert spaces. However they can be naturally
generalized also to qumixes.

As is well known, in any semantic characterization of a given logic, the basic
concept is represented by the notion of model (or interpretation) of the language. For
instance, in classical semantics a model of a sentential language is a homomorphic
map that assigns a classical bit to any sentence, by interpreting the logical connectives
as the corresponding Boolean functions.

In the holistic semantics of QCL′s a model (or interpretation) of the language is
a map Hol that assigns to any sentence α a qumix that represents the informational
meaning of α:

α �→ Hol(α).

As expected, any model Hol shall preserve the logical form of the sentences,
by interpreting any connective ◦ of the language as a corresponding gate G◦. Fur-
thermore, the qumix Hol(α) should live in a Hilbert space whose dimension de-
pends on the logical form of α. The simplest examples of sentences are atomic
sentences (which cannot be decomposed into more elementary sentences). Accord-
ingly, the meaning of such sentences shall live in the simplest Hilbert space: the
two-dimensional space C

2 (where all qubits are located). A molecular sentence with
n occurrences of atomic sentences can be regarded as a linguistic description of a
compound physical system consisting of n particles. In fact, we need n particles in
order to carry the information that is expressed by our molecular sentence. On this
basis, it is natural to assume that the meaning of such a sentence lives in the n-fold
tensor product of C

2.
The holistic features of our semantics depend on the fact that any model Hol as-

signs to any sentence α a global meaning, that cannot be generally inferred from the
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meanings assigned by Hol to the atomic parts of α. What happens here is just the
opposite with respect to the standard behavior of compositional semantics: Hol(α)

determines the meanings of all its parts, which turn out to be essentially context-
dependent. As a consequence, any sentence may receive different meanings in differ-
ent contexts. Going from the whole to the parts is here possible because all logical
operations are reversible: one can go back and forth without any dissipation of infor-
mation!

A fundamental role in this semantic game is played the notion of entanglement,
which is mathematically based on the characteristic properties of tensor products. As
is well known, from an intuitive point of view the basic features of an entangled state
|ψ〉 can be sketched as follows:

• |ψ〉 is a maximal information (a pure state) that describes a compound physical
system S (say, a two-electron system);

• the information determined by |ψ〉 about the parts of S is non-maximal. Hence,
the states of the whole system is a pure state, while the states of the parts (which
are determined by the state of the whole and are usually called reduced states) are
proper mixtures. It may also happen that the state of the compound system (al-
though representing a maximum of information) describes the parts as essentially
indiscernible objects, that cannot satisfy any characteristic individual property. One
obtains, in this way, an apparent violation of Leibniz’ indiscernibility principle.

Entanglement-phenomena can be naturally used to model some typical holistic
semantic situations in the framework of our quantum computational semantics. We
can consider entangled quregisters that are meanings of molecular sentences. As an
example, consider a conjunctive sentence having the form

γ = α ∧ β.

The following situation is possible:

• the meaning Hol(γ ) of the conjunction γ is a quregister, which represents a max-
imal information (a pure state);

• the meanings of the parts (α,β) are quantum-entangled and cannot be represented
by two pure states (two quregisters).

We can say that the sharp meaning of the conjunction determines two ambiguous
meanings for the parts (α, β), which are represented by two mixed states. In other
words, the meaning of the whole determines the meanings of the parts, but not the
other way around. In fact, one cannot go back from the two ambiguous meanings of
the parts to the quregister representing the meaning of the whole. The mixed state
representing the ambiguous meaning of α (of β) can be regarded as a kind of contex-
tual meaning of α (of β), determined by the global context, which corresponds to the
quregister Hol(α ∧ β) (the meaning of the conjunction α ∧ β).

In spite of its appealing properties, the standard version of the quantum compu-
tational semantics is strongly “Hilbert-space dependent”. This certainly represents a
shortcoming for all applications, where real and complex numbers do not generally
play any significant role (as happens, for instance, in the case of natural and of artistic
languages).
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Is it sensible to look for an abstract quantum computational semantics? We will
positively answer this question, by defining a notion of abstract quantum computa-
tional structure, where abstract qumixes, quregisters and registers are identified with
some special objects (not necessarily living in a Hilbert space), while gates are re-
versible functions that transform qumixes into qumixes. From an intuitive point of
view, abstract qumixes and quregisters represent pieces of information that are gener-
ally uncertain, while (abstract) registers are special examples of quregisters that store
a certain information. In this framework, one can give an abstract definition of the
notions of superposition and of entangled pieces of information, quite independently
of any numerical values.

As expected, one can show that concrete (Hilbert-space) qumix-structures are spe-
cial examples of abstract quantum computational structures.

2 Concrete and Abstract Quantum Computational Structures

Let us first recall some basic concepts of quantum computation that play an important
logical role. Consider the two-dimensional Hilbert space C

2 (where any vector is
represented by a pair of complex numbers). Let B(1) = {|0〉, |1〉} be the canonical
orthonormal basis for C

2 (where |0〉 = (1,0) and |1〉 = (0,1)).

Definition 2.1 (Qubit) A qubit is a unit vector |ψ〉 = c0|0〉 + c1|1〉 of the Hilbert
space C

2.

The basis-elements |0〉 and |1〉 represent, in this framework, the two classical bits,
which can be also interpreted as the classical truth-values false and true, respectively.
Hence, from an intuitive point of view any qubit |ψ〉 = c0|0〉 + c1|1〉 can be regarded
as a kind of “quantum perhaps”: a superposition of the two classical truth-values,
where the Falsity has probability |c0|2, while the Truth has probability |c1|2. From
the physical point of view, a qubit describes the pure state of a single particle, while a
system of n qubits (also called n-quregister) corresponds to the state of a compound
system consisting of n particles. Accordingly, any n-quregister can be represented as
a unit vector of the n-fold tensor product of the space C

2:

H(n) := C
2 ⊗ · · · ⊗ C

2
︸ ︷︷ ︸

n-times

,

(where H(1) := C2). We will use x, y, . . . as variables ranging over the set {0,1},
while |x〉, |y〉, . . . will range over the basis B(1). Any factorized unit vector |x1〉 ⊗
· · · ⊗ |xn〉 of the space H(n) will represent in this framework a classical register
(a sequence of n bits). Instead of |x1〉 ⊗ · · · ⊗ |xn〉 we will also write |x1, . . . , xn〉.
The set B(n) of all classical registers is an orthonormal basis for the space H(n).

Quregisters are pure states, hence maximal pieces of information, that cannot be
consistently extended to a richer knowledge. In quantum computation one cannot help
referring also to non-maximal pieces of information; these correspond to mixtures of
quregisters (also called qumixes), which are mathematically represented by density
operators.
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Definition 2.2 (Qumix) A qumix is a density operator of a Hilbert space H(n).

We will indicate by D(H(n)) the set of all qumixes of H(n), while DH :=
⋃∞

n=1(H(n)) will denote the set of all possible qumixes.
Of course, quregisters can be described as special cases of qumixes.
The algebraic structure of the set D of all qumixes essentially depends on the de-

finition of a probability-function p that assigns to any qumix ρ a probability-value.
From an intuitive point of view, p(ρ) represents the probability that the quantum
information stored by ρ corresponds to a true information. In order to define the
function p, we will first identify in any space H(n) two special projections P

(n)
0 and

P
(n)
1 that will represent the Falsity and the Truth properties, respectively. In this way,

Falsity and Truth are dealt with as special cases of physical properties to which any
density operator assigns a well determined probability-value, according to the quan-
tum theoretic formalism.

Let us first distinguish in any space H(n) the true from the false registers:

|x1, . . . , xn〉 is called true iff xn = 1;
|x1, . . . , xn〉 is called false iff xn = 0.

In other words, the last bit of a given register determines its truth-value. On this basis,
the truth-property of the space H(n) can be naturally identified with the projection-
operator P

(n)
1 whose range is the closed subspace spanned by the set of all true reg-

isters (hence, P
(n)
1 transforms every vector into a vector that is a superposition of

true registers). Dually, the falsity-property of H(n) is identified with the projection-
operator P

(n)
0 whose range is the closed subspace spanned by the set of all false regis-

ters. Following the Born-rule we can now define the probability that the information
ρ satisfies the truth-property as follows:

p(ρ) := Tr(ρP
(n)
1 ), where Tr is the trace functional.

As an example, suppose we are in the simplest situation where our qumix ρ corre-
sponds to a single qubit, having the standard form:

|ψ〉 = c0|0〉 + c1|1〉.
In such a case, we obtain: p(ρ) = |c1|2.

Let us now turn to quantum logical gates. As is well known, the classical circuit-
model of computation, both in its reversible and in its irreversible version, can be
formulated by using a very small set of gates, called universal set of gates. This
property (termed functional universality) amounts to saying that every gate can be
mathematically simulated by means of a convenient composition of gates belonging
to the universal set. For instance, in the irreversible case, the single gate NAND or the
system consisting of the two gates AND and NOT turn out to be functionally univer-
sal. In the reversible case, such a role is played by a single gate: the Toffoli gate (also
called controlled-controlled not). Since there are uncountably many unitary opera-
tors, there is no hope to find any finite functionally universal set of quantum gates.
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The best we can do is having recourse to the notion of finite approximate universal-
ity [8]: a finite set of gates is said to be approximately universal iff any quantum gate
can be approximated up to an arbitrary accuracy by a quantum circuit that consists of
elements of this set. Apparently, finding simpler and simpler sets of universal gates
represents a crucial step in order to try and realize concrete quantum computers.

An interesting gate-system that is approximately universal has been discovered by
Shi [8] and Aharonov [1]. This system consists of two gates: the Toffoli gate and the
Hadamard gate (also called the squareroot of the identity). From a foundational point
of view, we can say that the Hadamard gate is just all that the Toffoli gate needs in or-
der to reach quantum (approximate) universality, starting from classical (functional)
universality.1 This is the reason why it is interesting to investigate a formal seman-
tics for quantum computational languages, whose basic connectives correspond to
the Toffoli gate and to the Hadamard gate, respectively.

We will now define the two gates of the Shi-Aharonov system. The Toffoli gate
represents the classical part of the system: a classically universal gate, that permits us
to define the reversible versions of all Boolean functions.

Definition 2.3 (The Toffoli gate) For any n,m,p ≥ 1, the Toffoli gate is the linear
operator T(n,m,p) defined on H(n+m+p) such that, for every element |x1, . . . , xn〉 ⊗
|y1, . . . , ym〉 ⊗ |z1, . . . , zp〉 of the basis B(n+m+p),

T(n,m,p)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp〉)
= |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp−1〉 ⊗ |xnym+̂zp〉,

where +̂ represents the sum modulo 2.

One can easily show that T(n,m,p) is a unitary operator.
The Boolean functions AND, NAND, NOT can be now defined in terms of the Toffoli

gate.

Definition 2.4

• For any |ψ〉 ∈ H(n) and for any |ϕ〉 ∈ H(m),

AND(|ψ〉, |ϕ〉) := T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);

• For any |ψ〉 ∈ H(n) and for any |ϕ〉 ∈ H(m),

NAND(|ψ〉, |ϕ〉) := T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |1〉);

• For any |ψ〉 ∈ H(n),

NOT(|ψ〉) := T(|1〉 ⊗ |1〉 ⊗ |ψ〉).

1The algebraic structure of the Shi-Aharonov system has been investigated in [3].
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Defining the Boolean negation NOT in terms of the Toffoli gate has, however,
a shortcoming that is determined by the increasing of the dimension of the Hilbert
space. Namely, if |ψ〉 belongs to H(n), then its negation NOT(|ψ〉) belongs to H(n+2).

For computational and logical aims, the following independent definition of the
negation-gate is more economical:

Definition 2.5 (The negation) For any n ≥ 1, the negation on H(n) is the linear oper-
ator Not(n) such that, for every element |x1, . . . , xn〉 of the basis B(n),

Not(n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

Accordingly, in the following, we will prefer to assume Not(n) as a primitive gate.
The Toffoli gate is a classical (reversible) gate: whenever the input is a classical

register, then also the output will be a classical register. In other words, the gate is
incapable to “create” superpositions. The “genuine” quantum component of the Shi-
Aharonov system is represented by the Hadamard gate (also called the squareroot of
the identity).

Definition 2.6 (The squareroot of the identity) For any n ≥ 1, the squareroot of the

identity on H(n) is the linear operator
√
I

(n)
such that for every element |x1, . . . , xn〉

of the basis B(n):

√
I

(n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1√

2
((−1)xn |xn〉 + |1 − xn〉).

The basic property of
√
I

(n)
is the following:

for any |ψ〉 ∈ H(n),
√
I

(n)
(
√
I

(n)
(|ψ〉)) = |ψ〉.

By definition, gates are unitary operators whose domains consist of vectors of
convenient Hilbert spaces. At the same time, gates can be naturally generalized also
to qumixes. Such generalizations that transform qumixes into qumixes in a reversible
way, are called qumix-gates (or unitary quantum operations [2]). Suppose that G is a
gate of H(n). Then the corresponding qumix-gate DG is defined as follows:

DG(ρ) := GρG∗,

where ρ is a density operator of H(n) and G∗ is the adjoint of G. Accord-

ingly, DNot(n), DT(m,n,p) and D√
I

(n)
will represent the negation, the Toffoli

and the Hadamard qumix-gates, respectively. At the same time, DAND(ρ,σ ) and
DNAND(ρ,σ ) are supposed to be defined in the expected way.

The following theorems describe some basic properties of our qumix-gates.

Theorem 2.1 [7]

(1) p(DNot(n)(ρ)) = 1 − p(ρ);
(2) p(DAND(ρ,σ )) = p(ρ)p(σ );
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(3) p(DNAND(ρ,σ )) = 1 − p(ρ)p(σ ).

Theorem 2.2 [4]

(1) For any ρ ∈ D(H(n)): D√
I

(n)
(D√

I
(n)

(ρ)) = ρ;

(2) ∀n ∈ N
+ : p(D√

I
(n)

(knP
(n)
1 )) = p(D√

I
(n)

(knP
(n)
0 )) = 1

2 , where kn := 1
2n−1 .

Theorem 2.3 [3] Let ρ ∈ D(H(n)), σ ∈ D(H(m)) and τ ∈ D(
⊗p

C
2). Then,

p(DT(n,m,p)(ρ ⊗ σ ⊗ τ)) = (1 − p(τ ))p(ρ)p(σ ) + p(τ )(1 − p(ρ)p(σ )).

As a consequence of Theorem 2.3 and of Theorem 2.1, the probability-value
p(DT(n,m,p)(ρ ⊗ σ ⊗ τ)) can be regarded as a kind of weighted sum of
p(DAND(ρ,σ )) and of p(DNAND(ρ,σ )), with weight p(DNot(p)(τ )) and p(τ ),
respectively.

The set DH of all qumixes can be preordered by the relation � that is defined as
follows in terms of the probability function p.

Definition 2.7 (The qumix-preorder) For any qumixes ρ ∈ D(H(m)) and σ ∈
D(H(n)),

ρ � σ iff p(ρ) ≤ p(σ ) and p
(D√

I
(m)

(ρ)
)

≤ p
(D√

I
(n)

(σ )
)

.

One can easily show that � is reflexive and transitive. This permits us to define, in
the expected way, an equivalence relation ≡ on the set DH.

Definition 2.8 ρ ≡ σ iff ρ � σ and σ � ρ.

One can prove that ≡ is a congruence relation with respect to the gates Toffoli,
negation and squareroot of identity.

We will now try and abstract from concrete (Hilbert-space) quantum computa-
tional structures by introducing the notion of abstract quantum computational struc-
ture. For the sake of simplicity, we will preserve the same terminology and the same
notation that is normally used for Hilbert-space objects. As expected, some basic
concepts that can be defined in the Hilbert-space framework have to be assumed as
primitive in the abstract case.

From an intuitive point of view the basic features of an abstract quantum compu-
tational structure can be sketched as follows.

• The elements of the domain D, called abstract qumixes, represent abstract pieces
of information that admit three levels of uncertainty, corresponding to three differ-
ent subdomains of D:

(1) the subdomain R contains the registers, which represent classical certainties;
(2) the subdomain Q contains the quregisters, which represent possibly uncertain

pieces of information;
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(3) the total domain D also contains mixtures of quregisters, which represent
pieces of information that are generally ambiguous.

We have: R ⊆ Q ⊆ D.
• Any object ρ of D has a well determined length n, which represents the complexity

of the information stored by ρ. We will indicate by R(n), Q(n), D(n), respectively,
the set of the registers, of the quregisters, of the qumixes whose length is n.

• Unlike the concrete case, the abstract reduced state function is primitive. If ρ lives
in the domain D(n) and consists of k parts, Red(j)(ρ) represents the j -th compo-
nent of the global information ρ, for any j ≤ k.

• For any n ≥ 1, ♣n and ♠n are two binary relations (called quconsistency and mix-
consistency) that may hold between qumixes of D(n). One is dealing with two
different forms of consistency-relations, which can be defined in the Hilbert-space
structures. Quconsisteny collapses into identity in the case of registers, while mix-
consistency collapses into identity in the case of quregisters. Interestingly enough,
quconsistency permits us to define an abstract notion of superposition, which is
independent of any numerical values (superpositions without amplitudes!). Any
quregister |ψ〉 is called a superposition of all registers that are quconsistent with
|ψ〉. As a consequence, classical certainties (registers) turn out to be only superpo-
sitions of themselves.

• Also the abstract preorder relation � is primitive. As we have seen, in the concrete
case, � is defined in terms of the probability function p, which permits us to eval-
uate (in a quantitative way) the “relative distance” from the truth for any pair of
qumixes ρ and σ . By preserving this intuitive idea, we suppose that in the abstract
case ρ � σ means: σ is closer to the truth than ρ.

• The abstract versions of the gates are supposed to satisfy some minimal conditions
that hold for the corresponding concrete gates.

Now we can give the precise definition of abstract quantum computational struc-
ture.

Definition 2.9 (Abstract quantum computational structure) An abstract quantum
computational structure is a system

A = (D,Red,♣,♠,�,G,Not,I,
√
I,T, |0〉, |1〉),

where the following conditions hold:

(1) D is the set of all abstract qumixes (briefly, qumixes), indicated by ρ, σ, . . . .
(a) D = ⋃

n≥1 D(n), where D(n) is the set of all qumixes of length n, indicated
by ρ(n), σ (n), . . . .

(b) The cartesian product D(m) × D(n) is embeddable into D(m+n). We indi-
cate by ρ(m) ⊗ σ (n) the element of D(m+n) that corresponds to the pair
(ρ(m), σ (n)). We assume that: ρ(m) ⊗ (σ (n) ⊗ τ (p)) = (ρ(m) ⊗ σ (n)) ⊗ τ (p).

(2) Q is the set of all abstract quregisters (briefly, quregisters), indicated by |ψ〉,
|ϕ〉, . . . .
(a) Q = ⋃

n≥1 Q(n), where Q(n) is the set of all quregisters of length n, indi-
cated by |ψ〉(n), |ϕ〉(n), . . . .
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(b) The cartesian product Q(m) × Q(n) is embeddable into Q(m+n). We indi-
cate by |ψ〉(m) ⊗ |ϕ〉(n) the element of Q(m+n) that corresponds to the pair
(|ψ〉(m), |ϕ〉(n)). We assume that: |ψ〉(m) ⊗ (|ϕ〉(n) ⊗ |χ〉(p)) = (|ψ〉(m) ⊗
|ϕ〉(n)) ⊗ |χ〉(p).

(c) For any n ≥ 1, Q(n) ⊆ D(n).
(3) For any n ≥ 1, R(n) is the set of all registers of length n. The elements of R(n)

are represented as sequences |x1, . . . , xn〉, where xi ∈ {0,1}. The set R(1) =
{|0〉, |1〉} is called the set of the two abstract bits.
(a) R(n) ⊆ Q(n);
(b) R(m+n) is in one-to-one correspondence with the cartesian product R(m) ×

R(n). We indicate by |x1, . . . , xm, y1, . . . , yn〉 the register in R(m+n) that
corresponds to the pair (|x1, . . . , xm〉, |y1, . . . , yn〉).

(4) Red is the reduced information map. Consider a qumix ρ(m) and let m =
n1 + . . . + nk . For any i s.t. 1 ≤ i ≤ k, Redi (ρ(m)) is a qumix that satisfies
the following conditions:
(a) Redi (ρ(m)) ∈ D(ni );
(b) ρ(m) = ρ(n1) ⊗ · · · ⊗ ρ(nk) � Redi (ρ(m)) = ρ(ni).

(5) ♣ is a map that associates to any n ≥ 1 a binary reflexive and symmetric rela-
tion ♣n(called quconsistency) that may hold between qumixes of length n. The
following conditions hold:
(a) |x1, . . . , xn〉♣n|y1, . . . , yn〉 � |x1, . . . , xn〉 = |y1, . . . , yn〉;
(b) any qumix of length n is quconsistent with at least one register of length n.

Let Reg(ρ(n)) = {|x1, . . . , xn〉 : |x1, . . . , xn〉♣nρ(n)}.
When ρ(n) is a quregister, we say that ρ(n) is a superposition of the

elements of Reg(ρ(n)).
(6) ♠ is a map that associates to any n ≥ 1 a binary reflexive and symmetric relation

♠n(called mixconsistency) that may hold between qumixes of length n.
(a) |ψ〉(n)♠n|ϕ〉(n)

� |ψ〉(n) = |ϕ〉(n).
(b) ρ(n)♠nσ (n)

� ρ(n)♣nσ (n).
Let Mix(ρ(n)) = {|ψ〉(n) : |ψ〉(n)♠nρ(n)}.

We say that ρ(n) is a mixture of the elements of Mix(ρ(n)).
(7) � is a preorder relation on D.

This permits one to define the following equivalence relation:

ρ ≈ σ := ρ � σ and σ � ρ.

The following conditions hold:
(a) ρ(m) ⊗ σ (n) ≈ σ (n);
(b) ρ(m) ⊗ (σ (n) ⊗ τ (p)) ≈ (ρ(m) ⊗ σ (n)) ⊗ τ (p);
(c) For any m s.t. m = n1 + · · · + nk and for any i s.t. 1 ≤ i ≤ k, ρ(m) ≈

Red1(ρ(m)) ⊗ · · · ⊗ Redk(ρ(m)).
(8) Registers satisfy the following conditions:

(a) |x1, . . . , xm〉 � |y1, . . . , yn,1〉;
(b) |x1, . . . , xm,0〉 � |y1, . . . , yn〉.

(9) G is a map that assigns to any n ≥ 1 the set G(n) of all abstract gates (briefly,
gates) defined on D(n).
By gate on D(n) we mean a map G(n) that satisfies the following conditions:
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(a) G(n) is an injection of D(n) into D(n) (this guarantees that gates are re-
versible logical operations);

(b) ≈ is a congruence with respect to G(n);
(c) the set

⋃

n G(n) of all gates is closed under composition. In other words:
for any G1, . . . ,Gn defined on D(i1), . . . ,D(in), respectively, there is a gate
G1 ⊗· · ·⊗Gn, defined on D(i1+···+in), that satisfies the following condition:

[G1 ⊗ · · · ⊗ Gn](ρ(i1) ⊗ · · · ⊗ ρ(in)) = G1(ρ
(i1)) ⊗ · · · ⊗ Gn(ρ

(in));
(10) Not, I,

√
I, T are maps that assume as values gates that belong to

⋃

n G(n).
(11) Not associates to any n ≥ 1 the gate Not(n) (defined on D(n)) that satisfies the

following conditions:
(a) Not(n)(|x1, . . . , xn〉) ≈ |x1, . . . , xn−1,1 − xn〉;
(b) Not(n)(Not(n)(ρ(n))) ≈ ρ(n).

(12) I associates to any n ≥ 1 the gate I(n) (defined on D(n)) that satisfies the fol-
lowing condition: I(n)(ρ(n)) = ρ(n).

(13)
√
I associates to any n ≥ 1 the gate

√
I

(n)
(defined on D(n)) that satisfies the

following conditions:

(a)
√
I

(n)
(|x1, . . . , xn〉) ≈ |x1, . . . , xn−1〉 ⊗ √

I
(1)

(|xn〉);
(b)

√
I

(n)
(
√
I

(n)
(ρ(n))) ≈ ρ(n);

(c)
√
I

(n)
(|x1, . . . , xn〉)♣n|x1, . . . , xn〉√

I
(n)

(|x1, . . . , xn〉)♣n|x1, . . . ,1 − xn〉.
(14) For any m,n ≥ 1, T associates to the triplet (m,n,1) the gate T(m,n,1), defined

on D(m+n+1). We put:

And(ρ(m), σ (n)) := T(m,n,1)(ρ(m) ⊗ σ (n) ⊗ |0〉);
Or(ρ(m), σ (n)) := Not(m+n+1)(And(Not(m)(ρ(m)),Not(n)(σ (n)))).

The following conditions hold:
(a) T(m,n,1)(|x1, . . . , xm, y1, . . . , yn, z〉 ≈ |x1, . . . , xm, y1, . . . , yn, xm · yn+̂z〉,

where +̂ is the sum modulo 2;
(b) And(ρ,σ ) ≈ And(σ,ρ) (commutativity);
(c) And(ρ,And(σ, τ )) ≈ And(And(ρ,σ ), τ ) (associativity);
(d) And(ρ,Or(σ, τ )) � Or(And(ρ,σ ),And(ρ, τ )) (semidistributivity).

(e)
√
I

(1)|0〉 �√
I

(m+n+1)
( T(m,n,1)(ρ(m) ⊗ σ (n) ⊗ |0〉)) � √

I
(1)|1〉.

In this framework one can naturally define an abstract notion of entangled qureg-
ister.

Definition 2.10 (Entangled quregister) A quregister |ψ〉 ∈ Q(2n) is called entangled
in the abstract quantum computational structure A iff there are two proper qumixes
ρ(n) and σ (n) in A such that:

• Red1(|ψ〉) = ρ(n) and Red2(|ψ〉) = σ (n);
• ρ(n) ≈ σ (n).

One also says that the qumixes ρ(n) and σ (n) are entangled in A.
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One can easily show that the notion of abstract quantum computational structure
represents a “good” abstraction from Hilbert-space qumixes.

Consider the structure

(D,Red,♣,♠,�,G,Not,I,
√
I,T, |0〉, |1〉),

where:

• D = DH (the set of all concrete qumixes);
• registers, quregisters and proper qumixes are defined in the expected way;
• Red is the standard reduced state function (defined according to the quantum the-

oretic formalism);
• ♣n is defined as follows: ρ(n)♣nσ (n) iff ρ(n) and σ (n)are two non-orthogonal

density operators in the space H(n) (in other words, for any qumix ρ ∈ H(n),
Tr(ρ(ρ(n) + σ (n))) ≤ 1);

• ♠n is defined as follows: ρ(n)♠nσ (n) iff

(1) ρ(n) = ∑

i ciP|ψi 〉 and σ (n) = ∑

i ciP|ϕi 〉;
(2) for at least one ci �= 0, |ψi〉 = |ϕi〉.

• the relation �, the gate-map G, the gates Not(n), I(n),
√
I

(n)
, T(n,m,1) and the

two bits |0〉, |1〉 are defined in the expected way (according to the definitions given
above).

This structure satisfies our definition of abstract quantum computational structure.

3 An Abstract Holistic Semantics

We will now generalize the Hilbert-space quantum computational semantics to the
abstract case.2 Let us first introduce a formal (sentential) language L for the abstract
quantum computational structures. The language contains two privileged atomic
sentences t and f, representing the truth-values Truth and Falsity, respectively. We
will use q, r, . . . as metavariables for atomic sentences, and α,β, . . . as metavari-
ables for sentences. The connectives of L are: the negation ¬, the squareroot of
the identity

√
id , a ternary conjunction

∧

(which corresponds to the Toffoli gate),
the composition-connective � (which corresponds to the abstract tensor product ⊗).
For any sentences α and β , the expressions ¬α,

√
id α,

∧

(α,β, f) (the ternary
conjunction of α, β , f) are sentences. For any sentences β1, . . . , βn, the expression
�(β1, . . . , βn) (the composition of β1, . . . βn) is a sentence. The connectives ¬,

√
id ,

∧

are called gate-connectives. We will use the following metalinguistic abbrevia-
tions:

α ∧ β :=
∧

(α,β, f); β1� · · · �βn := �(β1, . . . , βn).

Before defining the basic notions of the abstract holistic semantics, let us first
introduce some useful syntactical notions.

2The concrete holistic quantum computational semantics (for a somewhat different language) has been
presented in [5].
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Definition 3.1

• α is called a gate-sentence iff either α is atomic or the principal connective of α is
a gate-connective.

• α is called a compositional sentence iff α = β1� · · · �βm, where β1, . . . , βm are
gate-sentences.

Definition 3.2 (The atomic complexity of a sentence) The atomic complexity At(α)

of a sentence α is the number of occurrences of atomic sentences in α.

For instance, At(
∧

(q,q, f)) = 3. We will also indicate by α(n) a sentence whose
atomic complexity is n. The notion of atomic complexity plays an important seman-
tic role. As happens in the case of concrete quantum computational semantics, the
meaning of any sentence whose atomic complexity is n is supposed to live in the
domain D(n). For this reason, D(At (α)) (briefly indicated by Dα) will be also called
the semantic space of α.

Any sentence α can be naturally decomposed into its parts, giving rise to a special
configuration called the syntactical tree of α (indicated by STreeα).

Roughly, STreeα can be represented as a finite sequence of levels:

Levelk(α)

...

Level1(α),

where:

• each Leveli (α) (with 1 ≤ i ≤ k) is a compositional sentence β1� · · · �βm that con-
tains the atomic sentences of α;

• the bottom level (Level1(α)) is α;
• the top level (Levelk(α)) is the sentence q1� · · · �qt , where q1, . . . ,qt are the

atomic occurrences in α;
• for any i (with 1 ≤ i < k), Leveli+1(α) is the compositional sentence obtained

by dropping the principal gate-connective in all molecular gate-sentences occur-
ring at Leveli (α), and by repeating all the atomic sentences that possibly occur at
Leveli (α).

By Height of α (indicated by Height(α)) we mean the number of levels of the
syntactical tree of α.

More precisely, the syntactical tree of a sentence (whose atomic complexity is t)
is defined as follows.

Definition 3.3 (The syntactical tree of α) The syntactical tree of α is the following
sequence of sentences:

STreeα = (Level1(α), . . . ,Levelk(α)),

where:
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• Level1(α) = α;
• Leveli+1 is defined as follows for any i such that 1 ≤ i < k. The following cases

are possible:

(1) Leveli (α) does not contain any gate-connective. Hence, Leveli (α) = q1� · · · �qt

and Height(α) = i;
(2) Leveli (α) is the compositional sentence β1� · · · �βm, and for at least one j ,

the principal connective of βj is a gate-connective. Consider the following
sequence of sentences:

β ′
1, . . . , β

′
m,

where: β ′
h =

{

βh, if βh is atomic;
β∗

h, otherwise.

Where: β∗
h =

{

δ, if βh = ¬δ or βh = √
id δ;

γ �δ�f, if βh = ∧

(γ, δ, f).

Then,

Leveli+1(α) = β ′
1� · · · �β ′

m.

As an example, consider the following sentence: α = q ∧ ¬q = ∧

(q,¬q, f). The
syntactical tree of α is the following sequence of levels:

Level3(α) = q�q�f;
Level2(α) = q�¬q�f;
Level1(α) =

∧

(q,¬q, f).

Clearly, Height(
∧

(q,¬q, f)) = 3.

The syntactical tree of α (which represents a purely syntactical object) uniquely
determines a sequence of abstract gates that are all defined on the semantic space of
α. This gate-sequence is called the qumix tree of α. Let α be a sentence such that
Height(α) = k.

Definition 3.4 (The qumix tree of α) The qumix tree of α is the sequence of abstract
gates

QumTreeα = (Gα
k−1, . . . ,G

α
1 ),

that is defined as follows. Suppose that

Leveli−1(α) = β
(t1)
1 � · · · �β(tm)

m ,

(where 1 ≤ i ≤ k). We put:

Gα
i−1 = X

(t1)
1 ⊗ · · · ⊗ X(tm)

m ,
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where any X
(tj )

j is a gate defined on D(tj ) such that:

X
(tj )

j =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

I(tj ), if β
(tj )

j is atomic;
Not(tj ), if β

(tj )

j = ¬δ;
√
I

(tj )
, if β

(tj )

j = √
idδ;

T(r,s,1), if β
(tj )

j = ∧

(γ (r), δ(s), f).

Consider now a sentence α and let (Gα
k−1, . . . , Gα

1 ) be the qumix tree of α. Any
choice of a qumix ρ in Dα determines a sequence (ρk, . . . , ρ1) of qumixes of Dα ,
where:

ρk = ρ

ρk−1 = Gα
k−1(ρk)

...

ρ1 = Gα
1 (ρ2).

The qumix ρk can be regarded as a possible input-information concerning the atomic
parts of α, while ρ1 represents the output-information about α, given the input-
information ρk . Each ρi corresponds to the information about Leveli (α), given the
input-information ρk .

How to determine an information about the parts of α under a given input? It is
natural to apply our abstract reduced information map.

Consider the syntactical tree of α and suppose that:

Leveli (α) = βi1� · · · �βir .

We know that the qumix tree of α and the choice of an input ρk (in Dα) determine a
sequence of qumixes:

ρk � Levelk(α) = q1� · · · �qt

...

ρi � Leveli (α) = βi1� · · · �βir

...

ρ1 � Level1(α) = α

We can consider Redj (ρi), the reduced information of ρi with respect to the j -th
part. From a semantic point of view, this object can be regarded as a contextual in-
formation about βij (the subformula of α occurring at the j -th position at Leveli (α))
under the input ρk .

We will now give the basic definitions of the abstract semantics. The main concept
is the notion of (abstract) quantum computational model: a map that assigns to any
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sentence α of the language L a meaning, a qumix living in the semantic space Dα . Of
course (like in the standard semantic approaches), the map shall respect the logical
form of α. In the compositional semantics, the meaning of any sentence is determined
by the meanings of its parts (from the parts to the whole). In the holistic semantics,
instead, a model assigns to any sentence a global meaning that determines the con-
textual meanings of all its parts (from the whole to the parts). It may happen that one
and the same sentence receives different meanings in different contexts.

Let us first introduce the notion of (abstract) compositional quantum computa-
tional model (briefly, compositional model).

Definition 3.5 (Compositional model) A compositional model is a map Qum that
associates to any sentence α of L a qumix in the semantic space Dα . The following
conditions hold:

(1) Qum(f) = |0〉; Qum(t) = |1〉;
(2) Qum(¬β) = Not(At (β))(β);
(3) Qum(

√
id β) = √

I
(At (β))

(β);
(4) Qum(

∧

(β, γ, f)) = T(At (β),At (γ ),At (f))(Qum(β) ⊗ Qum(γ ) ⊗ Qum(f));
(5) Qum(β1� · · · �βn) = Qum(β1) ⊗ · · · ⊗ Qum(βn).

Compositional models are clearly context-independent. Any Qum determines a
meaning for each level of the syntactical tree of any sentence α. Suppose that
LevelHeight(α)(α) = q1� · · · �qt and let Gα

Height(α)−1, . . . ,G
α
1 be the qumix tree of α.

We put:
Qum(LevelHeight(α)(α)) = Qum(q1) ⊗ · · · ⊗ Qum(qt );
Qum(Leveli (α)) = Gα

i (Qum(Leveli+1(α))), for any i < Height(α).
The notion of logical consequence in the framework of the compositional seman-

tics is defined in the expected way.

Definition 3.6 (Consequence in a compositional model Qum) A sentence β is a con-
sequence of a sentence α in a compositional model Qum (α |=Qum β) iff Qum(α) �
Qum(β), where � is the preorder relation defined on D.

Definition 3.7 (Logical consequence (in the compositional semantics)) A sentence
β is a consequence of a sentence α (in the compositional semantics) iff for any Qum,

α |=Qum β.

We call abstract compositional quantum computational logic (abbreviated as
AbCQCL) the logic that is semantically characterized by the logical consequence
relation we have just defined. (Hence, α |=AbCQCL β iff for any Qum, α |=Qum β .)

Let us now turn to the holistic semantics. We will distinguish three possible “levels
of semantic holism”, which correspond to three different notions of holistic model.
We will speak of superholistic semantics, normal holistic semantics and locally com-
positional semantics, respectively.

The superholistic semantics is the most liberal one: sentences may receive differ-
ent meanings even in the framework of one and the same context. In other words,



Found Phys (2010) 40: 1494–1518 1511

different occurrences of one and the same subformula in a given sentence may have
different contextual meanings. Such a liberal point of view might appear somewhat
strange in the case of scientific languages. However, it is quite reasonable for natural
and artistic languages. Consider a very “long” expression γ (for instance, a novel or
a musical score): why should all occurrences of a part of γ have a constant contextual
meaning?3

The normal holistic semantics is more restrictive: although sentences may receive
different meanings in different contexts, all occurrences of a subformula in a given
sentence receive a constant contextual meaning. Finally, the locally compositional
semantics assumes a further restriction: the map that assigns contextual meanings to
all subformulas of a given formula should always be simulated by a compositional
model. In other words, once fixed a given context, contextual meanings are supposed
to behave in a compositional way.

We will give now the technical definitions of the notions of superholistic model,
normal holistic model and locally compositional model.

Definition 3.8 (Superholistic model) A superholistic model of the language L is a
map Hol that associates a meaning Hol(Leveli (α)) to each level of the syntactical
tree of α, for any sentence α of L. The following conditions are required:

(1) Hol(Leveli (α)) ∈ Dα .
In other words, the meaning of Leveli (α) under Hol belongs to the semantic

space of α.
(2) Let (Gα

Height(α)−1, . . . ,G
α
1 ) be the qumix tree of α and let 1 ≤ i < Height(α).

Then,

Hol(Leveli (α)) = Gα
i (Hol(Leveli+1(α))).

In other words the global meaning of each level (different from the top level)
is obtained by applying the corresponding gate to the meaning of the level that
occurs immediately above.

(3) Let Leveli (α) = β1� . . . �βr . Then:
βj = f � Redj (Hol(Leveli (α))) = |0〉;
βj = t � Redj (Hol(Leveli (α))) = |1〉, for any j (1 ≤ j ≤ r).
In other words, the contextual meanings of f and of t are always the Falsity

and the Truth, respectively.

On this basis, we put:

Hol(α) := Hol(Level1(α)),

for any sentence α.
Unlike compositional semantics, any Hol(α) represents a kind of autonomous se-

mantic context that is not necessarily correlated with the meanings of other sentences.

3As observed by the conductor Piero Bellugi, the “copy and paste-operation” cannot exist in music! An
application of a quantum-like holistic semantics to a formal analysis of musical languages has been studied
in [6].
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At the same time, given a sentence γ , Hol determines the contextual meaning, with
respect to the context Hol(γ ), of any occurrence of a subformula β in γ .

Definition 3.9 (Contextual meaning of a subformula) Let β be a subformula of γ .

1. Suppose that β is a gate-sentence and let β[ij ] be an occurrence of β at the j th-

position of the ith-level of the syntactical tree of γ . Then

Holγ (β[ij ]) := Redj (Hol(Leveli (γ ))).

2. Suppose that β is a compositional sentence such that

β[ij ] = β1[ij1
]� · · · �βm[ijm

].
Then,

Holγ (β[ij ]) =
{

Hol(Leveli (γ )), if Leveli (γ ) = β1� · · · �βm;
Holγ (β1[ij1

]) ⊗ · · · ⊗ Holγ (βm[ijm
]), otherwise.

(Notice that Holγ (β1[ij1
]� · · · �βm[ijm

]) is well defined. For, by definition of syn-
tactical tree, two different levels of STreeγ cannot have the same form β1� · · · �βm.)

Hence, in particular, we have for any sentence γ :

Holγ (γ ) = Hol(Level1(γ )) = Hol(γ ).

Apparently, Holγ is a partial function that only assigns meanings to the occur-
rences of subformulas of γ . Given a formula γ , we will call the partial function
Holγ a contextual holistic model of the language.

Definition 3.10 (Normal holistic model) A normal holistic model of the language L
is a superholistic model Hol that satisfies the following condition: if β[ij ] and β[hk ]
are two nodes of the syntactical tree of γ , representing two occurrences of the same
gate-subformula β , then

Holγ (β[ij ]) = Holγ (β[hk ]).

As a consequence, two different occurrences of one and the same subformula in a
sentence γ receive the same contextual meaning with respect to the context Hol(γ ).4

For normal holistic models, one can naturally define the contextual meaning of
any subformula β of γ , with respect to the context Hol(γ ).

Definition 3.11 Let β be a subformula of γ .

4In the definition of holistic model given in [5] we have only required that two different occurrences of
one and the same atomic subformula at the top level of the syntactical tree of a sentence γ receive the
same contextual meaning with respect to the context Hol(γ ). However this is not sufficient to prove that
all occurrences of one and the same subformula of a given sentence receive the same contextual meaning.
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1. Suppose that β is a gate-sentence. Then

Holγ (β) := Holγ (β[ij ]),

where β[ij ] is any occurrence of β as a node of STreeγ .
2. Suppose that β is a compositional sentence β1� · · · �βm (where β1, . . . , βm are

gate-sentences). Then,

Holγ (β) =
{

Hol(Leveli (γ )), if Leveli (γ ) = β1� · · · �βm;
Holγ (β1) ⊗ · · · ⊗ Holγ (βm), otherwise.

Suppose now that β is a subformula of two different formulas γ and δ. Generally,
we have:

Holγ (β) �= Holδ(β).

In other words, sentences may receive different contextual meanings in different
contexts also in the case of the normal holistic semantics.

Definition 3.12 (Locally compositional model) A locally compositional model of
the language L is a normal holistic model Hol that satisfies the following condition:
for any γ there exists a compositional model Qum such that for any subformula β

of γ , Holγ (β) ≈ Qum(β).

One can easily realize that compositional models are special cases of holistic mod-
els.

Lemma 3.1 Any compositional model Qum uniquely determines a locally composi-
tional model Hol such that:

1. Hol(α) = Qum(α), for any sentence α;
2. Holγ (α) = Qum(α), for any α and for any γ such that α is a subformula of γ .

Proof Given Qum we can define Hol as follows:

Hol(LevelHeight(α)(α)) = Qum(q1) ⊗ · · · ⊗ Qum(qt ),

for any α such that LevelHeight(α)(α) = q1� · · · �qt . �

The notion of logical consequence in the framework of the abstract holistic seman-
tics represents a reasonable variant of the standard notions of logical consequence.
As expected, the three different concepts of holistic model give rise to three different
concepts of logical consequence:

a) α �S β (β is a logical consequence of α in the superholistic semantics);
b) α �N β (β is a logical consequence of α in the normal holistic semantics);
c) α �L β (β is a logical consequence of α in the locally compositional semantics);

Let us first define the notion of consequence in a given contextual model.
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Definition 3.13 (Consequence in a given contextual model Holγ ) Let γ be a sen-
tence and let Hol be a model, which may be either superholistic or normal holistic
or locally compositional. A sentence β is a consequence of a sentence α in the con-
textual model Holγ (α |=Holγ β) iff

1. α and β are subformulas of γ ;
2. Holγ (αi) � Holγ (βj ), for at least one occurrence αi of α in γ and for at least

one occurrence βj of β in γ .

Definition 3.14 (Logical consequence (in the holistic semantics))

a) α �S β (β is a logical consequence of α in the superholistic semantics) iff for
any sentence γ such that α and β are subformulas of γ and for any superholistic
model Hol,

α |=Holγ β.

b) α �N β (β is a logical consequence of α in the normal holistic semantics) iff for
any sentence γ such that α and β are subformulas of γ and for any normal holistic
model Hol,

α |=Holγ β.

c) α �L β (β is a logical consequence of α in the locally compositional semantics)
iff for any sentence γ such that α and β are subformulas of γ and for any locally
compositional model Hol,

α |=Holγ β.

On this basis, we obtain three different forms of abstract quantum computational
logics that are characterized, respectively, by the three logical consequence relations
we have just defined. We will call these logics: abstract superholistic quantum com-
putational logic (abbreviated as AbHSQCL), abstract normal holistic quantum com-
putational logic (AbHNQCL) and abstract locally compositional quantum computa-
tional logic (AbHLQCL).

We want now study the relationships that hold between these different forms of
holistic logic. First of all we show that the locally compositional semantics and the
compositional semantics characterize the same logic.

Theorem 3.1 For any sentences α and β ,

α |=AbHLQCL β iff α |=AbCQCL β.

Proof Let us write α |=C β and α |=HL β instead of α |=AbCQCL β

and α |=AbHLQCL β , respectively. We prove:

1. α |=HL β � α |=C β .
2. α |=C β � α |=HL β .
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Proof of 1.
Suppose that α |=HL β and α ��C β . Hence, there exists a compositional model Qum
such that Qum(α) � Qum(β). Take α ∧ β . By Lemma 3.1, Qum determines a locally
compositional model Hol such that:

Holα∧β(α) = Qum(α); Holα∧β(β) = Qum(β).

Hence, Holα∧β(α) � Holα∧β(β), against the hypothesis.
Proof of 2.
Suppose that α |=C β and α ��HL β . Then, there exists a holistic model Hol and a
sentence γ such that:

• α and β are subformulas of γ ;
• Holγ (α) � Holγ (β).

By definition of locally compositional model there exists a compositional model Qum
such that Qum(α) � Qum(β), against the hypothesis. �

We will now prove that AbHNQCL is strictly weaker than AbHLQCL, while
AbHSQCL is strictly weaker than AbHNQCL.

Theorem 3.2 α �AbHNQCL β � α �AbHLQCL β , but not the other way around.

Proof

1. α �AbHNQCL β � α �AbHLQCL β , because locally compositional models are spe-
cial examples of normal holistic models.

2. α �AbHLQCL β �� α �AbHNQCL β .
Consider the following counterexample in the Hilbert-space semantics. Let α =
∧

(q,¬q, f), β = ∧

(
√

id f,
√

id f, f), γ = ∧

(α,β, f). We define a normal holistic
Hol that assigns to the top level of the syntactical tree of γ a pure state, whose
first component is entangled. The syntactical tree of γ is:

Level4(γ ) = q �q � f � f � f � f � f;
Level3(γ ) = q �¬q � f �

√
id f�

√
id f � f � f;

Level2(γ ) =
∧

(q,¬q, f) �
∧(√

id f,
√

id f, f
)

� f;

Level1(γ ) =
∧

(
∧

(q,¬q, f),
∧

(√
id f,

√
id f, f

)

, f
)

.

Hence, the qumix tree of γ is:

DI(1) ⊗ DNot(1) ⊗ DI(1) ⊗ D√
I

(1) ⊗ D√
I

(1) ⊗ DI(1) ⊗ DI(1)

DT(1,1,1) ⊗ DT(1,1,1) ⊗ DI(1)

DT(3,3,1).

Define Hol as follows:
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Hol(Level4(γ )) = P 1√
2
(|010〉+|100〉) ⊗ P

(1)
0 ⊗ P

(1)
0 ⊗ P

(1)
0 ⊗ P

(1)
0 .

By applying the gates of the qumix tree of γ to Hol(Level4(γ )) we obtain:

Hol(Level3(γ )) = P 1√
2
(|000〉+|110〉) ⊗ D√

I
(1)

P
(1)
0 ⊗ D√

I
(1)

P
(1)
0 ⊗ P

(1)
0 ⊗

P
(1)
0 ;

Hol(Level2(γ )) = P 1√
2
(|000〉+|111〉) ⊗ DT(1,1,1)(D√

I
(1)

P
(1)
0 ⊗ D√

I
(1)

P
(1)
0 ⊗

P
(1)
0 ) ⊗ P

(1)
0 ;

Hol(Level1(γ )) =D T(3,3,1)(P 1√
2
(|000〉+|111〉) ⊗ DT(1,1,1)(D√

I
(1)

P
(1)
0 ⊗

D√
I

(1)
P

(1)
0 ⊗ P

(1)
0 ) ⊗ P

(1)
0 ).

Hence:
Holγ (α) = P 1√

2
(|000〉+|111〉) and p(Holγ (α)) = 1

2 ;

Holγ (β) =D T(1,1,1)(D√
I

(1)
P

(1)
0 ⊗ D√

I
(1)

P
(1)
0 ⊗P

(1)
0 ) and p(Holγ (β)) =

1
4 .

Consequently: α �Holγ β .
At the same time, one can easily show that for any Qum, α |=Qum β . �

The counterexample considered in the proof of Theorem 3.2 clearly shows how en-
tanglement is responsible for the creation of somewhat “pathological” holistic models
in comparison with the compositional semantics.5

Theorem 3.3 α �AbHSQCL β � α �AbHNQCL β , but not the other way around.

Proof

1. α �AbHSQCL β � α �AbHNQCL β , because normal holistic models are special ex-
amples of superholistic models.

2. α �AbHNQCL β �� α �AbHSQCL β . A counterexample is the commutativity-
property for the connective conjunction. Consider the following sentence:

γ =
∧

(
∧

(q, r, f),
∧

(r,q, f), f
)

,

whose syntactical tree is:

Level3(γ ) = q�r�f�r�q�f,

Level2(γ ) =
∧

(q, r, f)�
∧

(r,q, f)�f,

Level1(γ ) =
∧

(
∧

(q, r, f),
∧

(r,q, f), f
)

.

5In [5] we have wrongly asserted that for any Hol that satisfies the definition of normal holistic model and
for any γ , the partial map Holγ can always be simulated by a compositional model Qum.
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Let Hol be a superholistic model that is defined as follows for the syntactical tree
of γ :

Hol(Level3(γ )) = P
(1)
1 ⊗ P

(1)
1 ⊗ P

(1)
0 ⊗ P

(1)
0 ⊗ P

(1)
0 ⊗ P

(1)
0 .

We obtain:
Holγ (q[3

1]) = P
(1)
1 ; Holγ (r[3

2]) = P
(1)
1 ; Holγ (r[3

4]) = P
(1)
0 ; Holγ (q[3

5]) =
P

(1)
0 . Hence:

Holγ
(
∧

(q, r, f)[ij ]
)

= P
(1)
1 ⊗ P

(1)
1 ⊗ P

(1)
1 ;

Holγ
(
∧

(r,q, f)[hk ]
)

= P
(1)
0 ⊗ P

(1)
0 ⊗ P

(1)
0 ,

for any occurrence
∧

(q, r, f)[ij ] of
∧

(q, r, f) and for any occurrence
∧

(r,q, f)[hk ]
of

∧

(r,q, f) in the syntactical tree of γ . Consequently:
∧

(q, r, f) �Holγ
∧

(r,q, f).

At the same time we have:
∧

(α,β, f) �AbHNQCL
∧

(β,α, f), because the Toffoli gate
satisfies commutativity in any abstract quantum computational structure. �

Accordingly, AbHSQCL seems to be an interesting logical framework that per-
mits us to model the behavior of non-commutative conjunctions. It is worthwhile
noticing that, in spite of the “quasi-dialectical” character of AbHSQCL, the identity
principle (α �AbHSQCL α) remains valid.

As expected, each abstract holistic logic has a natural concrete counterpart, repre-
sented by the logic that is characterized by the class of all models based on Hilbert-
space quantum computational structures. Let us indicate by HXQCL the concrete
counterpart of the logic AbHXQCL, where X is either S or N or L. One can easily
show that each abstract holistic logic is weaker than its concrete counterpart.

Theorem 3.4 α �AbHXQCL β � α �HXQCL β.

Proof Any concrete quantum computational structure is a special example of an ab-
stract quantum computational structure. �

Unlike concrete quantum computational logics, abstract quantum computational
logics can be naturally axiomatized. The calculi and the completeness theorems for
such logics will be presented elsewhere.

An open problem is the following: are there pairs of sentences α and β such that
α �HXQCL β and α �AbHXQCL β?
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