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Abstract: In this work we consider a joint space-time model for cancer inci-
dence, using data on prostate cancer collected between 1988 and 2005 in a specific
area of France. Our aim is to take into account possible non linear effects of some
covariates and zero-inflation due to data aggregation for Poisson regression. We as-
sume that counts of cancer cases follow zero-inflated Poisson distribution, where the
probability of zero inflation is a monotonic function of the mean. The purpose of our
analysis is to check whether the French prostate screening programme, which begins
in 1994, results in a spatial or a spatial-temporal change of the pattern of the disease.
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1 Introduction

Cancer registries represent epidemiological instruments which are aimed at provid-
ing population based cancer incidence and mortality summaries. Usually the data
are stratified by age group, year and geographical unit of residence. As the counts
of cancer cases are distributed according to these variables, the dataset exhibits a
proportion of zeros higher than would be expected under the Poisson distribution.
The problem is also known as zero-inflation (Lachenbruch, 2002) and is common
in ecological studies. We make the assumption, justified by the nature of the data
analyzed, that the probability of zero inflation depends on the set of stratified vari-
ables. In this work we analyse data on prostate cancer incidence collected between
1988 and 2005 in the North-East of France. We present an approach to analyze
the space-time evolution of the disease taking into account also possible non linear
effects of other covariates (such as age) and the zero inflation due to extra Poisson
variation. Prostate is a type of cancer which usually does not have a spatial distribu-
tion. Here we are interested in the space-time evolution of the disease to investigate
if the prostate screening programme started progressively in the region since 1994
has a direct implication on the space or space-time evolution of the cancer.

1The second author was partially supported by Visiting Professor program of ”Regione Au-
tonoma della Sardegna”
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2 Materials and Methods

Our data consists of all cases of prostate cancer (C61.- in the ICD-10 classification)
diagnosed between the 1st January 1988 and 31st December 2005, in the region of
Haut-Rhin in France. The total number of cases is 6878. The distribution of the
number of cases aggregated over age groups (9 categories), across the 26 geographical
units, each year has mean of 14.2 cases while the median is 10. Due to covariates,
the data set counts were spread over 4374 cells with 1935 zeros (44% of the cells are
equal to zero). Our objective is to detect effects of time, space, age and age-time
interaction on the number of new prostate cancer cases, taking into account an high
proportion of zero counts. We thus build different zero-inflated models and compare
them using marginal likelihood.

Zero-inflated Poisson data are often analyzed via a mixture model specifying
that the response variable, Y , comes from a mixture of 0 with probability ω and a
regular Poisson component of mean λ with probability 1− ω (Lambert, 1992).

Covariates may then enter into the model through the mean λ and/or through the
probability ω. Here we consider a zero-inflated generalized additive model (Chiogna
and Gaetan, 2007), where the mean of the regular component and the probability
of zero-inflation are each modeled as a function of some nonparametric smooth
predictors. As usual we assume that the mean of the Poisson distribution λ is equal
to E(µ) where E indicates expected number of cases under direct standardization
and µ is the relative risk. For the log risk we consider the following linear predictor:

log(µatr) = ηatr = f1(agea) + f2(yeart) + f3(agea, yeart) + f4(eastr, northr) (1)

a ∈ {1, . . . , 9}, t ∈ {1, . . . , 18}, r ∈ {1, . . . , 26}, f1(·), f2(·) are smooth functions of
the covariates age and year modeled using cubic regression splines, f4(eastr, northr)
is a thin plate regression spline, while, for modelling the smoothed age-time in-
teraction, we use tensor products allowing smoothness parameter selection to be
independent of the different scale of the covariates (for more details see (Wood,
2006)). We make the assumption that the probability of zero inflation is a linear
function of the covariates. We are in the framework of constrained zero-inflated
generalized additive model (COZIGAM) ((Liu and Chan, 2010)). In particular we
consider the following two specifications:

1. Model 1: the dependence is constrained in such a way that the probability of
zero inflation is linearly related to linear predictor. We have:

logit(ωatr) = α + δηatr;

2. Model 2: the proportional constraint can be generalized by assuming that the
proportionality constant is specific to each additive component, specifically:

logit(ωatr) = β+δ1f1(agea)+δ2f2(yeart)+δ3f3(agea, yeart)+δ4f4(eastr, northr).
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In both model the linear predictor is specified as in equation (1).
Because there is no closed form for the marginal likelihood, Laplace method is

used to approximately compute the likelihood (Liu and Chan, 2010). The analyses
have been performed using the R package COZIGAM (Liu and Chan, 2010), relying
on mgcv package (Wood, 2001).

3 Results

According to the marginal likelihood, the best model is Model 2. In Table 1 are
reported the values of the significant proportionality coefficients estimates for the
best model, which provides strong evidence of a significant relationship between
these smooth components in the mean of the non-zero-inflated distribution and in
the zero-inflation probability, on their link scales. These values emphasize the main
role that age plays on the zero-inflation, compared with the effect of time.

Figure 3 displays the smooth function estimates of Model 2. We can see that:

• The estimate of the time effect shows an increase of incidence up to 1995 then
a strong decrease up to 2001 then an increase.

• the combined effect of age and time is quite relevant, in particular a progressive
decrease in the age for the maximum incidence along time is evident.

• The estimated spatial effect is slightly significant. Except some boundary
effects, there is a little peak of incidence in the north of the region (where a
city of around 70,000 inhabitants is) and again a peak on the south-east part,
difficult to separate from the boundary effect. Adding the spatio-temporal
interaction in the model mod4 yields a non-significant effect.

Covariate estimate standard error pvalue
β 3.9939 0.85714 p < 0.00001
δ1 s(age) 0.8859 0.04692 p < 0.00001
δ2 s(year) 2.595 1.150 p = 0.024
δ3 s(age, year) 1.237 0.29 p < 0.00001

Table 1: Significant coefficient estimates of the constrained generalized additive
model

4 Concluding remarks

Zero-inflated generalized additive model provides a method for modeling incidence
data by taking simultaneously into account possible non linear effects of continuous
covariates and the spatio-temporal evolution of the disease. The number of extra
zeros seems in particular linked to the age group. The aim of such study is to check
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Figure 1: Effect of time, joint effect of age and time and spatial effect estimated for
Model 2

whether the spatial pattern of incidences changes over time. The main finding is
that there is a strong temporal effect, while the spatial effect is not very strong (not
quite significant) and the spatial effect does not change over time (the space-time
interaction was not significant). If we link the aspect of the main temporal effect
with the development of the screening, it seems that the effect on the prostate cancer
incidence is relevant since 1998 whereas the beginning of the organized screening
campaign is 1994. This difference is probably due to a certain time for the screening
programm to be fully efficient in the population.
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Then we can estimate θ by θ̂S, the root of the estimating equation

s(x, θ) = 0. (1)

When S is the log score, this is just the likelihood equation, and θ̂S is the maxi-
mum likelihood estimate. More generally, for any differentiable scoring rule and any
smooth statistical model, Eθ{s(X, θ)} = 0, i.e. (1) is an unbiased estimating equa-
tion (Dawid and Lauritzen 2005). In particular it will typically deliver a consistent,
if not necessarily efficient, estimator in repeated sampling. We can then choose S
to increase robustness or ease of computation.

In the context of a spatial process X = (Xv : v ∈ V ), we can define a useful class
of proper scoring rules (Dawid et al. 2011) by

S(x,Q) =
∑

v

S0(xv, Qv), (2)

where Qv is the conditional distribution of Xv, given the values x\v for the variables
X\v at all sites other than V , and S0 is a proper scoring rule for the state at a single
site. In particular, if Q is Markov on a graph G, then Qv only depends on the values
xne(v) at the sites neighbouring v. This avoids the need to evaluate the normalising
constant of the full joint distribution Q.

Corresponding to (2) we have estimating equation

∑

v

s0(xv, Pθ,v) = 0 (3)

with each term in the sum having expectation 0. When S0 is the log score, (3)
gives the (negative log) pseudo-likelihood (Besag 1975). For Xv binary and S0 the
quadratic (“Brier”) score, it yields the method of ratio matching (Hyvärinen 2007).

Missing data are readily dealt with (although with some loss of efficiency). Let
Av = 1 if any value in {v} ∪ ne(v) is missing. Then so long as the data are missing
completely at random, s0(xv, Pθ,v) × Av has expectation 0, so we can just omit
incomplete terms from (3) while retaining an unbiased estimating equation.

3 Phytophthora data

Figure 1 displays the presence or absence of the pathogen Phytophthora capsici Leo-
nian in bell pepper plants on a regular 20× 20 grid (Chadoeuf et al. 1992).

We model the data as a stationary first-order Markov process with respect to the
grid, which thus follows the autologistic model (Besag 1972; Besag 1974; Gumpertz
et al. 1997):

logitπij = α + β(xi−1,j + xi+1,j) + γ(xi,j−1 + xi,j+1) (4)

where πij is the probability of Xij = 1, given all other values.
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