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Abstract—A scalar Frequency-Domain Finite-Difference approach to
the mode computation of elliptic waveguides is presented. The use of
an elliptic cylindrical grid allows us to take exactly into account the
curved boundary of the structure and a single mesh has been used both
for TE and TM modes. As a consequence, a high accuracy is obtained
with a reduced computational burden, since the resulting matrix is
highly sparse.

1. INTRODUCTION

Elliptic waveguides have been used as guiding structures, and in
different applications as components in waveguide circuits. Among
the latter, we can quote their use as matching sections between circular
and rectangular waveguides [1], or for the realization of low sensitivity
irises in dual mode filters [2].

In many applications, the knowledge of both eigenvalues and field
distributions of waveguides modes is required. Among them, there
are the analysis of waveguide junctions using mode matching [3, 4]
and the solution of waveguide problems with sources [5]. The same
type of information is also required in the analysis, using the method
of moments (MoM), of thick-walled apertures [6–10] and waveguide
junctions [11, 12]. Indeed, these apertures can be considered as stub
waveguides, and the modes of these guides are the natural basis
functions for MoM.

Analytic computation of the modes is simple and accurate only
for rectangular and circular waveguides, since the mode distribution
can be expressed [5] in terms of trigonometric or Bessel Functions,
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and the eigenvalues are the zeroes of these functions. An analytical,
closed form solution exists also for elliptic waveguides, and has been
found by Chu [13] since the 30’s. Unfortunately, the field distribution
is described by the Mathieu functions [14], whose numerical evaluation
is very cumbersome. The best approach seems the expansion of
those functions in a series of (more tractable) Bessel functions [15].
As a consequence, the eigenvalues of an elliptic guide must be
computed numerically, looking for the zeroes of a suitable series of
Bessel functions. Then, the field distribution of each mode requires
further evaluations of Mathieu functions. It is not a surprise,
therefore, that the availability of a closed-form solution in this case
have not prevented many different approximate [16] or numerical
techniques [17] to be proposed. All of them, however, require a trade
off between simplicity and reduced computational load from one side,
and accuracy from the other. This is true also for standard use
of general purpose numerical techniques, such as Finite Differences
and Finite Elements. In particular, the Frequency-Domain Finite-
Difference approach (FDFD) [18], namely the direct discretization of
the differential eigenvalue problem, is the simplest strategy. FDFD
method can be applied both to scalar and vector problems. In
particular for metallic waveguides, the formulation in terms of scalar
potentials allows a significant reduction of the computational load. As
a matter of fact, the vector FDFD approach leads to a constrained
eigenvalue problem [19], which is computationally heavy since it
requires the computation of the eigenvectors of a full matrix, instead
of a sparse matrix as in the case of the scalar approach.

The standard FDFD approach, using a cartesian sampling grid,
allows a very effective solution for rectangular waveguides or generic
rectangular guiding structures, since in these cases the boundary
is perfectly fitted to the discretization grid, either uniform [20]
or non-uniform [21]. On the other hand, the standard FDFD
requires, for generic curved structures, a staircase approximation of the
boundary [22–24]. As a consequence, its effectiveness (computational
burden vs accuracy) is lowered and, for example in the case of elliptic
guides, it becomes comparable to Chu solution, even using sparse
matrix techniques for eigenvalues evaluation.

In the open literature, a number of papers are available dealing
with the use of curvilinear grids in finite difference methods, both for
vector FDFD [25] and for FDTD applications [26]. However, FDTD
method is cumbersome and computationally heavy when the solution
of either 2D [27] or 3D [28] eigenvalue problems is required.

An important drawback of the scalar FDFD approach is the
requirement of two different grids for TE and TM modes, justified
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with the different boundary conditions. This means that TE and TM
modes are not known in the same sampling points. On the other hand,
in mode matching and other applications, TE and TM modes need to
be considered together, and in the same points, which prevents the
results of a standard scalar FDFD method to be easily used. This
approach has been proposed in [29] for rectangular waveguides, but
its use is even more significant for elliptic guides, since (at variance of
rectangular waveguides) no simple transformations between standard
TE and TM grid are then available.

Aim of this work is to further improve the FDFD approach for
elliptic waveguide sections to reach the effectiveness of the rectangular
case. The main step is the use of an elliptic cylindrical coordinate
system, both for the eigenvalue equations and for the grid points of the
FD. In this way the FDFD method is able to take exactly into account
the curved boundary of the waveguide and therefore with no loss of
accuracy. We consider first the use of two different grids for TE and
TM modes, each one tailored to the BC of those modes. Then we will
show how to use a single grid to compute, with the same computational
costs, both TE and TM modes, so that all modes are sampled on the
same set of points.

The presented technique allows a significant improvement of the
accuracy of the standard FDFD at equal discretization step, and a
better flexibility.

2. DESCRIPTION OF THE TECHNIQUE

2.1. Fundamentals of the Scalar FDFD Approach

Let us consider a generic waveguide. Both TE and TM modes can be
found [5] from a suitable scalar eigenfunction of the Laplace operator:

∇2
t φ + k2

t φ = 0 (1)

with the boundary conditions (BC)

∂φ

∂n
= 0 TE

φ = 0 TM
(2)

wherein the subscript t in (1) indicates that the Laplace operator is
computed with respect to the transverse coordinates and φ is a scalar
function of the transverse coordinates. In (2) the derivative is with
respect to the unit normal to the transverse waveguide boundary, in,
pointing outward.
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FDFD approach prescribes to replace both the Equation (1) and
the BC (2) by a discretized version, looking for the eigenfunction values
at a suitable set of sampling points, and therefore replacing derivatives
with finite approximations. The discretized version of (1) consists of
one equation for each discretization point, which depends, for boundary
points, also on the BC (2). Therefore (1, 2) is replaced by an equivalent
matrix algebraic eigenvalue problem. The resulting matrix is sparse so
a very effective computation is possible.

If the waveguide boundary consists of straight lines, parallel to
the coordinate axes, the problem can be discretized on a cartesian
grid [30]. This grid defines also a partition of the waveguide surface
into rectangular cells, which fill exactly the waveguide section. For
every other waveguide, the section cannot be exactly partitioned using
rectangular cells and this leads to numerical errors unless a very fine
mesh is used.

The alternative, to get a high accuracy, is to use a different
discretization scheme, which matches exactly the waveguide boundary.
Therefore, the discretization nodes must be at the intersections of a
suitable framework, in which the waveguide boundary is a coordinate
curve. In this way the waveguide section is exactly partitioned into
discretization cells. The discretized equations can then be obtained in
two ways. Either we use a Taylor expansion of φ between each pair of
discretization points as in standard (rectangular) FD approach [17], or
we can integrate (1) over a discretization cell SF , with boundary ΓF :∫

SF

∇2
t φ dS = −k2

t

∫

SF

φ dS (3)

Use of Gauss Theorem gives:∫

ΓF

∇tφ · in dl =
∫

ΓF

∂φ

∂n
dl =− k2

t

∫

SF

φ dS = −k2
t φX Ŝ (4)

where in is the normal to ΓF , pointing outward, φX the value at the
discretization point of cell SF , and Ŝ the cell area. So Equation (4)
becomes:

1
Ŝ

∫

ΓF

∂φ

∂n
dl = −k2

t φX (5)

To evaluate the left hand side, ΓF is divided into (curved)
segments, along the coordinate curves, and the normal derivative is
evaluated in finite terms.

The two approaches apply in overlapping cases, and, when both
can be used, the resulting discretized equation is the same. Since
both discretizations (either the standard finite approximation and that
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based on (5)) can take into account the BC (2), the resulting FD
formulation is equivalent to the complete eigenvalue problem (1,2).

2.2. Elliptic Waveguide

Let us consider an elliptic waveguide. We build up the discretization
grid using the coordinate lines of the elliptic cylindrical framework
(u, v) (Figure 1). Assuming a regular spacing on the coordinate lines,
with step ∆u,∆v, the standard sets of grid points for TE and TM
modes are shown in Figure 2.

Letting φij = φ (i∆u, j∆v), the eigenvalue Equation (1) can be
expressed as:

1
h(i∆u, j∆v)2

·
[
∂2φ

∂u2
+

∂2φ

∂v2

]

ij

= −k2
t φij (6)

wherein h(u, v) = a
√

sinh2u + sin2v is the scale factor of the elliptic
cylindrical coordinate system and 2a the distance between the foci (see
Figure 1).

For internal points, such as P of Figure 3, it is simpler to discretize
(6) using a Taylor expansion, since the term in brackets is expanded
exactly as in a rectangular grid [30]:
[
∂2φ

∂u2
+

∂2φ

∂v2

]

P

=
φA

∆v2
+

φB

∆u2
+

φC

∆v2
+

φD

∆u2
−

(
2

∆u2 +
2

∆v2

)
·φP (7)

Figure 1. Geometry of the elliptic cylindrical coordinates.
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Figure 2. Standard TE and TM elliptic grids, as suggested from BC.
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Figure 3. Internal point of TE or TM grid.

Then, using (6) and (7), we get the discretized form of (1) for a
generic point (i, j):

−h2
ijk

2
t φij =

φi,j−1

∆v2
+

φi−1,j

∆u2
+

φi,j+1

∆v2
+

φi+1,j

∆u2
−

(
2

∆u2 +
2

∆v2

)
·φi,j (8)

wherein hij = h (i∆u, j∆v).
Equation (8) is valid for all internal points, except the singularities

of the ellipse, namely the foci and the points between them. Also
boundary points must be considered apart. In the following sub-
sections we will address these particular cases.
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2.2.1. Boundary Points

The discretized Equation (7) must be modified for a boundary point,
in order to include the BC (2). Since the BC are different for TE and
TM modes, the standard solution, widely used for the rectangular grid
case, is to use two different grids, one for TE and the other for TM
modes, as in Figure 2.

In the TM case, the standard approach requires that each
boundary point D is a sampling point, so that φD = 0 (see Figure 2(b)),
which can be directly put into the discrete Equation (7), written for
point P , to get:

[
∂2φ

∂u2
+

∂2φ

∂v2

]

P

=
φA

∆v2
+

φC

∆v2
+

φB

∆u2
−

(
2

∆u2 +
2

∆v2

)
· φP (9)

On the other hand, for the TE case, no discretization points are on
the boundary, as clear from Figure 4(a), since X is not a discretization
point (compare Figure 2). Use of Taylor expansion would therefore
require an extrapolation of φ(u) outside the sampling region, using
either φX or φY to enforce the boundary condition ∂φ

∂n = 0. So, we
could use two different FD approximations for the normal derivative
on the waveguide boundary:

∂φ

∂n

∣∣∣∣
X

' φX − φP

∆u/2
or

∂φ

∂n

∣∣∣∣
X

' φY − φP

∆u
(10)

The first one avoids an extrapolation outside the waveguide region, but
has an error O(∆u/2), whereas the second one is more accurate, with
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Figure 4. (a) Sampling points for φTE in the boundary region (TE
grid); (b) Geometry pertinent to the boundary point P in the TE case,
the curve ΓF consists of the bold lines joining J-K-L-M .
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an error O(∆u2), but needs a φ value outside the waveguide. Since
both approximations have a drawback, we prefer to use the approach
based on (5) instead. The curve ΓF has four sides, and joins points
J-K-L-M in Figure 4(b), and

∫

ΓF

∂φ

∂n
dl =

{∫ K

J
+

∫ L

K
+

∫ M

L
+

∫ J

M

}
∂φ

∂n
dl (11)

Now, on the segment LM the integrand is equal to zero because of (2),
whereas on the others sides we have, using a finite approximation of
the derivatives

on JK
∂φ

∂n
=

φB − φP

hP ∆u

on KL
∂φ

∂n
=

φC − φP

hP ∆v

on MJ
∂φ

∂n
=

φA − φP

hP ∆v

(12)

Putting (12) in (11), we find that (7) is replaced, for a point P as
in Figure 4, by:

(φC − φP )
hP ∆v

LE +
(φA − φP )

hP ∆v
LE +

(φB − φP )
hP ∆u

LI = −k2
t φP SA (13)

where hP = a
√

sinh2uP + sin2vP is the scale factor of the elliptic
cylindrical coordinate, evaluated in P and SA = h2

P ∆u∆v the area
of the cell. LI = hP ∆v and LE = hP ∆u are the lengths of the sides
of the cell. Equation (13) can be reordered as:

φA

h2
P ∆v2

+
φC

h2
P ∆v2

+
φB

h2
P ∆u2

− 2φP

h2
P

(
1

2∆u2
+

1
∆v2

)
= −k2

t φP (14)

If we use the second of (10) to enforce the TE boundary
condition (2), we will derive that this BC is equivalent to φY = φP

(see Figure 4). Now, if we apply (8) to point P , including Y as
point (i + 1, j), and let φY = φP , we obtain the exact discretized
Equation (14). Therefore, we can conclude that the TE boundary
condition can be approximated, in FD terms, by φY = φP . This
has been considered, actually, in the literature up to now but, to the
best of our knowledge, without a proof (except, perhaps, some error
considerations like the ones we have made after (10)).

2.2.2. Singularity Points

For a point P lying on the segment joining the two foci (see
Figure 5(a)), we have u = 0. Therefore, P is a singular point (more
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precisely a cusp) of the framework, but the potential must be regular
here. As a consequence, only (5) can be used for the approximation
of (1). In this case, we select the curve ΓF in (5) as the bold curve
J-K-L-M in Figure 5(a). Since no framework singularities are present
on ΓF , a simple finite difference approximation of the integral gives:

(φC−φP )
hP ∆v

LE+
(φA−φP )

hP ∆v
· LE+

(φB−φP )
hP ∆u

LI

+
(φD−φP )

hP ∆u
LI =−k2

t φp SA (15)

wherein hP = a sin vP is the scale factor of the elliptic cylindrical
coordinate, evaluated in P (in this case, in P, u = 0). Equation (15)
can be reordered as:

φA + φC

h2
P ∆v2

+
φB + φD

h2
P ∆u2

− 2φP

h2
P

(
1

∆u2
+

1
∆v2

)
= −k2

t φP (16)

For the foci, the approach is the same. We apply (5) using, as
curve ΓF , the bold curve K − L in Figure 5(b). The cell SF is bounded
by the ellipse at u = ∆u/2, and by the branch of the hyperbola at
v = ∆v/2 (intersecting in K and L). If Ŝ is the area of the cell, we get
from (5):

1
Ŝ

[(φC − φP ) · 2Le + (φA − φP ) · 2Li] = −k2
t φP (17)
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wherein Le and Li are half the length of the arc of the ellipse and of
the arc of the hyperbola, respectively. These can be computed from
the scale factor h(u, v) as:

Le =

∆v
2∫

0

h

(
∆u

2
, v

)
dv ∼= ∆v

4

(
h

(
∆u

2
, 0

)
+ h

(
∆u

2
,
∆v

2

))

Li =

∆u
2∫

0

h

(
u,

∆v

2

)
du ∼= ∆u

4

(
h

(
0,

∆v

2

)
+ h

(
∆u

2
,
∆v

2

))
(18)

2.2.3. Use of a Single Grid for TE and TM Modes

TE modes are given by the eigenvalues and eigenvectors of
(8, 14, 16, 17), and TM ones by (8, 9, 16, 17). Both matrices are sparse,
so very effective routines can be used to compute them [31]. However,
the resulting TE waveguide modes are known on a different set of
sampling points than TM modes. Since those sets are not easily
mapped one onto the other (compare Figure 2), this is a significant
drawback. Therefore, we consider here also the use of a single grid,
namely the TE one, for all modes, either TE or TM. This requires only
to rephrase the FD approximation of the BC (2) of TM modes to be
implemented on the TE grid (Figure 2(a)).

Let us consider a boundary point P in this grid, as in Figure 6.
The point D does not belong to the discretization set, but we can
enforce the BC φD = 0 expressing the potential φD through a Taylor
approximation:

φD = φP +
∂φ

∂u

∣∣∣∣
P

∆u

2
+

1
2

∂2φ

∂u2

∣∣∣∣
P

(
∆u

2

)2

= 0 (19)
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which, together with

φB = φP +
∂φ

∂u

∣∣∣∣
P

(−∆u) +
1
2

∂2φ

∂u2

∣∣∣∣
P

(−∆u)2 (20)

gives:
∂2φ

∂u2

∣∣∣∣
P

=
4

3∆u2
(φB − 3φP ) (21)

The final expression is therefore:
[
∂2φ

∂u2
+

∂2φ

∂v2

]

P

=
1

∆v2
· φA +

1
∆v2

· φC

+
4

3 ·∆u2
· φB −

(
4

∆u2
+

2
∆v2

)
· φP (22)

In this way, replacing (9) with (22) gives the TM modes computed
in the TE grid shown in Figure 2(a).

3. NUMERICAL RESULTS

The curvilinear FDFD method described in the previous section has
been extensively tested using data available in the open literature.
We have selected the cut-off frequency data from [16], which span
the whole eccentricity range. These data appear to be quite accurate
but have been obtained by a method which is both heavy and with
a reduced flexibility. A further comparison has been made with the
standard FDFD results, obtained with a staircase approximation of
the boundary.

The results presented in this section consider three values of the
eccentricity e, the ones presented in [16], namely e = 0.1, e = 0.5,
e = 0.9. All dimensions have been normalized to the minor semi-axis
of the ellipse.

In Figure 7 we show the main validation test. We have compared
the TE data obtained using the proposed FDFD approach with the
data of [16] for the case e = 0.5.

Different discretization steps have been considered, both for ∆u
and for ∆v, and the selected steps lead to 18000, 36000 and 72000
discretization points, respectively. The results for a standard FDFD
approach, using a staircase approximation of the boundary have been
included, too. The latter have been computed using 144000 and 581000
discretization points (∆x = ∆y = 0.01995 or 0.00999), and therefore
require a significantly larger computational cost. As a matter of fact,
the computational cost depends only on the number of discretization
points.
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TM error data are completely equivalent.
From the results presented in Figure 7, it appears that the use of a

curvilinear discretization grid allows to compute kt, i.e., the mode cut-
off frequency, with a relative error consistently lower than 0.1% for all
modes using only 18000 points. On the other hand, the standard FDFD
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Figure 7. Relative error on kt of the proposed FDFD approach for
the first TE modes. (a) ∆v = 1◦; (b) ∆u = 0.0131. For comparison,
in (a), the relative error for the standard FDFD approach (staircase
approximation of the boundary) is also shown.
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Figure 8. Relative errors on kt at equal discretization points (36000).
(a) First TE modes for the proposed FD approach (on the TE grid)
and standard FD approach; (b) first TM modes for the proposed FD
approach (both on the TM and TE grids) and standard FD approach.
The discretization steps are ∆u = 0.0131 and ∆v = 1◦ for the elliptical
grid, ∆x = ∆y = 0.0389 for the rectangular grid.
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Figure 9. Relative error on kt of the proposed FD approach for
different eccentricities. (a) First TE modes of an elliptic guide (TE
elliptical grid); (b) first TM modes of an elliptic guide (TE elliptical
grid). ∆u = 0.0262 and ∆v = 0.5◦, corresponding to 36000 points.

approach requires 581000 points to give a comparable accuracy (i.e., a
relative error lower than 0.1% for all modes). Moreover, the relative
error of the curvilinear approach is stable for different waveguide
modes, whereas that of the standard FDFD is not. In Figure 7, the
computational time T required to compute the eigenvalues (on a PC
with two Intel Xeon E5504 CPUs@2.00 GHz, 48GB RAM, OS: MS
Windows 7 Professional) is also reported.

In Figure 8, we show a comparison between our approach and
the standard FDFD (staircase approximation) with the same number
of discretization points, and so the same computational complexity.
We have considered both TE modes (Figure 8(a)) and TM modes
(Figure 8(b)), the latter also on the TE grid (in order to test the case of
a single grid both for TE and TM modes). From Figures 8(a) and 8(b),
it is apparent that our approach allows an accuracy typically larger
than about one order of magnitude respect to the standard FDFD.
Moreover, this accuracy does not depend on the chosen grid, since use
of either a tailored TM grid (Figure 2(b)), or an uncorrelated grid
(Figure 2(a)) gives the same accuracy (see Figure 8(b)).

The proposed FD approach thus allows a significant accuracy, both
on the eigenvalues (i.e., the cut-off frequency and propagation constant
of those modes), and on the mode distribution.

Finally, we have tested the effect of the eccentricity on the
accuracy of the solution. The results, reported in Figure 9(a) for TE
modes, and in Figure 9(b) for the TM modes (on the TE grid), show
that the accuracy usually increases with the eccentricity, but remains
of the same order of magnitude.
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4. CONCLUSION

A new approach to the FD computation of modes of an elliptic
waveguide has been presented. The main idea is the use of a
discretization grid tailored to the waveguide boundary. In this way,
the curved boundary is exactly described, using only a fraction of
the discretization points required by the standard rectangular grid
(which is only approximate). The use of a single TE grid for all
(TE and TM modes) has been assessed. This allows to implement
numerical procedures requiring all modes, such as Mode Matching, in
an easier way. The results presented show the effectiveness (accuracy
vs. computational cost) of the approach described here.
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