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Transplantation of dopamine- (DA-) rich foetal ventral mesencephalic cells emerged as a promising therapy for Parkinson’s disease
(PD), as it allowed significant improvement of motor symptoms in several PD patients in open-label studies. However, double-blind
clinical trials have been largely disappointing. The general agreement in the field is that the lack of standardization of tissue collection
and preparation, together with the absence of postsurgical immunosuppression, played a key role in the failure of these studies.
Moreover, a further complication that emerged in previous studies is the appearance of the so-called graft-induced dyskinesia
(GID), in a subset of grafted patients, which resembles dyskinesia induced by L-DOPA but in the absence of medication. Preclinical
evidence pointed to the serotonin neurons as possible players in the appearance of GID. In agreement, clinical investigations have
shown that grafted tissue may contain a large number of serotonin neurons, in the order of half of the DA cells; moreover, the
serotonin 5-HT1A receptor agonist buspirone has been found to produce significant dampening of GID in grafted patients. In this
paper, we will review the recent preclinical and clinical studies focusing on cell transplantation for PD and on the mechanisms

underlying GID.

1. Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder and is characterized by intraneu-
ronal inclusions of aggregated proteins (named Lewy bodies
and Lewy neurites) and degeneration of the dopamine (DA)
neurons of the substantia nigra pars compacta. The reduction
of DA levels in the striatum results in the appearance of
motor symptoms, including bradykinesia, rigidity, postural
instability, and resting tremor. Although PD has usually
been considered a pure motor disease, this pathology is now
recognized as heterogeneous, and a significant variety of
nonmotor symptoms such as depression, constipation, pain,
and sleep disorders have been described in PD patients [1]. To
date, oral administration of the DA precursor L-DOPA is the
main treatment for PD, providing a significant improvement
of the motor symptoms, which represent a major burden for
the patients. However, with the progression of the disease,
the vast majority of patients develop abnormal involuntary
movements, known as L-DOPA-induced dyskinesia (LID),

limiting the ability of this drug to provide a satisfactory con-
trol of the motor manifestations. Thus, alternative therapies
are needed to provide good management of the symptoms
also in advanced stages of disease.

Cell transplantation for treating PD was first tested as
a potential therapy in 1985 [2]. In the early studies, autol-
ogous adrenal medulla cells were implanted unilaterally into
the striatum of two PD patients [3]. Despite the fact that
only minimal motor improvements were observed, these
experiments were of great relevance as they provided proof
of principle that DA levels could partially be restored by
an ectopic transplantation of new DA neurons. Later on,
studies in PD patients subjected to intrastriatal grafts of
human foetal ventral mesencephalic (hfVM) tissue have
demonstrated that transplanted DA cells can not only survive
in the host striatum, but also restore striatal DA release and
innervation [4-6], as shown by increased [18F]6-fluoro-1-
3,4-dihydroxyphenylalanine ([18F]DOPA) uptake.

Clinical benefits in PD grafted patients have been
observed in open-label trials. Accordingly, an improvement



of motor symptoms, particularly of hypokinesia and on-oft
fluctuations, has been described in several grafted patients
[4, 7-9], whereas amelioration of dyskinesia and postural
instability was not as significant [8, 10, 11]. Motor improve-
ments were accompanied in the most favourable cases by
withdrawal of the L-DOPA treatment [11, 12] and paralleled
by increased [18F]DOPA uptake in PET studies [5, 13, 14],
suggesting that motor improvements could not be regarded
as placebo effect. Interestingly, a recent study demonstrated
that, in two patients with PD, the cell replacement strategy
provided along-lasting symptomatic relief, with both patients
having discontinued their pharmacological treatment [15].
Accordingly, a recent study has shown that DA transporter
(DAT) remains expressed in transplanted DA neurons for
at least 14 years after transplantation [16], consistent with
clinical findings that fetal DA neuron transplants maintain
function for up to 15-18 years in patients [17]. Despite these
promising results, the outcomes across the different clinical
trials using hf VM tissue have been inconsistent and the pro-
cedure was abandoned in favour of deep brain stimulation.

The effect of foetal DA neuron transplants on LID has
been variable; in some patients a significant reduction of
LID has been observed, while in others dyskinesia has been
unaffected or even made worse [4, 7, 8, 10, 18]. It was not until
two double-blind placebo-controlled trials were performed
[19, 20] that it was described for the first time that grafts may
induce a new type of dyskinesia [21-23], known as off-state
dyskinesia [19, 20] or graft-induced dyskinesia (GID), which
was unrelated to the ongoing medication [19, 20, 23, 24].

GID has emerged as a potentially serious adverse effect
induced by DA neuron transplants in 15 to 57% of patients
(depending on the study) that have undergone cell replace-
ment therapy [19, 20, 23]. GID phenomenology differs from
LID, in being usually more repetitive, consisting in stereo-
typic dyskinetic movements that affected predominantly the
legs [25]. GID usually appears 6 to 24 months after graft-
ing, despite cessation of antiparkinsonian medications [20].
Although this form of dyskinesia was generally mild, in some
case, it became disabling, requiring surgical intervention by
deep brain stimulation [26].

2. Promoting Factors of GID

Development of GID has been proposed to be caused by
several different mechanisms, such as extent of DA neuron
degeneration [27], excessive DA release from the graft, graft
size, graft placement [28-32], age [33], pretreatment with L-
DOPA, severity of preoperative LID [32, 34, 35], or immuno-
suppression [23, 36, 37]. Moreover, the unintentional inclu-
sion of serotonin neurons into the graft suspension has been
recently considered as a risk factor for the development of
GID [38, 39].

These promoting factors have been examined in the past
years in GID patients. However, given the low number of
grafted patients available for these studies, the development
of a preclinical animal model of GID, represented by 6-
OHDA-lesioned rodents subjected to striatal foetal ventral
mesencephalic cell grafting, has provided a useful tool to
investigate the mechanisms responsible for the appearance of
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GID. Studies using this animal model have shown that grafted
DA neurons can survive, reinnervate the lesioned striatum,
and provide significant improvement of motor function [40].
However, differently from what is observed in grafted PD
patients, who show dyskinesia in the absence of any drug
medication, spontaneous GID in grafted animals has been
observed only sporadically. In fact, 6-OHDA-lesioned grafted
rats display only mild and transient dyskinesia when exposed
to nonpharmacological stimuli, such as a new environment
(28,29, 41]. Conversely, the DA-releasing agent amphetamine
is able to evoke consistent rotational behavior contralateral to
the lesioned grafted striatum, as well as abnormal involuntary
movements, which can be evaluated with the same rating
scale used for LID [36, 42-44]. Moreover, amphetamine-
induced abnormal involuntary movements, similar to those
described in the rat model, can also be observed in trans-
planted hemiparkinsonian mice [45]. Thus, amphetamine-
induced dyskinesia has become the most convenient and
reproducible animal model of GID [34, 46, 47].

Analysis of patient data and the use of this animal model
have allowed researchers to propose several risk factors for
the development of GID, although, so far, no single most
important factor has been identified. No differences in striatal
[18F]DOPA uptake were observed between transplanted
patients who did or did not develop GID [20, 23], suggesting
that GID should not be caused by excessive growth of the
grafted DA neurons, or abnormalities in striatal DA reinner-
vation.

Conversely, in grafted rats, it has been demonstrated that
the transplant size may have an impact on the induction of
GID. In fact, rats with large grafts displayed more severe GID
(amphetamine-induced) compared to rats with smaller grafts
[29]. Moreover, graft placement may be another risk factor;
indeed, in 6-OHDA-lesioned rats previously made dyskinetic
by L-DOPA treatment, grafts placed in the caudal striatum,
but not in the rostral striatum, significantly reduced L-
DOPA-induced limb and orolingual dyskinesia but produced
also more severe GID in response to amphetamine [28]. From
that study it emerged that the severity of GID was correlated
with a higher grafted-derived DA fiber density in the caudal
striatum compared to the rostral part, suggesting that uneven
grafting may generate “hot-spots” of DA release and produce
an imbalance in the reinnervation of the host striatum [28,
30, 48].

Furthermore, the severity of preoperative LID was corre-
lated with the severity of GID. Animals with severe preopera-
tive LID receiving intrastriatal DA grafts showed pronounced
reduction of LID, but at the same time all animals developed
GID; by contrast, in rats with mild preoperative LID, which
showed mild reduction of LID after grafting, the expression
of GID was usually mild or absent [35]. This aspect is relevant
as all patients who have undergone neural transplantation so
far have been under treatment with L-DOPA for several years,
and most of them presented LID prior to transplantation
[25]. Thus, in an ongoing multicenter clinical trial funded
by the European Commission (TRANSEURO), only patients
who have not developed severe LID prior to grafting are
being included in the study, in order to reduce the risk of
development of GID.
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3. Immune Suppression

Host immune response is one of the major debated issues in
this field. Despite the fact that for many years the brain has
been thought to have immune privilege, cell transplantation
trials have demonstrated that this is not fully correct [49].
Accordingly, immunoinflammatory responses were observed
in postmortem analysis of transplanted patients in which
either no [19] or short-term low-dose immunosuppression
[20, 50] was administered. Although it is still not fully
demonstrated, immune protection seems to be essential for
the successful engraftment of the striatal DA transplants [51],
and lack of it may also be a potential risk factor for the devel-
opment of GID. In fact, clinical observations have suggested
that GID develops after early discontinuation of immunosup-
pressive therapy [20] and might be related to a reduction of
graft survival caused by inflammatory processes around the
graft [52]. However, another study showed that immunosup-
pressive therapy could be withdrawn without interfering with
graft survival or motor recovery induced by transplantation
[53], suggesting that the poor clinical response might be
caused by a progressive DA denervation in areas outside the
grafts [53]. Moreover, the neurodegeneration process may
affect in a similar way both grafted and host nigral neurons,
as pathological changes such as accumulation of Lewy bodies
accompanied by downregulation of tyrosine hydroxylase
(TH) and DAT have been observed in grafted cells several
years after transplantation [54-56].

4. Graft Composition:
The Serotonin Hypothesis

Recent studies suggest that GID development could be related
to the composition of the grafted tissue [38, 39, 57]. It should
be taken into consideration that DA cells are only about 5-
10% of the cells within freshly dissociated VM tissue [58, 59]
and that the way in which VM tissue is stored or cultured
prior to transplantation might alter the graft composition in
favour of non-DA cells, such as reactive astrocytes [60]. Addi-
tionally, different DA cell types are included in the transplant
composition such as DA neurons of the A9 and Al0 lineage.
In fact, the number of DA A9 neurons in the transplant has
been correlated with reduction of LID in rodents [61] due to
their capacity to regulate DA release [62, 63].

The presence of serotonin neurons into the grafts and
their role in the development of GID represents another
important aspect that has emerged from recent preclinical
and clinical observations. In fact, serotonin neurons develop
in close proximity to the DA neurons of the ventral mes-
encephalon; since the availability of embryonic tissue has
been a limiting factor in the previous trials, the landmarks
of dissection have been usually broad, so to collect a high
number of transplantable cells. However, this procedure
caused the inclusion of a significant number of serotonin
precursor cells in the graft [17].

It is well known that the serotonin neurons possess the
machinery to take up exogenous L-DOPA, to convert it into
DA, and store DA into vesicles. This mechanism plays a role
in the release of L-DOPA-derived DA when the vast majority

of the DA neurons have degenerated; indeed, it has been
suggested that abnormal release of DA from the serotonin
terminals may be responsible for the excessive swings in
striatal synaptic DA levels, which underlie the appearance
of LID [64-66]. Accordingly, higher striatal DA levels have
been found in dyskinetic patients compared to nondyskinetic
ones, as estimated by [11C]raclopride binding potential in
PET imaging studies [67, 68]. Moreover, hyperinnervation of
the serotonin system in the striatum of experimental models
of LID, as well as of patients with dyskinesia, has been recently
reported [69].

Thus, given the role of the serotonin neurons in the devel-
opment of LID, the inclusion of this neuronal population in
the grafted tissue has been proposed to be another risk factor
for the development of GID [34, 42, 47]. In fact, in addition to
a significant number of serotonin neurons, graft-derived stri-
atal serotonergic hyperinnervation and unfavourable sero-
tonin/DA transporter ratio have been observed in grafted
patients [20, 38, 39].

The balance between serotonin and DA grafted neurons
may be important for the severity of LID and GID. Indeed, in
partial 6-OHDA-lesioned rats it has been demonstrated that
serotonin-rich grafts were effective in inducing a widespread
serotonergic hyperinnervation of the host striatum [27, 70,
71] and a progressive worsening of dyskinesia following L-
DOPA treatment, compared to DA-rich grafts which, instead,
dampened dyskinesia [42]. Conversely, LID was reduced in
rats that received grafts containing a mixture of DA and
serotonin neurons (in the proportion of 2:1, resp.), suggest-
ing that as long as a sufficient portion of the DA innervation
is maintained, serotonin innervation generated by the grafted
serotonin neurons will have limited effect on the severity of
LID [42]. However, the presence of serotonin cells in the
graft may serve as a trigger for the induction of GID, as
the serotonin neurons may take up DA released from the
graft and release it away, in striatal regions with a poor DA
innervation, which express supersensitive postsynaptic DA
receptors [39, 46].

5. Pre- and Postsynaptic Mechanisms of GID

The involvement of the serotonin system in GID has been
investigated in several preclinical studies. Using 6-OHDA-
lesioned rats subjected to striatal VM grafting, significant
dampening of GID (induced by amphetamine) was seen fol-
lowing treatment with very low doses of the 5-HTIA receptor
agonist buspirone (doses unable to affect expression of LID in
the same animal model) or combination of the 5-HT1A and
5-HT1B receptor agonists 8-OH-DPAT and CP94253, which
all inhibit transmitter release from serotonergic neurons [34,
43]. These findings are in agreement with clinical studies
where buspirone fully suppressed GID in grafted PD patients
[68]. Interestingly, induction of serotonin neurotransmitter
release by fenfluramine significantly increased GID induced
by amphetamine administration in rats, while it was not able
to induce GID when administered alone [43]. In a com-
parable context, an increase of GID was observed when the
serotonin transporter (SERT) blocker fluvoxamine was added
to the DAT blocker GBRI2909 [29]. These results provide



support for a role of the host serotonin innervation in the
modulation of GID but also suggest that DA release from
serotonin terminals may become detrimental only when DA
release from grafted DA neurons is dysregulated.

Interestingly, Shin and colleagues [43] have demonstrated
that removal of the endogenous serotonin innervation by
specific toxin lesions appeared to abolish the anti-GID prop-
erties of the 5-HT1A and 5-HTIB agonists, suggesting that the
effect of these drugs on GID is conceivably mediated by the
activation of presynaptic host-derived receptors. Conversely,
removal of the host serotonin innervation or pretreatment
with a 5-HTIA receptor antagonist did not abolish the anti-
GID effect of buspirone. These results led the authors to
suggest that the modulatory effect of buspirone on GID may
be independent of activation of either pre- or postsynaptic
5-HTI1A receptors on serotonergic neurons but conceivably
due to blockade of DA D2 receptors; indeed, it is known that
buspirone also acts as a DA D2 receptor antagonist [72, 73].
In fact, a similar striking suppression of GID was also seen
in 6-OHDA-lesioned rats after administration of the selective
DA D2 receptor antagonist eticlopride or the DA DI receptor
antagonist SCH23390. Interestingly, both agonists suppressed
GID in parkinsonian rats at doses unable to affect LID in
dyskinetic 6-OHDA-lesioned (nongrafted) rats, suggesting
that foetal VM grafts induce a striking enhancement of
the antidyskinetic effect induced by DA receptor blockade
[44]. It has been hypothesized that DA receptor blockade
may unmask compensatory or maladaptive mechanisms that
develop in the host striatum during chronic exposure to graft-
derived DA. Such alterations may involve changes in the
expression of DA receptors at synaptic membranes and/or
modification of DA receptor signalling cascade [44]. Thus,
preclinical and clinical evidence suggest that serotonergic
and dopaminergic mechanisms may both play a role in the
appearance of GID.

6. Future Strategies

Clinical studies showed the efficacy of transplantation of DA
neurons in restoring motor functions in PD patients over a
long-time period. However, the variability of the results and
the appearance of side effects represented by GID in a sig-
nificant percentage of grafted patients have hindered the
pursuit of this approach.

There is now a general consensus that improved outcome
and reduced risk of developing GID might derive from a
refinement of the dissection method used to collect the foetal
tissue for transplantation. Avoiding the inclusion of sero-
tonin neurons, or other types of cells, might be one of the
essential points. Furthermore, increasing the distribution of
DA neurons throughout the striatum using multiple injection
sites might optimize the coverage of the denervated striatum
by DA transplanted cells and prevent “hot-spots” of DA
release [5, 27]. In addition, the use of postoperative immuno-
suppressive treatment may also play an important role.

Better results may also derive from a more accurate selec-
tion of the patients; indeed, patients poorly responsive to L-
DOPA treatment are less likely to benefit from this approach
and should not be included in such studies. Moreover,
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performing PET imaging before surgery may be useful for the
correct placement of the graft in each subject [24, 53].

Important knowledge is expected to be acquired with the
ongoing double-blind clinical study using foetal cell trans-
plantation in PD patients (TRANSEURO). This study will be
important not only to provide a conclusive answer about the
ability of foetal cell transplantation to ameliorate the motor
symptoms of the disease, but also to pave the ground for
future larger studies using stem cells.
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