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bDipartimento di Matematica e Informatica, Università di Cagliari, Italy

Abstract

In most studies about the expressiveness of Petri nets, the focus has been

put either on adding suitable arcs or on assuring that a complete snapshot of

the system can be obtained. While the former still complies with the intuition

on Petri nets, the second is somehow an orthogonal approach, as Petri nets are

distributed in nature. Here, inspired by membrane computing, we study some

classes of Petri nets where the distribution is partially kept and which are still

Turing complete.

1. Introduction

Soon after their introduction in the early 60’s, Petri nets have been acknowl-

edged as a formalism for modeling distributed and concurrent computations and,

from a formal language theoretic point of view, their expressivity has been in-

vestigated. On the one side, the classes of languages defined by Petri nets, i.e.,

sets of sequences of labeled or unlabeled transitions, have been studied from the

beginning of the 70’s (e.g. in [18] and references therein) and research on this

topic is still in progress. On the other side, the question of how expressive Petri

nets are has been asked, and the answers can be summarized as follows: Petri

nets under the usual firing strategy are not Turing complete (see [22] and the
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surveys [12, 13] for a comprehensive review), while they can be Turing complete

under suitable assumptions on the firing strategy, either maximality (all the

possible transitions are fired together) or ordering (a transition should fire as

soon as it is enabled), as shown in [4] and [5].

In order to make Petri nets Turing complete, different approaches have been

taken, most notably by extending the arcs which are considered. The classic

extensions are given by inhibitor arcs, i.e., arcs where the absence of tokens in

certain places is modeled ([17]), and by reset arcs, i.e., arcs with the charac-

teristic of emptying the preset, regardless of the number of tokens present in

the place ([11]). Other extensions of Petri Nets, not necessarily always Turing

complete, allow the introduction of non blocking arcs or transfer arcs ([14] and

[16]), making the transitions marking dependent [6], the introduction of other

kinds of elements, e.g. the so called zero-safe places [3] where the notion of

transaction is endorsed, or weighted inhibitor arcs [19]. Some of the extensions

have been introduced to make Petri nets more expressive, others to facilitate

the modeling of certain phenomena.

In this paper we take a different approach: we try to identify if there are

minimal assumptions that make Petri nets Turing complete without the intro-

duction of suitable places or arcs, and trying to preserve the intuition behind

Petri nets. The tight relationship with membrane computing ([26]) suggests

that this route can be pursued, thus we investigate the expressivity of Petri

nets by looking at suitable firing strategy exploiting the structure of the nets

itself, namely how transitions and places are connected.

The correspondence between membrane computing and Petri nets has al-

ready been established (see chapter 15 of the Oxford Handbook of Membrane

Computing [27] and references therein), where it is shown that to each kind of

membrane systems it is possible to associate a suitable labeled Petri net, where

the labeling of transitions is used to model the membrane structure.

In this paper we go a step further by establishing a relation between Petri

nets and membrane systems, showing that to each Petri net we can associate

a membrane system, and the various firing strategies definable on Petri nets
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can be matched by corresponding evolution steps in membrane systems. Mem-

brane systems come naturally equipped with a multi-layer structure modeled

by nested membranes, a structure which is not usual in Petri nets. In fact, when

associating a net to a membrane system, a suitable labeling is considered, the

so called location mapping associated to transitions. The notion of locality in

Petri nets belongs to the original intuition, where transitions depend on the

neighborhood and not on the whole distributed state, an intuition which has

only recently (and in connection with membrane computing) been promoted to

a part of the definition ([21]) (and then studied, e.g. [20] and [23]). Here we

reconsider this notion of locality in Petri nets by taking into account not only

the transitions as elements to be located (as in [21]), but also the places of the

net. This shift in perspective is able to capture the correspondence between

Petri nets and membrane systems more accurately, by also stressing where re-

sources are allocated. Moreover, it promotes further reflection on the relevance

of suitable topologies in the Petri nets setting, which we consider to be one of

the founding ideas behind Petri nets themselves.

Inspired by the expressiveness results of membrane systems, we focus on two

classes of nets: the class of catalytic nets, and the class of communicating nets.

In the first class the firing strategy depends on suitable places, and it requires

that if a transition using tokens from these places is enabled, then it must

be executed. This class is tailored onto catalytic membrane systems, where

rules are applied depending on the presence of catalysts, i.e., objects needed

for applying the rule but never consumed1. The second class we consider is

characterized by the fact that transitionsmove tokens from a location to another

(and never to the same location), exploiting the notion of location we use in this

paper.

We then use the relationship between membrane systems and Petri nets with

localities to establish the Turing completeness of these two classes of nets. In

the case of the first class, it turns out that the locality mapping is not needed

1This notion is quite different from the one of read arc on Petri nets.
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(or better, it can be somehow encoded) and the number of catalytic places

needed for Turing completeness is quite limited, namely just 2 catalytic places

are necessary. In the second case, the surprising result is that it is enough to

guarantee Turing completeness by just considering that a transition is fired for

each location.

The merit of the results presented in this paper is that they show that the

expressiveness of Petri nets can be increased without introducing suitable arcs,

without requiring that transitions are fired based on a complete snapshot of the

system, and without totally losing the confinement of the firing of transitions

which is one of the main features of Petri nets. Furthermore, the relation-

ship established between Petri nets and membrane systems suggests that other

classes of Petri nets with minimal parallelism (i.e., where a minimal number of

concurrent transitions are considered) could also be Turing complete.

The paper is organized as follows: in the next section we recall the basic

notions on Petri nets and their firing strategies, then introduce the notion of

locality and, beside suitable firing strategies, we point out which conditions

the locality mappings should satisfy. In section 3 we introduce a new format for

membrane systems which encompass the membrane models we are interested in,

and in section 4 we relate membrane systems to Petri nets and vice versa. To

establish this relationship, we use a suitable equivalence on places (the intuition

is that various places correspond to the same objects in different membranes). In

section 5 we recall the main definitions and the expressiveness results concerning

membrane systems, whereas in section 6 we introduce two classes of Petri nets:

catalytic and communicating Petri nets. The relation defined in section 4 is then

used in section 7 to show that these classes of Petri nets are Turing complete.

This paper is an extended and revised version of [9], where we discussed only

the case of flat catalytic membrane systems and catalytic nets.

2. Petri Nets and Firing Strategies

Notations. With N we denote the set of natural numbers including zero, and

with N
+ the set of positive natural numbers. Given a set X , with 2X we
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indicate the set of subsets of X and with 2X
fin the set of finite subsets of X .

Given a set X , a partial order ⊑ on X is a reflexive, transitive and anti-

symmetric relation. Let (X,⊑) be a partially ordered set and Y ⊆ X , we say

that Y has a minimum iff there exists x ∈ X such that ∀y ∈ Y it holds that

x ⊑ y. Dually it has a maximum iff there exists x ∈ X such that ∀y ∈ Y it

holds that y ⊑ x. The elements of Y ⊆ X are referred to as incomparable iff

∀y, y′ ∈ Y. y 6= y′ implies that y 6⊑ y′ and y′ 6⊑ y. Given two elements x, y ∈ X

such that x ⊑ y, we say that x is an immediate predecessor of y iff x 6= y and

∀z ∈ X. x ⊑ z ⊑ y either x = z or z = y.

A partial order (X,⊑) is a tree if ⊑ is such that each subset Y ⊆ X of in-

comparable elements has no maximum, and each subset Y ⊆ X has a minimum.

The minimum of X is called the root of the tree, and it is denoted as root⊑(X).

A leaf of the tree is an element x such that ∀y ∈ X. x ⊑ y, it holds that x = y.

If x is the immediate predecessor of y, we indicate this with x ⊑̂ y. We define

some auxiliary partial functions over trees. Given a tree (X,⊑), we define the

partial function father : X → X by father (x) = y whenever y ⊑̂ x. Clearly,

the root of a tree has no father. The function children : X → 2X is defined by

children(x) = {y ∈ X | x ⊑̂ y}. If x is a leaf, then children(x) = ∅.

Multisets. Given a set S, a multiset over S is a function m : S → N; we denote

by ∂S the set of multisets of S. The multiplicity of an element s in m is given by

m(s). A multiset m over S is finite iff the set dom(m) = {s ∈ S |m(s) 6= 0} is

finite. We always consider finite multisets. A multiset m such that dom(m) = ∅

is called empty, and it is denoted by 0. The cardinality of a multiset is defined

as #(m) =
∑

s∈S m(s). Given a multiset in ∂S and a subset Ŝ of S, by m|
Ŝ
we

denote the multiset over Ŝ such thatm|
Ŝ
(s) = m(s). We writem ⊆ m′ ifm(s) ≤

m′(s) for all s ∈ S, and m ⊂ m′ if m ⊆ m′ and m 6= m′. The operator ⊕ denotes

multiset union: m ⊕ m′(s) = m(s) + m′(s). The operator ⊖ denotes multiset

difference: m ⊖m′(s) = if m(s) > m′(s) then m(s) −m′(s) else 0. The scalar

product of a number j with a multiset m is (j ·m)(s) = j ·(m(s)). Consider now a

vector of multisets (m1, . . . ,mn); by ◦̂ we denote the component-wise extension
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of the operation ◦ ∈ {⊕,⊖, ·} defined over multisets. Sometimes a multiset

m ∈ ∂S is written as ⊕s∈Sm(s) · s, we omit the summands whenever m(s) is

equal to 0. If m ∈ ∂S, we denote by [[m]] the multiset defined as [[m]](s) = 1

if m(s) > 0 and [[m]](s) = 0 otherwise; sometimes [[m]] is identified (and used

interchangeably) with the corresponding subset A = {s ∈ S | [[m]](s) = 1}

of S.

Petri Nets. A Petri net is a tuple N = (S, T, F,m0,S), where S is a set of places,

T is a set of transitions, F : (S × T ) ∪ (T × S) → N is a flow relation, m0 ∈ ∂S

is the initial marking, and S ⊆ S is a (possibly empty) set of final places.

Furthermore, S∩T = ∅. Places are usually drawn as circles, transitions as boxes,

and the flow relation is depicted as annotated and directed arcs from transitions

to places or from places to transitions. Given a net N = (S, T, F,m0,S), if

F (x, y) = 0 then no arc is drawn from x to y, and if F (x, y) > 0 the arc is

annotated with F (x, y). With •x and x•, respectively, we indicate the multiset

F ( , x) and F (x, ), respectively; they are indicated as the preset and postset

of x, respectively. We assume that for each transition t, dom( •t) 6= ∅.

Given a net N = (S, T, F,m0,S), N is called a state machine iff ∀t ∈ T .

|dom( •t)| = |dom(t•)| = 1. N is called an input state machine iff ∀t ∈ T .

|dom( •t)| = 1 and •t = [[ •t]].

Given a net N = (S, T, F,m0,S), and a subset S′ of places (S′ ⊆ S), the

subnet of N generated by S′ is the net N@S′ = (S′, T@S′, F@S′, m0@S′,

S ∩ S′), where T@S′ = {t ∈ T | ∃s ∈ S′ and either F (s, t) > 0 or F (t, s) > 0},

F@S′ is the restriction of F to S′ and T@S′, and m0@S′ = m0|S′ .

Two nets N = (S, T, F,m0,S) and N ′ = (S′, T ′, F ′,m′
0, S

′) are fully com-

patible, denoted by N ∼= N ′, iff there exists a bijection γ : T → T ′ and an

injective embedding δ : S →֒ S′ such that ∀t ∈ T and ∀s ∈ S it holds that

F (s, t) = F ′(δ(s), γ(t)) and F (t, s) = F ′(γ(t), δ(s)); moreover, ∀s ∈ S′ \ δ(S),

∀t ∈ T ′. F ′(s, t) = 0 = F ′(t, s).

We define now the dynamics of Petri nets. Let m ∈ ∂S be a marking of

a net, a finite multiset U ∈ ∂T of transitions is enabled under m (written as
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m [U〉st ) if for all s ∈ S
∑

t∈T U(t) · F (s, t) ≤ m(s). If a finite multiset U ∈ ∂T

is enabled at a marking m (m [U〉st ), then U may fire reaching a new marking

m′ defined as m′(s) = m(s) +
∑

t∈T U(t) · (F (t, s) − F (s, t)), for all s ∈ S. We

write m [U〉st m′, and call U as a step. When considering steps, we often omit

the subscript st, thus we write simply m [U〉 and m [U〉m′.

A step firing sequence is defined as follows:

• m0 is a step firing sequence, and

• if m0 [U1〉m1 . . . mn−1 [Un〉mn is a step firing sequence and mn [Un+1〉m′

is a step, then also m0 [U1〉m1 . . .mn [Un〉m
′ is a step firing sequence.

The empty sequence is associated to the step firing sequence m0.

Given a net N = (S, T, F,m0,S), a marking m is reachable if there is a step

firing sequence leading to it, i.e., m0 [U1〉m1 . . .mn−1 [Un〉mn with m = mn.

The set of reachable markings of the net N is denoted by M(N). Given a Petri

net N , it has been shown that the problem of deciding whether a given marking

m is reachable from the initial one (i.e., if m ∈ M(N)) is decidable (see [13] for

a quite complete survey).

The ordinary firing rule of Petri nets (just one enabled transition is fired

at each marking, regardless of how many may be simultaneously enabled) is

an instance of the step firing rule we have defined previously: in this case, the

multiset U is such that U = [[U ]] and #(dom(U)) = 1. Given a step m [U〉m′,

it can always be linearized and m′ can be reached from m with a possibly dif-

ferent step firing sequence. In fact, we assume that U 6= [[U ]] (otherwise the

claim is trivial). Then U can be written as the sum of various steps, i.e., there

exist U1, . . . , Un such that ⊕n
i Ui = U , and m [U1〉m1 [U2〉m2 . . .mn−1 [Un〉m

′

is a step firing sequence. The claim can be proved by induction on n. The

basis is trivial. Assume it holds for n, let us show for (n + 1). Write U =

⊕n+1
i Ui = U , and take U ′ = ⊕n

i Ui. By induction, we have the step fir-

ing sequence m [U1〉m1 [U2〉m2 . . .mn−1 [Un〉mn which corresponds to the step

m [⊕n
i Ui〉mn. As m [U〉 , then also m [Un+1〉 ; thus it is enough to prove that

mn [Un+1〉 . Assume it is not, then there is a place s such that for some
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t ∈ T with t ∈ dom(Un+1) such that mn(s) ≤
∑

Un+1(t) · F (s, t), and clearly

m(s) ≥
∑

Un+1(t) ·F (s, t), thus there must be a transition t′ ∈ T and an index

j with 1 ≤ j ≤ n such that Uj(t
′) > 0 and F (s, t′) > 0. But this contradicts the

assumption that m [U〉 .

Let m [U1〉m1 [U2〉m2 . . .mn−1 [Un〉m′ be a step firing sequence and assume

that each Ui is bounded by a constant k, namely the maximal cardinality of

the multisets Ui is k. We write m [U1〉k−b m1 [U2〉k−b m2 . . .mn−1 [Un〉k−b m
′ to

indicate that each step in this firing sequence is such that the cardinality of the

step is at most k, and call these firing sequences k-bounded. The set of reachable

markings with k-bounded step firing sequence is denoted by Mk−b(N). With

this notation, the usual set of reachable markings is M1(N).

Another crucial definition is that of a maximal step. A step U enabled

at a marking m is maximal iff each step U ′ such that U ⊂ U ′ is such that

¬ (m [U ′〉 ). A maximal step is denoted as m [U〉maxm
′, and a maximal step

firing sequence is a step firing sequence where each step is maximal. The set of

reachable markings of a net N with maximal step firing sequences is Mmax(N).

In this case it holds that Mmax(N) ⊆ M(N), and the inclusion may be proper

(it is often so, as reachability in the case of this firing rule is undecidable [5]).

Given a net N , we may be interested in firing rules where it is guaranteed

that if the tokens from specific places can be used (i.e., there are transitions

enabled at that marking which consume these tokens), then they are actually

used. More formally, consider the netN = (S, T, F,m0,S) and a subset of places

S ⊆ S. A step U enabled at a marking m is S-enabled iff for all s ∈ S either

there exists a t ∈ dom(s•) and U(t) 6= 0 or ∀t ∈ dom(s•) it holds that ¬m [t〉 .

We write m [U〉S to indicate this and the corresponding step is m [U〉S m′, and

it is called an S-step. Firing sequences where each step is an S-step are defined

as usual and the set of reachable markings under this firing rule is MS(N).

To simplify the notation we use a subscript to indicate which firing rule is

used: step, maximal, k-bounded, S-step. Some others are introduce later. When

no subscript is used, we assume that the step firing rule is used.

Given a net N and a marking m of N = (S, T, F,m0,S), we say that m is
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a final marking iff m ∈ M(N) and ∀t ∈ T. ¬(m [t〉 ). We are interested in the

reachable markings (under a firing rule fr ∈ {step,max , k− b,S}) that are also

final: Ffr(N) = {m ∈ Mfr(N) | m is final}. Among the final markings, we may

be interested in considering either the numbers of tokens contained in certain

places, or the marking in these places. Let N = (S, T, F,m0,S) be a net, and

Ŝ ⊆ S be a set of distinguished places; by FŜ
fr(N) and F

#Ŝ
fr (N) we denote the

sets {m|
Ŝ
| m ∈ Ffr(N)} and {#(m|

Ŝ
) | m ∈ Ffr(N)}, respectively.

Petri Nets with Localities. We introduce the notion of locality in Petri nets.

The rationale behind this definition is to be able to identify regions where the

firings of transitions happen. Localities are essentially indexes, namely natural

numbers. With respect to other approaches in literature, e.g. [20, 21] and [23],

our notion of locality is defined over places and transitions, whereas in these

papers localities are considered just for transitions.

Definition 1. Let N = (S, T, F,m0,S) be a Petri net. A locality mapping

is a total function L : T ∪ S → N
+. A Petri net with localities is the pair

N = ((S, T, F,m0,S),L) where (S, T, F,m0,S) is a Petri net and L is a locality

mapping.

Petri nets with localities will be denoted by PNL. Obviously each Petri net can

be seen as a PNL: it is enough to assign the same locality (i.e., an index) to each

transition and place. However, we are interested in Petri nets where localities

are organized at least in a tree-like fashion, and where transitions use places

either in the same locality or in neighboring localities (i.e., in the father or in

the children).

Definition 2. Let N = ((S, T, F,m0,S),L) be a PNL. We say that N is cor-

rectly located iff

1. there exists a relation ≺⊆ L(S ∪ T )×L(S ∪ T ) such that (L(S ∪ T ),≺) is

a tree,

2. ∀t ∈ T , ∀s ∈ S such that F (s, t) > 0 or F (t, s) > 0, only one of the

following holds:
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(a) L(s) = L(t),

(b) L(s) ≺̂ L(t),

(c) L(t) ≺̂ L(s).

Condition 1 states that the location assignment of the net is a tree, whereas

condition 2 indicates that a transition produces and consumes tokens from places

either in the same locality, or in a locality in the neighborhood (of the locality

of the transition).

More than one relation can be associated to a correctly located net. Consider

the net in Figure 1; then, given the labeling L(t) = 1, L(t′) = 2, L(t′′) = 3,

L(s) = 2, L(s′′) = 3 and L(s′′′) = L(s′) = 1, the following relations satisfy the

requirements of Definition 2: either 1 ≺ 2 and 1 ≺ 3, or 2 ≺′ 1 and 1 ≺′ 3, or

3 ≺′′ 1 and 1 ≺′′ 2. This issue will be discussed later in the paper.

•

s

t′
s′

t

•
s′′

t′′

s′′′

Figure 1: A Petri net with more than one partial order relation on localities.

In case we need to fix a relation, we explicitly indicate the partial order

relation on labels by writing N = ((S, T, F,m0,S),L,≺).

The added information on locations may be used to introduce other firing

rules on nets. Let N = ((S, T, F,m0,S),L) be a PNL, and U be a step enabled

at the marking m. We say that U is locally maximal enabled if ∀t, t′ ∈ dom(U).

L(t) = L(t′) and each step U ′ with U ≤ U ′ such that m [U ′〉 , then U ′ is not

locally maximal enabled. The firing of a locally maximal enabled step U is

denoted by m [U〉lmax m
′, and the step U is said to be locally maximal. In a
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locally maximal enabled step all the enabled transitions belonging to a location

have to be executed. A locally maximal step firing sequence is a step firing

sequence where each step is locally maximal. We say that U is locally k-bounded

enabled if ∀t, t′ ∈ dom(U). L(t) = L(t′) and #(U) ≤ k. The firing of a locally

k-bounded enabled step U is denoted by m [U〉l−kb m
′, and the step U is said to

be locally k-bounded. A locally k-bounded step firing sequence is a step firing

sequence where each step is locally k-bounded. Consider now a subset of places

S ⊆ S such that ∀s, s′ ∈ S it holds that L(s) = L(s′). A step U enabled at a

marking m is l − S-enabled iff for all s ∈ S either there exists a t ∈ dom(s•)

and U(t) 6= 0, or for all t ∈ dom(s•) it holds that ¬m [t〉 . We write m [U〉l−S

to indicate this, and the corresponding step is m [U〉S m′; it is called an l − S-

step. Finally we say that U is locality complete enabled at the marking m if,

considering the sets Ti = {t ∈ T | L(t) = i}, then ∀i ∈ L(T ) either #(U |Ti
) > 0

or ∀t ∈ Ti. ¬m [t〉 . Thus all the localities where there is an enabled transition

are involved in a locality complete step. The firing of a locality complete step U

is denoted by m [U〉lcomp m
′, and the step U is said to be locality complete. A

locality complete step firing sequence is a step firing sequence where each step

is locality complete.

Corresponding to these rules we have the set of markings reachable with fir-

ing sequences of the proper kind: Mfr(N) with fr ∈ {lmax , l − kb, l−S, lcomp},

and consequently the sets Ffr(N), FŜ
fr(N) and F

#Ŝ
fr (N).

3. Membrane Systems and Evolution Strategies

Membrane systems (also called P systems) represent abstract computing

models based on rules over multisets. They are inspired by the structure of

(eukaryotic) cells, namely by the role of their membranes in delimiting differ-

ent compartments, and thus can help to understand information processes in

the nature. The most comprehensive recent monograph is the Oxford Hand-

book of Membrane Computing [27]. Membrane computing was introduced in

[26], volume [8] presents various applications, while the P Systems webpage

ppage.psystems.eu presents recent developments.
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Starting from the observation that there is an obvious parallelism in cell

biochemistry [2], and relying on the assumption that “if we wait enough, then all

reactions which may take place will take place”, a basic feature of the P systems

is the maximally parallel way of using the rules: in each step, in each region of

a system, we have to use a maximal multiset of rules. This maximal parallelism

decreases the non-determinism of the systems evolution, and it provides enough

power to get computational Turing completeness.

There are several types of membrane systems (defined by various ingredients

inspired from cell biology); here we introduce a format which is common to

many of them, in particular to the two classes we are interested in: catalytic

membrane systems and communicating P systems (also called symport/antiport

membrane systems).

Membranes. The language of membrane structure, denoted by MS, is a lan-

guage over parentheses {[, ]} whose strings are defined either as [ ] ∈ MS, or

[µ1 . . . µn] ∈ MS whenever µ1, . . . , µn ∈ MS with n ≥ 1, and nothing else is in

MS. Given a string µ ∈ MS, a matching pair of parentheses is any substring

of µ which is again a string in MS. We call membrane each matching pair of

parentheses appearing in the membrane structure. The same membrane struc-

ture can be represented by several equivalent strings (the equivalence being that

µ1µ2µ3µ4 ≡ µ1µ3µ2µ4, for µ1, µ4 ∈ MS and µ2, µ3 ∈ MS), hence we assume

that its canonical representation is given by a tree-like structure. The number

of membranes appearing in a membrane structure µ is calculated as follows:

#MS(µ) =





1 if µ = [ ]

1 +
∑k

i=1 #MS(µi) if µ = [µ1 . . . µk]

Thus each membrane appearing in a membrane structure µ can be uniquely

labelled with an index in {1, . . . ,#MS(µ)}. We assume that the index 1 is

given to the root. The index of a membrane µi appearing in µ is given by

index (µi) ∈ {1, . . . ,#MS(µ)}. The set ({1, . . . ,#MS(µ)},⊑∗) is a tree, where

index (µ) ⊏ index (µi) whenever µ = [µ1 . . . µk] and i ∈ {1, . . . , k}.
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Membrane Systems. Let O be a finite alphabet of (names of) objects (also called

molecules), then a membrane system over O is a construct Π = (O, µ, w0
1 , . . . ,

w0
n, R1, . . . , Rn, io) where:

• µ is a membrane structure with n membranes indexed 1, . . . ,#MS(µ), and

n = #MS(µ),

• each w0
i is a multiset over O associated with membrane i, and

• each Ri is a finite set of reaction (or evolution) rules r associated with the

membrane i, each rule having the form u → v, where u and v are finite

multisets over O × ({here, out} ∪ {inj | father (j) = i}), such that u 6= 0;

• io ∈ {1, . . . , n} is the output membrane.

With respect to the usual definition of membrane system, we allow that the left

hand side of a rule may use objects in neighboring membranes, and not only in

the same membrane. This is done to make communicating P system a special

case of this more general format, as it will be given later.

Given a rule r of form u → v, u is the left hand side of r and v is the

right hand side of r, and they are denoted with lhs(r) and rhs(r), respec-

tively. To simplify the notation, given a multiset z over O × ({here, out} ∪

{inj | father (j) = i}), with π(z)|α we denote the multiset on O obtained from

z by considering all the elements with the second component equal to α, where

α ∈ {here, out , in1, . . . , inn}. here obviously means that the objects in rhs(r)

have to be taken from or put in the same membrane, out that the objects have

to be taken from or put in the father membrane, and inj that the objects have

to be taken from or put in the j-th child membrane. We keep the usual nota-

tion, as it conveys an intuition about the direction the objects take during their

evolution.

Membrane Systems Evolution. A membrane system Π evolves from a configu-

ration to another configuration as a consequence of the application of (multisets

of) rules in each region. The rules have to be applied simultaneously. We
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start formalizing the notion of configuration of a membrane system. If Π is a

membrane system, then a configuration is a tuple C = (w1, . . . , wn) where each

wi is a multiset over O. C0 = (w0
1 , . . . , w

0
n) is the initial configuration of Π.

The set of configurations of a membrane system Π is denoted with Conf Π. If

Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, io) is a membrane system, then a multi-rule

vector ~R is the n-uple (R̂1, . . . , R̂n), where R̂i is a multiset over Ri. The set

of multi-rule vectors is denoted by R. The multi-rule vector ~R contains all the

rules that have to be applied simultaneously to a configuration of a membrane

system, with their proper multiplicities.

The enabling condition is slightly more difficult to handle, as for all regions

(membranes) there must be enough objects that can be used by several rules

in the same membrane or in neighboring ones. Given a multi-rule vector ~R by

LHS(~R), we denote a tuple of nmultisets over O, where for each i between 1 and

n we denote by LHS(~R)i the multiset over O defined as follows: (
⊕

r∈Ri
R̂i(r) ·

π(lhs(r))|here) are the objects to be consumed by rules in the same membrane,

(
⊕

r∈Rfather(i)
R̂father(i)(r)·π(lhs (r))|ini

) are those of the rules of the father mem-

brane, and (
⊕

j∈children(i)(
⊕

r∈Rj
R̂j(r)·π(lhs (r))|out)) those to be consumed by

rules from each child membrane; these three parts have to be combined by using

⊕. Thus a vector multi-rule ~R is enabled at a configuration C = (w1, . . . , wn)

if ∀i. LHS (~R)i ⊆ wi. The effects of the application of a multi-rule vector ~R in

the membrane i are the following: (
⊕

r∈Ri
R̂i(r) · π(rhs(r))|here) the effect of

the rule in the same membrane, (
⊕

r∈Rfather(i)
R̂father(i)(r) · π(rhs(r))|ini

) those

of the rules in the father membrane, and finally (
⊕

j∈children(i) (
⊕

r∈Rj
R̂i(r) ·

π(rhs(r))|out)) those from the children membranes. Like previously, these three

parts are combined by using ⊕. For each membrane, we denote the effects by

RHS(~R)i.

Once a multi-rule vector ~R is enabled at C = (w1, . . . , wn), we can describe

the evolution in each membrane by ∀i. w′
i = wi ⊖ LHS (~R)i ⊕ RHS(~R)i. Given

a configuration C = (w0, . . . , wn) and a multi-rule vector ~R enabled at C, then

the application of the multi-rule vector produces the configuration C′ = (w0 ⊖

LHS(~R)0 ⊕ RHS(~R)0, . . . , wn ⊖ LHS (~R)n ⊕ RHS(~R)n). This is denoted by
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C
~R

=⇒step C′, and it is called a reaction step.

We now formalize the chain of “reactions” for a given membrane system:

C0 is a reaction sequence, and if C0

~R1=⇒step C1 . . . Cn−1
~Rn=⇒step Cn is a reac-

tion sequence, Cn

~R
=⇒step C, then C0

~R1=⇒step C1 . . . Cn

~R
=⇒step Cn+1 is also

a reaction sequence. A configuration C is said to be reachable if there is a

reaction sequence starting from the initial configuration and leading to C, i.e.

C0

~R1=⇒step C1 . . . Cn−1
~Rn=⇒step Cn with C = Cn. Given a membrane system Π,

the set of reachable configurations is denoted by Hstep(Π).

The evolution of membrane systems may also have several strategies, though

usually it is assumed that in each membrane all the applicable rules are actually

applied in a maximally parallel way. However, other strategies may be used, and

we recall some of them here. The first strategy we present is the maximal one:

given a configuration C, a multi-rule vector ~R is maximally enabled if it is

impossible to add any instance of a rule to any R̂i; consequently, this reaction

step is denoted by C
~R

=⇒max C′, and a maximal reaction sequence is a reaction

sequence where each step is maximal. The set of the reachable configurations

under this strategy is denoted by Hmax(Π).

The whole spectrum devised for Petri nets can be instantiated here: k-

boundedness means the that the overall number of rules (counting the instances)

is bounded by k; object-awareness means that if certain objects are present and

there is a rule that may use them, this rule should be used; locally maximal

means that only rules from a membrane are used in maximal way; locally k-

bounded means that the rules from a single membrane are used, and that the

overall number (counting the instances) is bounded by k; local object awareness

means that if certain objects are present and there is a rule that may use them,

they should be used by rules from a membrane; locality completeness means

that at least one rule from each membrane is used (if present, and if enabled).

We adopt the same subscripts we introduced for the Petri nets firing strategies.

Similarly for what we have done for Petri nets (with localities), we can say

that a configuration of a membrane system is final if no further evolution is
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possible. We introduce the set Gfr(Π) = {C | C ∈ Hfr(Π) and C is final}. In

membrane systems, the output is usually located in a specific membrane, hence

with Gi
fr(Π) we denote the sets {wi| (w0, . . . , wi, . . . , wn) ∈ Gfr(Π)}, and with

G
#i
fr (Π) we denote the set {#(wi) | (w0, . . . , wi, . . . , wn) ∈ Gfr(Π)}.

It should be stressed that the notion of membrane system we have introduced

here encompasses many different variants of membrane systems, and each vari-

ant is obtained by imposing suitable constraints on the kind of rules allowed.

Nevertheless, these variants can be easily related to Petri nets with localities,

as will be described in the next section.

4. Relating Petri Nets and Membrane Systems

From Membrane System to Petri Nets with Localities. The intuition of encoding

of a membrane system into a Petri net with localities is exactly the same as that

presented in [21] and further developed (see [27]): a place is associated to each

object and each index of the membrane system, and a transition is associated

to each rule belonging to a membrane with the locality being equal to the index

of the membrane.

Definition 3. If Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, i0) is a membrane system,

then we associate to it the structure F(Π) = ((S, T, F,m0,S),L), where:

• S = O × {1, . . . , n}, and T =
⋃n

i=1{t
r
i | r ∈ Ri},

• for all transitions t = tri ∈ T and places s ∈ S with r = u → v, we define

F (s, t) =





u(a, here)) if s = (a, i)

u((a, out)) if j = father (i) and s = (a, j)

u((a, inj)) if j ∈ children(i) and s = (a, j)

0 otherwise

F (t, s) =





v((a, here)) if s = (a, i)

v((a, out)) if j = father (i) and s = (a, j)

v((a, inj)) if j ∈ children(i) and s = (a, j)

0 otherwise
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• m0(s) =





w0
i (a) if s = (a, i), i ∈ {1, . . . , n}

0 otherwise

• S = {(a, i0) | a ∈ O}

and L(tri ) = i and L(s) = i if s = (a, i).

The multiplicity of the object a in the membrane i is modeled by the number

of tokens in the place (a, i).

Proposition 1. Let Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, i0) be a membrane sys-

tem, and F(Π) = ((S, T, F,m0,S),L) be the associated structure. Then F(Π)

is a correctly located PNL net.

Proof : (S, T, F,m0,S) is clearly a Petri net. We have to verify that F(Π) is

correctly located, i.e that (L(S ∪ T ),≺) is a tree for a suitable partial order ≺,

and furthermore the other conditions are satisfied. µ is a membrane structure

with indexes {1, . . . ,#MS(µ)} and with #MS(µ) = n; we assume without loss

of generality that 1 is the root. Consider an index i ∈ {1, . . . , n} with i 6= 1, and

assume that index (µ′) = i with µ′ = [µi1 . . . µij ]. Set i≺̂index (µik) with 1 ≤

k ≤ j and ≺= ≺̂
∗
. (L(S ∪T ),≺) is a partial order, and obviously (L(S ∪T ),≺)

is a tree. Consider now s ∈ S and t ∈ T such that F (s, t) > 0. The cases are

the following:

• F (s, t) = u((a, here)) for a rule r = u → v and then L(s) = L(tr),

• F (s, t) = u((a, inj)) and j ∈ children(i) with s = (a, j) and L(tr) = i. By

definition, L(tr)≺̂L(s),

• F (s, t) = u((a, out)) and j = father (i) with s = (a, j) and L(tr) = i. By

definition, L(s)≺̂L(tr).

The cases where F (t, s) > 0 are similar.

Thus we can conclude that F(Π) is a correctly located PNL net. ✷

Following [21], we introduce two functions: one associating to a configuration

of a membrane system a marking of the corresponding net, and one associating
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to the rules applied in an evolution of the membrane system a step in the

net. Observe that in the following two definitions, the locality mapping and

membrane structure play a small rôle.

Definition 4. Let Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, i0) be a membrane sys-

tem, and F(Π) = ((S, T, F,m0,S),L) be the associated PNL. If C = (w1, . . . ,

wn) is a configuration of Π, then ν(C) is the marking defined as ν(C)((v, i)) =

wi(v) for all v ∈ O and membranes i, 1 ≤ i ≤ n.

Given a membrane system Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, i0), we assume

without loss of generality that all the rules have a different index: the j-th rule

of the membrane i (i.e., a rule in Ri) is denoted with rji and the corresponding

transition tji . To denote the multiplicity of a given rule rji in a multi-rule vector

~R = (R̂1, . . . , R̂n) we will often write ~R(rji ) rather than R̂i(r
j
i ).

Definition 5. Let Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, i0) be a membrane sys-

tem, and F(Π) = ((S, T, F,m0,S),L) be the associated PNL. If ~R ∈ R is a

multi-rule vector of Π, then σ(~R) is the multiset of transitions of F(Π) defined

as σ(~R)(tji ) =
~R(rji ) for all tji ∈ T .

These functions define a bijection among the reachable markings and the

reachable configurations (using a certain firing - evolution strategy).

We can now state the main result presented in [21]. The authors do not

prove it for all the firing strategies introduced previously, but each of them can

be proved using the same argument. We refer to [21] for the proof of the result.

We just emphasize that the added generality in membrane systems does not

change the reasoning. In fact, being F(Π) correctly located, ν(LHS (r)) has non

empty entries only in the neighboring localities of L(σ(r)) (with respect to the

partial order defined by the membrane structure µ), hence the enabling in the

net and in the membrane structure properly correspond.

Theorem 1. Let Π = (O, µ,w0
1 , . . . , w

0
n, R1, . . . , Rn, i0) be a membrane sys-

tem, and F(Π) = ((S, T, F,m0,S),L) be the associated PNL. C
~R

=⇒fr C′ iff

ν(C) [σ(~R)〉fr ν(C′) with fr ∈ {step,max , k − b,S, lmax , l − kb, l− S, lcomp}.
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This theorem essentially says that, provided that the net steps are performed

accordingly in the same way as the evolution steps of the membrane system are

defined, the net associated to a membrane system behaves in the same way as

the membrane system it is derived from.

From Correctly Located PNL to Membrane Systems. Given a correctly located

Petri net, it is always possible to associate a membrane system to it. The

membrane structure is derived by the locality mapping, rules are obtained from

transitions and objects from places. In the translation from membrane systems

to Petri nets we have associated to each object and each membrane a place;

now we do not have enough information to guess the minimal set of objects,

and so we obtain a membrane system with a set of objects which may not be

optimal (i.e., minimal). To partially solve this problem, we introduce a suitable

equivalence relation on places indicating when two different places represent the

same object (in two different membranes).

The intuition on how to obtain a membrane system out of a PNL is slightly

different from the one that guided the other way. From the locality mapping it is

possible to obtain a membrane structure, and then the objects of the membrane

system are just the places (though, as suggested above, the same object in two

different membranes may result in two different objects). To try to solve this

problem we introduce an equivalence relation on places of a correctly located

net, and this equivalence relation should satisfy the minimal requirement that

two places in the same location cannot be equivalent. Thus, given a correctly

located Petri net N = ((S, T, F,m0,S),L), we define an equivalence relation

≡ on S such that ∀s, s′ ∈ S, s 6= s′ and s ≡ s′ implies L(s) 6= L(s′). Such a

relation is called an object relation.

We first show how to obtain a membrane structure out of a correctly lo-

cated net.

Definition 6. Let N = ((S, T, F,m0,S),L) be a correctly located Petri net,

let ≺ be a relation on L(T ∪ S) satisfying definition 2, and let ≡ be an object

relation. Let a ∈ L(T ∪ S). Then α≺(a) is the membrane structure µa defined
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as follows: α≺(a) = [α≺(b1), . . . , α≺(bm)]a if children(a) = {b1, . . . , bm} and

α≺(a) = [ ]a if children(a) = ∅.

Proposition 2. Let N = ((S, T, F,m0,S),L) be a correctly located Petri net,

let ≺ be a relation on L(T ∪ S) satisfying definition 2, and let ≡ be an object

relation. Then σ≺(N) defined as σ≺(N) = α≺(root≺(L(T ∪S))) is a membrane

structure.

Proof : Trivial. ✷

The correctly located net we are interested in are nets where all the final

places have the same location.

Definition 7. Let N≺ = ((S, T, F,m0,S),L) be a correctly located Petri net.

We say that N is a membrane net iff ∀s, s′ ∈ S, L(s) = L(s′).

We show how to associate a membrane system to a correctly labeled net.

Observe that the choice of the relation making a net correctly located is arbi-

trary, as well as the equivalence relation on places, hence the mapping is made

dependent on these parameters.

Definition 8. Let N≺ = ((S, T, F,m0,S),L) be a membrane net, let ≺ be a

relation on L(T∪S) satisfying definition 2, and let ≡ be an object relation. Then

K≡
≺(N) = (O, µ,w0

1 , . . . , w
0
n, R1, . . . , Rn, i0) is the membrane system defined as

follows:

• O = S/≡,

• µ = σ≺(N),

• w0
i (a) = m(s), if a = [s]≡ and L(s) = i, for all i ∈ L(T ∪ S),

• for all i ∈ L(T ) and all t ∈ T such that L(t) = i we define a rule rti = u →

v in Ri where u and v are the multiset on O×{here, out , inj} defined by

– ∀s ∈ dom( •t)

20



∗ if L(s) = L(t) then u(a, here) = •t(s), where a = [s]≡,

∗ if L(s)≺̂L(t) then u(a, out) = •t(s), where a = [s]≡, and

∗ if L(t)≺̂L(s) then u(a, inL(s)) =
•t(s), where a = [s]≡,

– ∀s ∈ dom(t•)

∗ if L(s) = L(t) then v(a, here) = t•(s), where a = [s]≡,

∗ if L(s)≺̂L(t) then v(a, out) = t•(s), where a = [s]≡, and

∗ if L(t)≺̂L(s) then v(a, inL(s)) = t•(s), where a = [s]≡, and

• i0 = n, where n is the location of the final places.

The intuition is as follows: to each transition corresponds a rule. As the tran-

sition consumes tokens from places in the neighboring localities and produces

tokens in places of the neighboring localities as well, the associated rule uses

objects from the neighboring membranes (corresponding to the localities) and

produces objects in the neighboring membranes, mimicking the transition. The

equivalence on places is used to find the correct object name, and the localities

are used to establish which among the tags here, out and ini have to be used.

A simple observation is that K≡
≺(N) is indeed a membrane system.

Theorem 2. Let N≺ = ((S, T, F,m0,S),L) be a membrane net, let ≺ be a

relation on L(T ∪ S) satisfying definition 2, and let ≡ be an object relation.

Then K≡
≺(N) is a membrane system.

Another simple observation is that the net associated to K≡
≺(N) is indeed N .

Proposition 3. Let N≺ = ((S, T, F,m0,S),L) be a membrane net, let ≺ be

a relation on L(T ∪ S) satisfying definition 2, and let ≡ be an object relation.

Then F(K≡
≺(N)) ∼= N .

Proof : The only point to check is the set of places. Consider O = S/≡

(the objects in K≡
≺(N)). To these objects correspond the places S′ = O ×

{1, . . . ,#MS(σ≺(N))} representing a set (trivially) isomorphic to the subset of

non isolated places of N . ✷

21



The vice versa does not hold, namely K≡
≺(F(Π)) is in general syntactically

different from Π, because when associating a net to a membrane system we lose

two relevant pieces of information: one on the objects (to each object and each

membrane index a place is associated, going back this information is lost, and

the object relation is arbitrary), and the membrane structure can be different, as

the example of section 1 shows (again the choice of the ≺ relation is arbitrary).

Analogously to what we have done for membrane systems, we define the

two mappings, ξ and η, the former relating the markings of a membrane net to

the configurations of the associated membrane system, and the latter giving the

multi-rule vector associated to a multisets of transitions. These mappings are

used to relate steps in nets to evolution steps in membrane systems.

Definition 9. Let N≺ = ((S, T, F,m0,S),L) be a membrane net, let ≺ be a

relation on L(T ∪ S) satisfying definition 2, let ≡ be an object relation, and

K≡
≺(N) be the associate membrane system. If m is a marking of N≺, then ξ(m)

is the configuration defined by ξ(m) = (w1, . . . , wn), where wi(a) = m(s) if

L(s) = i and a = [s]≡, or wi(a) = 0 if ∀s ∈ S. L(s) = i then a 6= [s]≡, for all

i ∈ L(T ∪ S).

Definition 10. Let N≺ = ((S, T, F,m0,S),L) be a membrane net, let ≺ be a

relation on L(T ∪ S) satisfying definition 2, let ≡ be an object relation, and

K≡
≺(N) be the associate membrane system. If m [U〉m′ is a step of N≺, then

η(U) is the step defined by η(U)(rti) = U(t) for all rti ∈ Ri and all i.

We are now ready to present the main result of this section.

Theorem 3. Let N≺ = ((S, T, F,m0,S),L) be a membrane net, let ≺ be a

relation on L(T ∪ S) satisfying definition 2, let ≡ be an object relation, and

K≡
≺(N) be the associate membrane system. m [U〉fr m′′ iff ξ(m)

η(U)
=⇒fr ξ(m′)

with fr ∈ {step,max , k − b,S, lmax , l − kb, l− S, lcomp}.

Proof : We first show that the effects of executing a step in both models cor-

respond, and then we show that also the enabling part is satisfied. As in the
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first instance, we reason by assuming that whenever a step U is enabled at a

marking m, the corresponding rules η(U) are enabled at ξ(m).

Assume m [U〉m′ in N≺. Then ξ(m)
η(U)
=⇒fr ξ(m′). m′ = m⊖ •U ⊕ U•, and

clearly ξ(m′) = ξ(m)⊖̂ξ(•U)⊕̂ξ(U•). It remains to show that ξ(m)
η(U)
=⇒fr ξ(m′);

however, this is a direct consequence of how the rules of the membrane sys-

tem K≡
≺(N) are associated to the transitions of the net N≺. Assume now

that ξ(m)
η(U)
=⇒fr C′, and show that m [U〉m′ and ξ(m′) = C′. Consider

ξ(m) = (w1, . . . , wn). We recall that w′
i is obtained by Ci as follows: w′

i =

wi ⊖ LHS(~R)i ⊕ RHS(~R)i. Take a transition t ∈ dom(U) of the net N≺ such

that L(t) = i. We have that lhs(η(t)) is ξ( •t), and rhs(η(t)) is ξ(t•) (with non

empty entries in the neighborhood of i). It is straightforward to conclude that

m′ is reached from m by executing U such that ξ(m′) = C′. Hence, assuming

that the step U is enabled at m, it is obvious that η(U) is enabled at ξ(m), and

the effects correspond.

It remain to show that whenever m [U〉fr then also η(U) is fr -enabled at

ξ(m), and vice versa. This can be easily proved by observing that if a multiset

U is fr -enabled at m and η(U) is not at ξ(m), then it can be shown that indeed

¬m [U〉fr . This ends the proof. ✷

A consequence of the theorem 3 is the following result.

Theorem 4. Let N≺ = ((S, T, F,m0,S),L) be membrane net and K≡
≺(N) be

the associate membrane system. Then FS
fr(F(Π)) = Psfr(Π) and FS

fr(F(Π)) =

Nfr(Π), with fr ∈ {step,max , k − b,S, lmax , l− kb, l − S, lcomp}.

5. Catalytic and Communicating Membrane Systems

A research topic in membrane computing is to find P systems which are

more realistic from a biological point of view, and one target in this respect is

to relax the condition of using the rules in a maximally parallel way. Minimal

parallelism was introduced in [7], describing another way of applying the rules:

if at least a rule from a set of rules associated with a membrane (or a region)
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can be used, then at least one rule from that membrane (or region) must be

used, without any other restriction (e.g., more rules can be used, but we do

not care how many). Even if it might look weak, this minimal parallelism still

leads to Turing completeness for certain classes of membrane systems which will

be presented later in this section. The minimal parallelism stems out from the

consideration that this mode of using the rules ensures that all compartments (or

regions) of the system evolve in parallel by using at least one rule, whenever such

a rule is applicable. Another slightly different version of minimal parallelism

involves the use of specific rules, as in the case of catalytic P systems.

Therefore we are now interested in two classes of P systems, namely catalytic

and symport/antiport. These classes are characterized by the kind of evolution

rules they allow. We first revise the class of catalytic P systems.

Catalysts. A catalytic P system consists of a hierarchical membrane structure

with uniquely labeled membranes, the whole structure being embedded in a

single skin membrane; each membrane contains a multiset of abstract objects

(from a finite alphabet) which is divided into two parts: the set C of catalysts,

and the set of non-catalytic objects. Each membrane is associated with an

initial multiset of objects and a fixed set of evolution rules of two possible

types: catalytic rules ca → cv, and non-cooperative rules a → v, where c

is a catalyst object, a is a non-catalyst object, and v is a (possibly empty)

multiset of objects. A catalytic P system is called purely catalytic if it contains

only catalytic rules. The rules are (usually) applied in the maximally parallel

mode: at each computational step and in each membrane, the selected multiset

of applicable rules must be maximal, i.e., unused objects are not sufficient to

enable an additional rule.

Considering the class of catalytic P systems, Turing completeness can be

achieved by relaxing the maximal parallelism requirement with the weaker one

stating that for each catalyst c at least one catalytic rule r = ca → cv is used, if

possible. Thus the question on minimality can be posed as follows: “how many

catalysts are needed to obtain Turing completeness?”. With RE we denote the
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class of recursively enumerable sets of numbers and with PsRE the class of

recursively enumerable sets of Parikh vectors.

A catalytic P system with a single membrane and only two catalysts has the

power of a Turing machine, i.e., it can generate all the computable enumerable

sets of (vectors of) natural numbers [15]. With ([p−]cat , n) we denote the class

of flat (purely) catalytic P system with at least n catalysts. Assuming that

the computations obey to the minimal parallel strategy (i.e., at least one rule

involving each catalyst is used, if possible), the following theorems present the

results used in Section 7.

To state precisely that catalytic P systems are Turing equivalent, we need

to introduce some notation. By NOmin(cat , n) we denote the class of sets

{G#1(Π) | Π is a catalytic P system with just one membrane, C is the set of

catalysts and |C| ≥ n}, and analogously by PsOmin(cat , n) the classes of sets

{G1(Π) | Π is a catalytic P system with just one membrane, C is the set of

catalysts and |C| ≥ n}.

Theorem 5. PsOmin(cat , n) = PsRE and NOmin(cat , n) = RE, for n ≥ 2.

Three catalysts are needed in the case of purely catalytic systems. NOmin(p−

cat , n) and PsOmin(p − cat , n) are the classes of sets {G#1(Π) | Π is a purely

catalytic P system with just one membrane, CC is the set of catalysts and

|C| ≥ n} and {G1(Π) | Π is a purely catalytic P system with just one membrane,

C is the set of catalysts and |C| ≥ n}, respectively.

Theorem 6. PsOmin(p−cat , n) = PsRE and NOmin(p−cat , n) = RE, n ≥ 3.

We end this part devoted to catalytic P system by reminding that chapter 4

of the handbook provides a good survey of the computability power of such P

systems [27]. The above results are presented in that chapter, together with

other interesting results.

Before introducing Symport/Antiport P systems, we want to stress that

catalytic P systems use a set of catalysts, and it is enough to consider just one
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membrane and at least 2 catalysts to achieve Turing completeness. Hence just

a local check has to be performed.

Symport/Antiport P Systems. Symport/antiport P systems are P systems where

the existence of more than one membrane is required, as the rules work across

the membranes [25].

Symport rules are rules of the following form: either lhs(r) ⊆ O × {out}

and rhs(r) ⊆ O × {here}, and furthermore lhs(r)|out = rhs(r)|here, or lhs(r) ⊆

O×{here} and rhs(r) ⊆ O×{out} and lhs(r)|here = rhs(r)|out. Thus the effect

of the application of one of these rules is that either a multiset in the father

membrane is imported in the membrane the rule belongs to, or a multiset in the

membrane is sent to the father membrane. Antiport rules move objects across

the boundaries (membranes) in both directions: lhs(r), rhs(r) ⊆ O×{out , here},

lhs(r)|here = rhs(r)|out and lhs(r)|out = rhs(r)|here. The weight of a rule r is

given by max{#(lhs(r),#(rhs(r)}.

With Pn(symp, antiq) we denote the class of symport/antiport P systems

Π = (O, µ, w0
1 , . . . , w

0
n, R1, . . . , Rn, io), where the symport rules have weight

at most p and antiport rules weight at most q. With NOmin(Pn(symp, antiq))

we denote the class of sets {X | there exists a symport/antiport P system

Π ∈ Pn(symp, antiq) with at most n membranes such that X = G#io(Π)}.

Minimal parallelism in symport/antiport P systems requires that at least

one rule is applied in each membrane, provided that this is possible: it may

happen that, depending on the choice of which rules to apply, some membranes

do not have any enabled rule. The following theorem is presented in [7].

Theorem 7. NOmin(Pn(symp, antiq)) = RE for all n ≥ 3, p ≥ 2 and q ≥ 2.

We end this part devoted to symport/antiport P systems by reminding that

chapter 5 of the handbook provides a good survey of the computability power

of such P systems [27].
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6. Catalytic and Communicating Petri Nets

In this section we introduce two new classes of Petri nets corresponding to

catalytic and communicating membrane systems.

Catalytic Nets. Catalytic nets are Petri nets where the firing of transitions is

controlled by tokens in suitable places (that maintain the same number of tokens

during the whole execution).

Definition 11. Let N = (S, T, F,m0,S) be a Petri net. N is catalytic iff the

set of places S is partitioned into two sets C and V such that

1. the subnet N@V = (V , T@V, F@V,m0@V ,V ∩ S) is an input state ma-

chine, and

2. the subnet of N@C = (C, T@C, F@C,m0@C, ∅) is a state machine, i.e.,

∀t ∈ T@C. •t = t• and #( •t) = 1.

The places in C will be called catalytic places.

A net N = (S, T, F,m0,S) is said purely catalytic iff T = T@C.

Places in a catalytic net are partitioned into two subsets: the catalytic places

(C) and the non catalytic ones (S \ C). Condition 1 states that each transition

may consume tokens from only one non catalytic place, whereas condition 2

says that each transition may use at most one token from a catalytic place, and

the used token is again made available for further use. Since the number of

tokens in catalytic places remains constant, it is meaningless to consider them

as output places.

Catalytic Petri nets N = (S, T, F,m0,S) are abbreviated as CPN; when we

explicitly indicate the set of catalytic places, a catalytic Petri net is presented

formally by N = (S, T, F,m0, C,S). The intuition behind catalytic Petri nets is

the following: a transition t which uses a catalyst fires only if there is a token in

the catalytic places associated to the transition. Tokens in catalytic places may

be consumed/produced by transitions, but the transition using these tokens as

catalysts should ideally leave the token in the place.
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It is worth noting the difference between catalytic nets and Petri nets with

read arcs of Montanari and Rossi [24]: in the latter nets, if two transitions test

for the presence of a token in a place (with read arcs) it is enough to have a

token in that place, whereas in catalytic nets if two transitions use the same

catalytic place, this must contain enough tokens.

We recall the notion of enabling relevant for this class (which is now de-

pendent on catalysts). Let N = (S, T, F,m0, C,S) be a CPN. The step U is

catalytically enabled at the marking m iff it is enabled at m and ∀c ∈ C either

there is a transition t ∈ dom(U) such that •t(c) 6= 0, or ∀t ∈ dom(c•) it holds

that ¬m [t〉 . In other words, a step is a catalytically enabled whenever for each

catalytic place in C, either all the transitions using tokens from this catalytic

place are not enabled, or there is at least one transition using a token from a

catalytic place. We write m [U〉C to denote that U is catalytically enabled, and

we denote with m [U〉C m′ the firing of a catalytically enabled step; U is called

a catalytic step. A catalytic firing sequence is a step firing sequence where each

step is a catalytic one. The set of reachable markings is defined accordingly,

and denoted by MC(N). The sets FC(N), FŜ
C (N) and F

#Ŝ
C (N) are defined in a

similar way.

Catalytic Located Nets. We now introduce a class of nets containing both local-

ities and catalysts.

Definition 12. Let N = ((S, T, F,m0,S),L) be a PNL. We say that N is

lcatalytic iff (S, T, F,m0, ,S) is a catalytic net, N is correctly located and ∀t ∈

T . ∀s ∈ dom( •t) it holds that L(s) = L(t).

Lcatalytic Petri nets N = ((S, T, F,m0,S),L) are abbreviated by CPNL; when

we explicitly indicate the set of catalytic places, an lcatalytic net is presented

formally as N = ((S, T, F,m, C,S),L).

28



Example. The following net is a catalytic one, the catalytic place being c.

a b

r

c

r′

d e

Observe that tokens in the places c are consumed and produced, hence their

number remains constant. Here we have not indicated the locality mapping,

which should be the same for all the places and transitions.

The various notions of firing we have presented so far can obviously be

applied to this new class, providing the sets of reachable markings and final

markings under these firing rules.

Communicating Petri Nets. The second class we consider is defined on Petri

nets with localities (which play a major rôle here).

Definition 13. Let N = ((S, T, F,m0,S),L) be a correctly located PNL, ≺ be

a partial order on L(T ∪ S) satisfying definition 2, and ≡ an object relation on

S. N is a communicating Petri net iff ∀t ∈ T , ∀s ∈ S,

1. if F (s, t) > 0 or F (t, s) > 0, then one of the following holds:

L(s)≺̂L(t), or L(t)≺̂L(s), or L(t) = L(s);

2. ∀t ∈ T, ∀s ∈ S. if F (t, s) > 0 and L(t) = L(s), then ∃s′ ∈ S. such that

F (s′, t) = F (t, s), L(s′)≺̂L(t) and s ≡ s′;

3. ∀t ∈ T, ∀s ∈ S. if F (t, s) > 0 and L(t)≺̂L(s), then ∃s′ ∈ S. such that

F (s′, t) = F (t, s), L(s′) = L(t) and s ≡ s′;

4. ∀t ∈ T, ∀s ∈ S. if F (s, t) > 0 and L(t) = L(s), then ∃s′ ∈ S. such that

F (t, s′) = F (s, t), L(s′)≺̂L(t) and s ≡ s′, and

5. ∀t ∈ T, ∀s ∈ S. if F (s, t) > 0 and L(s)≺̂L(t), then ∃s′ ∈ S. such that

F (t, s′) = F (s, t), L(s′) = L(t) and s ≡ s′.
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Communicating Petri nets are presented as N = (((S, T, F,m0,S),L),≡), and

the class of communicating Petri nets is denoted by CommPNL.

Condition 1 guarantees that the transitions use tokens from places in neighbor-

ing localities, whereas the others guarantee that tokens are always moved across

the boundaries with the proper multiplicity.

In this definition the notion of locality is crucial: without its labeling, it is

impossible to establish when a boundary is crossed or not.

Example. Consider the net

1
a

1
b

2 r21 2 re2 1 r11 1 r12

2 a 2
b

The numbers inside the places and transitions indicate the locations (here 1

and 2). Each transition moves the same number of tokens (in this case just one)

from a place in a location with a place to the neighboring location. Clearly here

the relation ≺ could be either 1 ≺ 2 or 2 ≺ 1; the only feasible equivalence is

(a, 1) ≡ (a, 2) and (b, 1) ≡ (b, 2).

As we did before for catalytic (located) net, we specialize the firing rules

to the new class. In particular, we require that for each location (index), if a

transition labelled with this index is enabled, then it must happen. Formally,

let U be a step and m be a marking such that m [U〉 ; assuming that there exists

a transition t such that L(t) 6∈ L(dom(U)), then ¬m [U ⊕ {t}〉 . We denote by

lmin this kind of enabling. We write m [U〉lmin to denote that U is lmin-

enabled, and we denote by m [U〉C m′ the firing of a lmin-enabled; U is called

a lmin step. A location minimal firing sequence is a step firing sequence where

each step is a lmin one. The set of reachable markings is defined accordingly,

and denoted by Mlmin(N). The sets Flmin(N), FŜ
lmin(N) and F

#Ŝ
lmin(N) are

defined in a similar way.
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7. Catalytic and Communicating Petri Nets are Turing Complete

In this section we present the main results of the paper, namely that cat-

alytic Petri Nets with at least two catalysts and communicating Petri nets using

specific firing strategies, have the same computational power of Turing machines.

For catalytic nets we provide a simplified version of the result proved in [15],

considering flattened membrane system. We start formalizing the notion of flat

P system and of flat catalytic P system. It is shown in [1] that the flattened

version of a transition P system (with promoters and inhibitors) has the same

computational power as a non flattened one; thus we can use the flattened one

without loss of generality.

Definition 14. A (flat) P system is the 4-tuple Πf = (O,w0, R,O′) where

• O is a finite set of objects, and O′ ⊆ O are the final objects,

• w0 ∈ ∂O is a finite multiset of objects, called the initial configuration, and

• R is a finite set of rules of the form r = u → v, with u, v ∈ ∂O and u 6= 0.

A configuration of a membrane system is any finite multiset of objects.

A flat membrane system Πf is called catalytic iff there is a designated subset

OC ⊂ O of catalysts and the rules have the following form: either r = a → v

with a ∈ O \ OC and v ∈ ∂(O \ OC) or r = ca → cv with a ∈ O \ OC ,

v ∈ ∂(O \OC) and c ∈ OC . If all the rules are of the form r = ca → cv we say

that the catalytic P system is purely catalytic. We denote catalytic P systems

by CΠ, and purely catalytic ones by CPΠ.

According to [1], any property proved for flat membrane systems can essentially

be proved also for non-flat ones.

Catalytic P Systems and Catalytic Nets. The results of Section 4 can be ex-

tended from catalytic P systems to catalytic nets. In particular, we can state

the following two results.
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Proposition 4. Let Π = (O, C, µ, w0
1 , . . . , w

0
n, R1, . . . , Rn, io) be a catalytic

P system, and F(Π) be its associated structure. Then F(Π) is a lcatalytic net.

Proof : Consider the catalytic P system Π = (O, µ, w0
1 , . . . , w

0
n, R1, . . . , Rn, io),

with C being the catalysts. Each rule r ∈ Ri either is such that

• π(lhs(r))|here = ca, with c ∈ C and a ∈ O \ C, and π(lhs(r))|out = 0 =

π(lhs(r))|inj
, and

• π(rhs(r))|here = cvhere, with vhere be a multiset (possibly empty) over

O \ C, and π(rhs(r))|out = vout, π(rhs(r))|inj
= vinj

, with vout, vinj
be

multisets (possibly empty) over O \ C,

or is such that

• π(lhs(r))|here = a, with a ∈ O \ C, and π(lhs(r))|out = 0 = π(lhs(r))|inj
,

and

• π(rhs(r))|here = vhere, with vhere be a multiset (possibly empty) over

O \ C, and π(rhs(r))|out = vout, π(rhs(r))|inj
= vinj

, with vout, vinj
be

multisets (possibly empty) over O \ C.

Consider now F(Π). The catalytic places are those of the form C × {1, . . . ,

#MS(µ)}. Then an easy inspection shows that F(Π)@C × {1, . . . ,#MS(µ)} is

a state machine (only rules using catalysts have to be considered), and the net

F(Π)@(O \ C)× {1, . . . ,#MS(µ)} is clearly an input state machine. ✷

Proposition 5. Let N = ((S, T, F,m0, C,S),L) be a lcatalytic Petri net, and

let ≺ be a relation on L(T∪S) satisfying definition 2. Then K≺(N) is a catalytic

P system.

Proof : We first observe that all the transitions in a catalytic Petri net consume

tokens from places in the same location, and furthermore the maximal number

of input places can be 2. Observing that N is by assumption correctly located,

the conclusion follows easily. ✷
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The following two results are essentially corollaries of the previous proposi-

tions, and tell us that we can use flat P systems.

Corollary 1. Let Π = (O, C, w0O′) be a flat catalytic P system, and F(Π) be

its associated structure. Then F(Π) is a catalytic net.

Corollary 2. Let N = (S, T, F,m0, C,S) be a catalytic Petri net. Then Kid(N)

is a flat catalytic P system.

Just note that the identity equivalence relation on places is enough to guarantee

flatness.

Turing Completeness under the Catalytic Firing Strategy. We will denote by

CPN(n) the class of catalytic Petri nets with at most n catalytic places, whereas

the class of purely catalytic Petri nets with at most n catalytic places will be

denoted by PCPN(n). Then Theorems 5 and 6 can be specialized as follows:

Theorem 8.

{F#S

C (N) | N ∈ CPN(n)} = RE and

{FS

C (N) | N ∈ CPN(n)} = PsRE, for n ≥ 2.

Theorem 9.

{F#S

C (N) | N ∈ PCPN(n)} = RE and

{FS

C (N) | N ∈ PCPN(n)} = PsRE for n ≥ 3.

Communicating P System and Communicating Nets. Also in this case we can

use the expressivity result for membrane system in a suitable class of Petri nets.

In the case of communicating Petri nets, the equivalence relation on objects is

already a part of the definition. Despite this added information, it is still not

possible to prove Π = F(K≡
≺(N)), where ≡ is the natural equivalence on places

induced by objects. This is because the tree structure can still be different.

Proposition 6. Let Π = (O, µ, w0
1 , . . . , w

0
n, R1, . . . , Rn, io) be a communi-

cating P system, and F(Π) be its associated structure. Then (F(Π),≡) is a

communicating Petri net.
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Proof : Just observe that the symport/antiport rules are perfectly captured by

conditions 2-5 of definition 13, and the object relation ≡ is defined as follows:

(a, i) ≡ (a, j) for all a ∈ O and i, j ∈ {1, . . . ,#MS(µ)}. ✷

Proposition 7. Let N = (((S, T, F,m0,S),L),≡) be a communicating Petri

net, and let ≺ be a relation on L(T ∪ S) satisfying definition 2. Let K≡
≺(N) be

the associated structure. Then K≡
≺(N) is a communicating P system.

Proof : A straightforward inspection of the conditions on transitions of a com-

municating Petri net guarantees that the evolutions rules are either symport or

antiport. ✷

Turing Completeness under the Minimal Firing Strategy. The class of commu-

nicating Petri nets with n localities, where the symport transitions have at

most p input places and the antiport transitions have at most q input places, is

denoted by ComPN(n, p, q).

Theorem 7 can be then specialized as follows:

Theorem 10.

{F#S

C (N) | N ∈ ComPN(n, p, q)} = RE, for n ≥ 3, p ≥ 2 and q ≥ 2.

8. Conclusion

In this paper we have introduced and studied two new classes of Petri nets

that are Turing complete. We have investigated their computability power by

relating them to appropriate membrane systems. The outcome is that Petri nets

can be more expressive by imposing conditions on the firing strategies, without

neglecting the distribution in space that is one of the key feature of Petri nets.

In fact, in [10], the principle of locality in Petri nets is formulated as follows

• the conditions for enabling a transition, in a certain mode if applicable,

only depend on local states of (some) places in its immediate vicinity, and
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• the occurrence of an enabled transition only changes the local state of

(some) places in its immediate vicinity.

This principle is certainly true in our case, provided that the part concerning

the enabling of a transition is somehow reformulated in this way:

• the conditions for enabling a transition, in a certain mode if applicable,

only depend on local states of (some) places and transitions in its imme-

diate vicinity.

The kind of locality mapping we use is rather different from the one which is

normally considered, as we promote places as subjects to be located a priori

and not, as it is usually done, a posteriori, i.e., the location is somehow induced

by the transitions using these places.

The problem of finding algorithms to equip, when possible, Petri nets with a

suitable locality mapping is an open problem. Clearly one can assign locations

to places and transitions, guess a partial order on locations, and then check if

the resulting net is correctly located net; this direction was not investigated yet,

as we have concentrated on the expressivity results.

We consider that our effort of emphasizing the existence of new classes of

Petri nets which are more expressive is a promising one.

By establishing a really tight connection among the membrane systems and

Petri nets, we believe that we can gain in both directions. For instance, being

able to introduce for membrane systems the whole verification apparatus which

has been developed for Petri nets; on the other side, by looking differently at

Petri nets languages or studying the expressiveness of new classes of nets.
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