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Abstract

The Internet of Things (IoT) holds the promise to interconnect any possible object
capable of providing useful information about the physical world for the benefit
of humans’ quality of life. The increasing number of heterogeneous objects that
the IoT has to manage introduces crucial scalability issues that still need appro-
priate solutions. In this respect, one promising proposal is the Social IoT (SIoT)
paradigm, whose main principle is to enable objects to autonomously establish
social links with each other (adhering to rules set by their owners). “Friend”
objects exchange data in a distributed manner and this avoids centralized solu-
tions to implement major functions, such as: node discovery, information search,
and trustworthiness management. However, the number and types of established
friendships affect network navigability.

This issue is the focus of this paper, which proposes an efficient, distributed
and dynamic solution for the objects to select the right friends for the benefit of
the overall network connectivity. The proposed friendship selection mechanism
relies on a game theoretic model and a Shapley-value based algorithm. Two dif-
ferent utility functions are defined and evaluated based on either a group degree
centrality and an average local clustering parameter. The comparison in terms
of global navigability is measured in terms of average path length for the inter-
connection of any couple of nodes in the network. Results show that the group
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degree centrality brings to an enhanced degree of navigability thanks to the ability
to create a suitable core of hubs.

Keywords: IoT, Social Network, Network Navigability, Game Theory,
Shapley-value

1. Introduction

With the recent spreading of RFID-tagged objects, smart devices, augmented
every-day life objects, and wireless sensor/actuator networks, the distance be-
tween physical and virtual worlds is gradually being shortened, leading to the
so-called Internet of Things (IoT) paradigm. According to [1], by 2015 the RFID
devices alone will reach the number of hundreds of billions; in line with this
forecast, Cisco [2] foresees 6.58 connected smart devices per person by 2020.
However, the success of IoT applications strongly depends on the implementa-
tion of satisfactory solutions to meet key system requirements, such as reliability,
scalability, and efficiency. In fact, the large number of heterogeneous and per-
vasive objects continuously generating sensing data [3] and connecting different
realms, ranging from transport to education and from business to home manage-
ment, offers opportunities to deploy manifold applications and services. At the
same time, this calls for effective methodologies for a fast and dynamic discovery
of objects offering the cited services. Searching information, data and resources in
the IoT emerged as a crucial challenge [4]: in addition to the size of the searching
space, sensors are often required to produce data in real-time, which corresponds
to highly dynamic readings, as it may happen when tracking the position of an
object or sensing humidity/temperature/presence in the surrounding environment.
A further complication derives from the shift we are witnessing in the interaction
model. From a paradigm where humans look for information provided by objects
(human-object interaction) IoT is moving towards a model where objects look
for other objects to provide composite services for the benefit of human beings
(object-object interaction).

An approach with the potential to properly address the mentioned scalability
issues, which is recently gaining a high popularity, is based on the exploitation
of social networking notions, as formalized by the Social IoT (SIoT) concept [5].
This is intended as a social network where every network object is capable of
establishing social relationships with other things in an autonomous way with re-
spect to the owner but according to rules set by her. Every object can then interact
with its friends when needing for some assistance, such as the provisioning of a
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piece of important information or a key service. This allows for the implemen-
tation of distributed and scalable procedures to manage object interactions in the
same way as humans do when interacting in the social networks. The resulting
process has a distributed nature, as each object searches for its target peer among
its friends, which, if unable to directly provide the requested service/information,
take further actions by enquiring their friends.

Clearly, the performance of such a kind of process in the SIoT network is
strictly subject to the capability of the objects to replicate the human innate be-
havior in handling social relationships, e.g., select the right friends, consult the
appropriate service provider, evaluate the trustworthiness of the peers and com-
munity. To this aim, each object has to store and manage the information relevant
to its friends: data about past transactions, quality of service for past interactions,
services that can be provided by friends, and so on. An important parameter to
consider is the number of relationships that an object establishes, which affects its
memory consumption, the use of computational power and battery, and the effec-
tiveness of the service discovery operations. Therefore, the choice of the object
to promote as a friend among the potential candidates becomes also a key factor
influencing the overall system performance and the computational cost in finding
the best set of friends.

The above considerations motivate the research in this paper, whose aim is to
define for any object an efficient strategy to select the right friends in the view of
improving the overall network navigability. An important feature to achieve for
the benefit of overall scalability is a friend selection policy which is distributed
and dynamic in its nature. This avoids the need for central controllers to set a-
priori rules to establish social ties. Additionally, the navigation of the resulting
network structure should be independent from the implemented routing algorithm
and from the application triggering the search operations. An initial study in this
direction has been presented in [6], where an early analysis assessed the suitability
of the game theoretic model to the problem. In this paper, we extend our previous
research work by proposing a novel utility function for the objects, which reveals
to be a better performing solution for our purposes. Additionally, we present
the steps to follow for an approximated computation of the Shapley-value as this
is a viable approach considered in the literature on game theory to reduce the
reduce the computation complexity and guarantee tractability in real problems.
To summarize, the major contributions of the paper are:

• Modeling of the friendship selection process in the SIoT context in terms of
a cooperative game, where a Shapley-value based algorithm is proposed to
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define of the best set of friends for each object in the network;

• Proposing and comparing two suitable utility functions that carefully model
the corresponding game and the preferences in the friendship selection for
the objects in the SIoT;

• Presenting an approximated computation of the Shapley-value applied to
the specific problem to reduce the computational effort in the management
of the relationships;

• Analyzing the performance of the proposed solutions to evaluate the net-
work navigability mainly in terms of the average number of hops for local
peer search operations.

The remainder of the paper is organized as it follows. In the next Section, the
research background and related works are presented. In Section 3 the friendship
selection approach for the SIoT is introduced. In Section 4 and 5 the reference
game theoretic notions and the utility functions proposed for the problem are de-
scribed. In Section 6 an approximated computation of the Shapley-value, which
is of utmost importance in the resource-constrained SIoT environment, is given
together with a computational complexity analysis. The performance evaluation
results are summarized in section 7, while conclusive remarks are given in the last
section.

2. Research Background and Related Works

2.1. Social Internet of Things (SIoT)
The idea to use social networking notions within the Internet of Things to al-

low objects to autonomously establish social relationships is recently gaining fast
popularity. The driving motivation is that a social-oriented approach is expected
to support the discovery, selection and composition of services and information
provided by distributed objects and networks [7], [8], [9] and [10]. In this pa-
per, without losing generality, we refer to the social IoT model proposed in [5]
(we use the acronym SIoT to refer to it). According to this model, a set of forms
of socialization among objects exist. The parental object relationship is defined
among similar objects built in the same period by the same manufacturer where
the role of family is played by the production batch. The objects can establish
co-location object relationship and co-work object relationship, like humans do
when they share personal (e.g., cohabitation) or public (e.g., work) experiences.
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A further type of relationship is defined for objects owned by the same user (mo-
bile phones, game consoles, etc.) which is called as ownership object relationship.
This latter relationship is established when objects come into contact, sporadically
or continuously, for reasons purely related to relations among their owners (e.g.,
devices/sensors belonging to friends) and it is named social object relationship.

All of the above mentioned relationships within the SIoT platform are created
and updated on the basis of the objects features (such as: object type, computa-
tional power, mobility capabilities, brand) and activity (frequency in meeting the
other objects). The parental and ownership relationships are determined by the
static characteristics of the object (or slowly varying characteristics): type, brand,
ownership. The other kinds of relationship are determined by the movement of
the object and by the other objects it comes across. To manage the resulting net-
work and relationships, the SIoT architecture foresees four major components [5].
The relationship management introduces into the SIoT the intelligence that allows
objects to start, update, and terminate relationships. This is implemented in the
Cloud, in the object gateways, and in the objects themselves when capable of
implementing the relevant logic. Clearly, the configuration of these functions is
controlled by the object owner; accordingly, the resulting links are asymmetrical.
The second component in the SIoT architecture is the service discovery that has
the purpose to find which objects can provide the required service in the same
way humans seek for friendships and information. The third component is the
service composition, which enables the interaction among objects, and the fourth
component is the trustworthiness management [10] which aims at understanding
how the information provided by other members has to be processed.

In [11], an implementation of a SIoT architecture is described (and its open
source version is available at the URL http://www.social-iot.org). The platform
introduces a central server which implements the functions needed to register an
object, to configure information about the objects, to enable the users to specify
the object’s behavior and to create and manage the relationships of every object.
The server pushes these information to the objects when needed, for example to
activate the discovery of a particular service. This solution allows even an ob-
ject with limited computation capabilities to be able to create and manage its own
relationships. This implementation is taken as a reference in this paper as it trans-
fers the burden of handling an indefinite number of relationships in the objects
to the server. In particular, we foresee that the server will actually compute the
Shapley-value for the right friendship selection and push the final information to
the objects. Regardless of the possible implementation, objects with low computa-
tion capabilities can benefit from the support of other nodes, friends or dedicated
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gateway, to complete demanding tasks, following the Fog Computing paradigm
[12].

2.2. Node and Service Discovery in IoT
Searching for objects, data and services in the IoT is a crucial challenge espe-

cially in real-time environments [4]. Several approaches for real-time search have
been proposed in the literature, but none of them is still offering a complete and
satisfactory solution. For instance Snoogle/Microsearch [13] [14] and MAX [15]
only perform local searches without taking into account the global domain; Global
Sensor Networks (GSN) [16] supports searches on static metadata, whereas Dyser
[17] considers only keywords as a query language and does not consider the ob-
ject contexts. Moreover, a common feature of all these search engines is that
they are based on a centralized architecture and, as such, cannot scale properly
with the expected rapidly increasing number of devices and the relevant number
of queries. Node discovery through social tools has been proposed in [18] and in
[19] where node discovery and global resource discovery protocols for the IoT are
proposed. In particular, a resolution infrastructure called digcovery is defined for
maximizing efficiency and sustainability of deployments.

The belief that objects would be able to navigate the SIoT network with only
local information is founded on the works of the sociologist Stanley Milgram [20]
and the computer scientist Jon Kleinberg [21]. Milgram studied the small-world
phenomenon and demonstrated that people are tied by short chains of acquain-
tances, whereas Kleinberg concluded that there are structural clues in a social
network that help people to efficiently find a short path even without a global
knowledge of the network. Simple proposals to address these issues have been
recently introduced, but the followed strategies are simple and the performance
has only been analyzed in terms of global [22] or local [23] network navigability.

2.3. Game Theory in Networking
Game theory is an analytical framework that attempts to analyze the behavior

of rational entities with their own interests in reciprocal interactions [24]. Start-
ing from the economic field [25], during the last decades game theory has found
successful applications to several other areas. A large number of contributions in
the literature can be found, dealing with models for wired and wireless communi-
cations [26]. Just to mention some fields of application we can list radio resource
management [27], cooperation in wireless ad hoc networks [28], pricing schemes
in cognitive wireless networks [29] or in heterogeneous wireless networks [30].
Among cooperative game based contributions, the so-called coalitional games
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[31] are applied in several fields, such as to study fairness and cooperation gains
in virtual MIMO systems in [32], packet forwarding issues in ad-hoc networks
in [33], task allocation problems in a software system in [34], whereas in [35]
and [36] it is applied to introduce a fair energy consumption cost-distribution in a
wireless cooperative cluster.

In value or cost-sharing game theoretic applications, one of the most used
solution concepts is the Shapley-value [37], [38], [39]. Thanks to its intrinsic ca-
pability to capture the contribution of the single players to different coalitions of
players, the Shapley-value has found several applications both in networking and
social analysis. For instance in [40] it is adopted for a monetary cost analysis for
a fair content sharing by both network/service providers and the end-users. An in-
teresting application of the Shapley-value is in the domain of social networks and
networks in general, where it is adopted as a measure of the relative importance
of the single nodes. For instance, in [41] the authors propose a solution to under-
stand which individual is more important than others in common problems like
scientists who collaborate in published articles, or employees of a company who
participate in projects. Closer to the contribution of this paper, the Shapley-value
has been applied to social networking problems in [42], [43] and [44]. In particu-
lar, [42] a set of new centrality measures are proposed based on cooperative game
theoretic notions. An analysis of the Shapley-value for network centrality has been
presented also in [43], with results demonstrating the opportunities for efficiency
gains. In [44] the focus is on the information diffusion problem in social networks
with particular focus on the target set selection issue. The proposed solution is
to select a subset of influential players in a social network with a Shapley-value
based algorithm. The promising results obtained for the information diffusion
problem in social networking suggest that the Shapley-value has interesting fea-
tures so that it can also be applied for the friendship selection problem in the SIoT
studied in this paper.

3. The Proposed Friendship Selection in the SIoT

The problem of how to select an effective set of friendship relationships among
the possible candidates has been addressed in the past in the context of informa-
tion diffusion in social networking problems. Usually, a score is assigned to each
member of the set of potential devices [43], where the selected score somehow
corresponds to the importance of that device for the application at hand. How-
ever, such a conventional approach suffers from the main intrinsic limitation that it
only considers the relative importance of objects as stand-alone entities. Contrar-
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ily, a key requirement in the SIoT is to understand the importance of each object
in terms of its contribution to a certain utility when combined with other nodes
[45], [46]. The flexibility, which comes from the ability to take into account the
contributions of all possible combinations of objects (rather than considering just
one node at a time), is lacking in conventional centrality measures. This is a cru-
cial limitation in many applications and represents the reason why game theoretic
network centrality measures have been proposed in research activities relevant to
social networks of humans. The promising results obtained in this field, suggest
that the Shapley-value has interesting features that can also be exploited for the
friendship selection problem in the SIoT studied in this paper. The approach we
propose maps the friendship selection process in the SIoT onto the coalition for-
mation problem in a corresponding cooperative game. The Shapley-value of the
objects in the game represents the importance of an object and is used to set the
friendship preferences.

Before going into the details of the game theoretic modeling, we give details
on the friendship selection algorithm proposed for the SIoT. For simplicity in
the analysis, we assume that the objects in the SIoT have a commonly shared
criterion to decide whether to consider another object as a candidate object for a
friendship relation; this criterion is symmetric. For instance, if an object i meets
the given criterion with another object j, then also node j meets the criterion w.r.t.
node i. As described in Section 2.1, a friendship request is triggered when some
conditions are satisfied and these conditions depend on the friendship type; e.g.
new OORs will be formed when a user registers a new object in the SIoT, while a
SOR will be requested when two objects have met for a certain number of times.

We assume that each object can establish up to a maximum number of friend-
ships Nmax according to its resources. When two nodes met the criterion to es-
tablish a new friendship, then a new friendship is directly established if the list of
friends for the two objects is less than Nmax. If this is not the case, then a friend-
ship selection algorithm is triggered to choose the most influential Nmax friends
among the candidate objects. This procedure is reported in Algorithm 1.

The proposed friendship selection algorithm aims at selecting the objects that
offer the maximum marginal contribution to the global services in the SIoT. To
this aim, the candidate friend and the old ones are considered at the same level.
Accordingly, a marginal contributions for each one is computed by making use
of a cooperative coalitional game modeling, as it will be described in the remain-
der of the paper. The set of candidate objects are the players in the cooperative
game and the Shapley-value is used to compute the marginal contributions of the
individual players to the overall value achieved. At the beginning, based on the
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Shapley-value, a ranking list of the candidate objects is computed, and then the
top Nmax objects are selected. If nodes i and j are mutually in the top Nmax objects
of the respectively computed ranking lists, then the friendship is established. In
some cases the establishment of a new friendship may require an old one to be
removed. When this happens, the choice of the friendship to be removed is again
driven by the Shapley-value based ranking list, with the only constraint that a node
cannot refuse or discard relationships if this action is going to isolate a node.

Algorithm 1: Proposed friendship selection algorithm
1 A new candidate friend y is encountered
2 if Nmax is reached then
3 Compute marginal contribution for existing friends and y
4 Rank the nodes in a list L in a descending order
5 if y is among the first Nmax nodes then
6 Send a friendship request to y
7 if the request is accepted then
8 Create a new friendship
9 Terminate the relationship with the node in the lowest position of L

10 end
11 else
12 Discard node y
13 end
14 else
15 Send a friendship request to y
16 if the request is accepted then
17 Create a new friendship
18 end
19 end

4. Game-Theoretic Notions for Network Navigability

The process of assigning a value to each node/object in a network can be
naturally modeled as a coalitional game G =< N , v(·) > with transferable utilities
(TU), whereN is the set of N players and v(·) is a value function. A value function
v(S) is a mapping from a nonempty coalition S ⊆ N to a real number. Thus,
given a subset S of N , we call v(S) the value of the coalition S. It represents
the maximum aggregated payoff available for division among players who are
members of S when working together without the help of players in N\S. The
set of players N is called the grand coalition and v(N) is called the value of the
grand coalition.
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Given a value definition for a coalition, the challenge is to allocate the value
among the players forming the coalition. In other words, finding a solution for the
game means to find a vector x ∈ <N that represents the value allocation to each
player in the coalition. In particular, an allocation is a vector x = (x1, · · · , xn)
where xi denotes the value associated with player i ∈ N . For any coalition S ⊆ N
we denote by x(S) the value

∑
i∈S xi. An allocation x = (x1, · · · , xn) is said to

be a pre-imputation if it satisfies the efficiency property and it is said to be an
imputation if it satisfies both the efficiency and individual rationality properties. In
particular, an allocation x = (x1, · · · , xn) satisfies the efficiency property if x(N) =

v(N) and the allocation is a feasible payoff profile (or pre-imputation) of G. Then,
if the allocation is such that xi ≥ v({i}) (the allocated value is greater or equal than
the value for the player staying alone in singleton coalition {i}) for each i ∈ N
then the individual rationality is satisfied.

The set of all imputations of the game G is denoted by X(G). An outcome
for G is an imputation from X(G) that specifies the distribution of the value to any
player of the game. A typical requirement of a good outcome is to be “stable” with
respect to the possibility that subsets of players find convenient to deviate from it
and to form alternative coalitions. The set of such stable outcomes is known as
the core of the game.

Definition 1 (Core [47]). The core C(G) of a TU game G =< N , v(·) > is the set
of all imputations x such that, for each coalition S ⊆ N, x(S ) ≥ v(S ).

We say that if an imputation associated with a coalition is in the core then the
coalition is stable; otherwise, we say it is unstable. Indeed, if y < C(G), there
exists some coalition S such that y(S ) < v(S ). Therefore, players in the group S
might leave the group N and for the coalitions S obtaining the total value v(S ),
which is greater than what they obtained according to the allocation y.

In general, the core of a game may be empty as well as it may contain an
infinite number of imputations. Games with non-empty cores are called balanced.
An important class of games where the core is always non-empty is the class of
convex games. A game is said convex if, for every pair of coalitions S and T ,
v(S ∪ T ) + v(S ∩ T ) ≥ v(S ) + v(T ). It can be shown that this holds if the value
function is supermodular, that is, if v(S ∪ {i}) − v(S ) ≤ v(T ∪ {i}) − v(T ), for each
pair of coalitions S ⊆ T ⊆ N \ {i},∀{i} ∈ N.

However, even if the core is not empty, it remains the problem of choosing
an outcome out of possibly infinite many candidates belonging to the core. Thus,
solution concepts associated with unique profiles are usually desirable in appli-
cations. Among these, the Shapley-value [37] is one of the most used [38], [39].
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Indeed, it is an effective approach to the fair allocation of gains obtained from the
cooperation among players of a cooperative game [48]. Since some players may
contribute more to the total value than others, an important requirement is to fairly
distribute gains among the players. To this purpose, in deciding the payoff to be
allocated to the players, the Shapley-value accounts for the relative importance of
each player to the game.

Definition 2 (Shapley-value [37]). The Shapley-value of a TU game G = 〈N , v(·)〉
is the pre-imputation of G assigning to every player i ∈ N the following value

φi(G) =
1
|N|!

∑
S⊆N\{i}

|S|!(|N| − |S| − 1)![v(S ∪ {i}) − v(S)].

Accordingly, the Shapley-value assigns a value to each player i by taking into
account its average marginal contribution, where the average is computed over all
different sequences of the players so that the grand coalition can be built up from
the empty coalition.

It is known that, in any convex game, the Shapley value belongs to the core and
thus it is a stable imputation. However, in the general case the Shapley-value may
fall outside the core, even if the core is not empty. Thus, the Shapley-value is not
necessarily an imputation and it may violate the individual rationality condition.

An alternative equivalent formulation of the Shapley-value for a player i is the
following:

φi(G) =
1

N!

∑
π∈Ω

[v(P(π, i) ∪ {i}) − v(P(π, i)] (1)

where π is a permutation of the N players, Ω is the set of all N! permutations
of the players, and P(π, i) is the set of players preceding player i in permutation π.

This solution concept has also a nice axiomatic characterization supporting its
notion of fairness, i.e., it is the unique pre-imputation that satisfies the Symme-
try, Dummy Player, and Additivity axioms [37]. A natural way to interpret the
Shapley-value φi(G) of player i is in terms of the average marginal contribution
that player i makes to any sub-coalition of N assuming all orderings are equally
likely. The Shapley-value takes into account all possible coalitional dynamics and
negotiation scenarios among the players and comes up with a single unique way of
distributing the value v(N) of the grand coalition among all the players. Thus, the
Shapley-value of a player accurately reflects the bargaining power of the player
and the marginal value it brings to the game.

An additional simplifying assumption usually made when modeling a TU
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coalitional game, is that the game is superadditive. A game is superadditive if
the value function of the game is such that for any S and T disjoint coalitions
(S ∩ T = ∅) subsets of N , we have that v(S ∪ T ) ≥ v(S) + v(T ). It means that
a coalition that is a merger of two or more coalitions will realize a value at least
as great as the sum of the values of the coalitions merged. This seems a reason-
able assumption for coalitional games and the proposed Shapley-value is usually
applied in superadditive games. However, the Shapley-value can also be com-
puted for games with a non superadditivite characteristic function [49]. In these
cases the Shapley-value will lack the property of individual rationality, thus, some
players may have values lower than the players they can generate as a singleton
coalition. Noteworthy, in this paper the game model does not foresee a value to
be shared among players, but it is used to find the most influential objects among
a set of candidate friend objects. Therefore, also non superadditive characteristic
functions are acceptable for our scope.

5. Utility Functions for the Friendship Selection

A key aspect for the success of the proposed algorithm is the definition of the
utility function, which measures the contribution of the candidate objects. By fo-
cusing on an object i, which has to determine its Nmax friendships, in the following
we present two possible solutions that meet the system requirements.

5.1. Average local clustering based model
The first utility function we consider for the model is the average local clus-

tering coefficient [50]. This is defined as: C = 1
n

n∑
j=1

Clocal j where n is the number

of players in a coalition and Clocal j is the local clustering coefficient defined as:
Clocal j =

2·e j

k j·(k j−1) , where k j is the number of neighbors for node j and e j is the
number of edges among them.

The TU (Transferable Utility)-game G = 〈N , v(·)〉 is modeled on the set of
Nmax + 1 candidate friends for node i plus the node i itself, thus we have that
N = Nmax + 2. This number derives from the consideration that the selection
algorithm is triggered only when a new object meets a given criterion to become a
friend of object i and this additional object would make the number of friends go
beyond the threshold Nmax. Moreover, also node i must be considered, as the utility
function is directly influenced by the presence of node i in any of the coalitions of
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objects. In details, we define the value function as:

v(S) =

1 − 1
|S|

∑
i∈S

Clocali

 ∀S ⊆ N , and v(∅) = 0. (2)

The driving motivation for this utility function to be considered comes from
Kleinberg’s findings [21]. In particular, a high value of the average local cluster
coefficient allows the nodes to quickly reach the nodes with many connections
in the network. However, if the nodes are connected to friends with high value
of Clocal, then clusters of friends are created in the network and, in the extreme
case, they can form an isolated subnet, so that the navigability of the network is
highly limited. Navigability is thus assured by the ability to reach nodes with low
values of local clustering, i.e. by adopting the complementary value, since they
are hardly reachable through other paths. This gives us the possibility to perform
local choices that will guarantee the global navigability of the network to be kept
at acceptable levels.

Noteworthy, this utility function is non superadditive as in some topology
configurations some nodes, which join a pre-existing set of friends, may actu-
ally adversely affect the local clustering coefficient value. A high Shapley-value
is assigned to players giving a high average marginal contribution to all possi-
ble permutations of coalitions among the players. This means that a player has
a high Shapley-value when it gives a positive contribution to the utility function.
In particular, we can identify two sample cases for topologies where a positive or
a negative Shapley-value may occur for a node. In particular we may refer to a
fully meshed network and a star topology network..... TBC. Based on the value
function defined in equation 2, we compute the Shapley-value for all the objects
in the game and sort the players in decreasing order of their Shapley-value. From
the so-constructed rank list, the candidate objects are selected one at the time by
scrolling the list in a top-down order (clearly, node i itself will not be considered
as a candidate friend). If the friendship with an object is already active, then noth-
ing happens and the subsequent node in the list is selected until Nmax nodes are
selected from the list. If the selected object has not been considered as a friend
yet, then the node tries to form a new friendship relationship. If the new friendship
request is accepted, then an old friendship must be closed to meet the constraint on
the Nmax number of friendships of node i. Also for this choice the Shapley-based
rank list is used, and the less influential node is selected as the one to be removed.

To better understand the behavior of the proposed solution, let us consider
the sample study case shown in Figure 1. In particular, objects 1 and 5 meet
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Figure 1: Friendship selection sample scenario.

the criterion for a new potential friendship (see dashed line in the Figure) and the
proposed algorithm is triggered to possibly update the friendships for the involved
objects. As an example, let us focus the attention on object 1 and the computation
of its list of preferences for the friendships (a similar analysis can be repeated for
object 5) in the case where the maximum number of friends per object 1 is set
to Nmax = 3. This means that the three objects with the highest Shapley-value
shall be selected as its friends. In the scenario of the figure we can model the
game as follows: N = {1, 2, 3, 4, 5}; v(1) = v(5) = 1 − 0.167 = 0.833; v(2) =

v(4) = v(24) = 1; v(3) = 1 − 0.333 = 0.667; v(12) = v(14) = v(25) = v(45) =

1 − 1/2 · (0.167 + 0) = 0.917; v(13) = v(35) = 1 − 1/2 · (0.167 + 0.333) =

0.75; v(15) = v(23) = v(34) = 1 − 1/2 · (0.167 + 0.167) = 1 − 1/2 · (0 + 0.333) =

0.833; v(123) = v(134) = v(235) = v(345) = 1 − 1/3 · (0.167 + 0 + 0.333) =

0.833; v(124) = v(245) = 1 − 1/3 · (0 + 0 + 0.167) = 0.944; v(125) = v(145) =

v(234) = 1−1/3 · (0.167 + 0 + 0.167) = 1−1/3 · (0 + 0.333 + 0) = 0.889; v(135) =

1− 1/3 · (0.167 + 0.333 + 0.167) = 0.778; v(1234) = v(2345) = 1− 1/4 · (0.167 +

0+0.333+0) = 0.875; v(1235) = v(1345) = 1−1/4 · (0.167+0+0.333+0.167) =

0.833; v(1245) = 1 − 1/4 · (0.167 + 0 + 0 + 0.167) = 0.917; v(12345) = 1 − 1/5 ·
(0.167 + 0 + 0.333 + 0 + 0.167) = 0.867.

By computing the marginal contributions of the players based on the Shapley-
value we obtain the results in Table 1 (note that not only a subset of the 120
permutations are listed due to length constraints). We observe that the order of
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preferred friendships for object 1 are respectively, object 2, object 4 and object
5. Since Nmax = 3, object 1 will try to form a new friendship with object 5,
since it is already friend with object 2 and 4, and consider object 3 only if any of
the preferred friendships is not accepted by the inquired object otherwise it will
terminate this friendship.

Table 1: Shapley-value for sample scenario in Figure 1 and average local clustering as utility
function.

Case Object 2 Object 3 Object 4 Object 5
12345 v(12)-v(1)=0.084 v(123)-v(12)=-0.083 v(1234)-v(123)=0.042 v(N)-v(1234)=-0.008
12354 v(12)-v(1)=0.084 v(123)-v(12)=-0.083 v(N)-v(1235)=0.034 v(1235)-v(123)=0
12435 v(12)-v(1)=0.084 v(1234)-v(124)=-0.069 v(124)-v(12)=0.028 v(N)-v(1234)=-0.008
12453 v(12)-v(1)=0.084 v(N)-v(1245)=-0.05 v(124)-v(12)=0.028 v(1245)-v(124)=-0.027
12534 v(12)-v(1)=0.084 v(1235)-v(125)=-0.056 v(N)-v(1235)=0.034 v(125)-v(12)=-0.028

· · ·

21345 v(2)-v(∅)=1 v(123)-v(12)=-0.083 v(1234)-v(123)=0.042 v(N)-v(1234)=-0.008
21354 v(2)-v(∅)=1 v(123)-v(12)=-0.083 v(N)-v(1235)=0.034 v(1235)-v(123)=0
21435 v(2)-v(∅)=1 v(1234)-v(124)=-0.069 v(124)-v(12)=0.028 v(N)-v(1234)=-0.008
21453 v(2)-v(∅)=1 v(N)-v(1245)=-0.05 v(124)-v(12)=0.028 v(1245)-v(124)=-0.027
21534 v(2)-v(∅)=1 v(1235)-v(125)=-0.056 v(N)-v(1235)=0.034 v(125)-v(12)=-0.028

· · ·

31245 v(123)-v(13)=0.083 v(3)-v(∅)=0.667 v(1234)-v(123)=0.042 v(N)-v(1234)=-0.008
31254 v(123)-v(13)=0.083 v(3)-v(∅)=0.667 v(N)-v(1235)=0.034 v(1235)-v(123)=0
31425 v(1234)-v(134)=0.042 v(3)-v(∅)=0.667 v(134)-v(13)=0.083 v(N)-v(1234)=-0.008
31452 v(N)-v(1345)=0.033 v(3)-v(∅)=0.667 v(134)-v(13)=0.083 v(1345)-v(134)=0
31524 v(1235)-v(135)=0.056 v(3)-v(∅)=0.667 v(N)-v(1235)=0.034 v(135)-v(13)=0.028

· · ·

41235 v(124)-v(14)=0.028 v(1234)-v(124)=-0.069 v(4)-v(∅)=1 v(N)-v(1234)=-0.008
41253 v(124)-v(14)=0.028 v(N)-v(1245)=-0.05 v(4)-v(∅)=1 v(1245)-v(124)=-0.027
41325 v(1234)-v(134)=0.042 v(134)-v(14)=-0.083 v(4)-v(∅)=1 v(N)-v(1234)=-0.008
41352 v(N)-v(1345)=0.033 v(134)-v(14)=-0.083 v(4)-v(∅)=1 v(1345)-v(134)=0
41523 v(1245)-v(145)=0.028 v(N)-v(1245)=-0.05 v(4)-v(∅)=1 v(145)-v(14)=-0.028

· · ·

51234 v(125)-v(15)=0.056 v(1235)-v(125)=-0.056 v(N)-v(1235)=0.034 v(5)-v(∅)=0.833
51243 v(125)-v(15)=0.056 v(N)-v(1245)=-0.05 v(1245)-v(125)=0.028 v(5)-v(∅)=0.833
51324 v(1235)-v(135)=0.056 v(135)-v(15)=-0.056 v(N)-v(1235)=0.034 v(5)-v(∅)=0.833
51342 v(N)-v(1345)=0.033 v(135)-v(15)=-0.056 v(1345)-v(135)=0.056 v(5)-v(∅)=0.833
51423 v(1245)-v(145)=0.028 v(N)-v(1245)=-0.05 v(145)-v(15)=0.056 v(5)-v(∅)=0.833
φi 0.243 0.069 0.243 0.156

5.2. Group degree centrality based model
The second utility function we consider is the degree centrality [51] of the

objects in the considered coalition, i.e. the union of all the distinct friends of the
objects in the coalition. Also in this case, the TU-game G = 〈N , v(·)〉 is modeled
by considering N = Nmax + 2 as given by the set of candidate friends plus the node
i itself. In details, we define the value function as:
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v(S ) =
⋃
i∈S

Fi ∀S ⊆ N, and v(∅) = 0

where Fi is the set of friends of node i in coalition S . Noteworthy, this utility
function is readily superadditive as having larger sets of friends will in no case
reduce the number of objects that can be reached. Based on the value function
defined above, the Shapley-value is then computed for the players (also in this case
node i itself is not considered) and their values are sorted in a decreasing order to
select the Nmax most influential objects according to the procedure explained in
the previous section.

Let us consider again the sample scenario in Figure 1 to compute Shapley-
value according to the group degree centrality as utility function. Let the attention
be again on object 1 and consider its list of preferences for the friendships with
Nmax = 3. With reference to the plotted scenario, we can model the game as
follows: N = {1, 2, 3, 4, 5}; v(1) = v(5) = v(34) = 5; v(2) = v(3) = 4; v(4) =

3; v(12) = v(15) = v(23) = v(45) = v(345) = 7; v(13) = v(14) = v(24) =

v(35) = v(134) = 6; v(25) = v(123) = v(124) = v(135) = v(145) = v(234) =

v(1234) = v(1345) = 8; v(125) = v(235) = 9; v(245) = v(1235) = v(1245) =

v(2345) = v(N) = 10. By computing the marginal contributions of the players
based on the Shapley-value we obtain the results in Table 2 (note that not only a
subset of the 120 permutations are listed due to length constraints). Observe that
the order of preferred friendships for object 1 are respectively, object 5, object 2
and object 3. Since Nmax = 3, object 1 will try to form a friendship with object 5,
since it is already friend with object 2 and 3, and consider object 4 only if any of
the preferred friendships is not accepted by the inquired object otherwise it will
terminate this friendship.

6. An Approximated Computation for the Shapley-value

The Shapley-value is known to be a computationally heavy solution as all
the N! permutations of the players have to be considered to evaluate the average
marginal contribution of a player and thus, its importance. In particular, the com-
putational complexity of the Shapley-value computation in (1) is O

((
n
e

)n)
, where

n is the number of objects involved in the friendship selection process (not the
whole network). This computational complexity is high, but the platform imple-
mentation is based on a central server taking care, among other functions, of the
creation and management for the relationships of every object.
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Table 2: Shapley-value for sample scenario in Figure 1 and group degree centrality as utility
function.

Case Object 2 Object 3 Object 4 Object 5
12345 v(12)-v(1)=2 v(123)-v(12)=1 v(1234)-v(123)=0 v(N)-v(1234)=2
12354 v(12)-v(1)=2 v(123)-v(12)=1 v(N)-v(1235)=0 v(1235)-v(123)=2
12435 v(12)-v(1)=2 v(1234)-v(124)=0 v(124)-v(12)=1 v(N)-v(1234)=2
12453 v(12)-v(1)=2 v(N)-v(1245)=0 v(124)-v(12)=1 v(1245)-v(124)=2
12534 v(12)-v(1)=2 v(1235)-v(125)=1 v(N)-v(1235)=0 v(125)-v(12)=2

· · ·

21345 v(2)-v(∅)=4 v(123)-v(12)=1 v(1234)-v(123)=0 v(N)-v(1234)=2
21354 v(2)-v(∅)=4 v(123)-v(12)=1 v(N)-v(1235)=0 v(1235)-v(123)=2
21435 v(2)-v(∅)=4 v(1234)-v(124)=0 v(124)-v(12)=1 v(N)-v(1234)=2
21453 v(2)-v(∅)=4 v(N)-v(1245)=0 v(124)-v(12)=1 v(1245)-v(124)=2
21534 v(2)-v(∅)=4 v(1235)-v(125)=1 v(N)-v(1235)=0 v(125)-v(12)=2

· · ·

31245 v(123)-v(13)=2 v(3)-v(∅)=4 v(1234)-v(123)=0 v(N)-v(1234)=2
31254 v(123)-v(13)=2 v(3)-v(∅)=4 v(N)-v(1235)=0 v(1235)-v(123)=2
31425 v(1234)-v(134)= 2 v(3)-v(∅)=4 v(134)-v(13)=0 v(N)-v(1234)=2
31452 v(N)-v(1345)=2 v(3)-v(∅)=4 v(134)-v(13)=0 v(1345)-v(134)=2
31524 v(1235)-v(135)=2 v(3)-v(∅)=4 v(N)-v(1235)=0 v(135)-v(13)=2

· · ·

41235 v(124)-v(14)=2 v(1234)-v(124)=0 v(4)-v(∅)=3 v(N)-v(1234)=2
41253 v(124)-v(14)=2 v(N)-v(1245)=0 v(4)-v(∅)=3 v(1245)-v(124)=2
41325 v(1234)-v(134)=2 v(134)-v(14)=0 v(4)-v(∅)=3 v(N)-v(1234)=2
41352 v(N)-v(1345)=2 v(134)-v(14)=0 v(4)-v(∅)=3 v(1345)-v(134)=2
41523 v(1245)-v(145)=2 v(N)-v(1245)=0 v(4)-v(∅)=3 v(145)-v(14)=2

· · ·

51234 v(125)-v(15)=2 v(1235)-v(125)=1 v(N)-v(1235)=0 v(5)-v(∅)=5
51243 v(125)-v(15)=2 v(N)-v(1245)=0 v(1245)-v(125)=1 v(5)-v(∅)=5
51324 v(1235)-v(135)=2 v(135)-v(15)=1 v(N)-v(1235)=0 v(5)-v(∅)=5
51342 v(N)-v(1345)=2 v(135)-v(15)=1 v(1345)-v(135)=0 v(5)-v(∅)=5
51423 v(1245)-v(145)=2 v(N)-v(1245)=0 v(145)-v(15)=1 v(5)-v(∅)=5
φi 2.7 1.367 1.2 2.867
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Still, to reduce the complexity, an alternative approximated solution can be
introduced to reduce the computational burden to a polynomial time computation,
while not losing the benefits of the proposed solution. The approach followed in
this paper is a sampling based approach that works in polynomial time [44]. In
particular, instead of considering all possible N! permutations, a randomly sample
set Ω̃ of t permutations is considered so that t = O(n). To this, the following steps
are implemented:

1. Randomly generate t = |Ω̃| permutations of the players, with π j a single
permutation from the set Ω̃;

2. for each permutation π j in Ω̃ follow the order of nodes in π j and compute
the contribution of each node i ∈ π j to the utility of the coalition;

3. determine the average contribution of each node to the utility computed on
all t permutations in Ω̃.

The resulting approximated computation of the Shapley-value for player i can
be given in this form:

φi(G) =
1
t

∑
π j∈Ω̃

[
v(P(π j, i) ∪ {i}) − v(P(π j, i))

]
(3)

In the following we will discuss how to determine the value for the permuta-
tions t to consider. In particular, the price to pay for the polynomial time complex-
ity is the introduction of an error in the exact computation of the preference index,
that can be computed based on statistical techniques [44]. Let {X1

i , X
2
i , · · · , X

t
i} be

the random sample of marginal contributions for node i, when considering all the

randomly sampled t permutations in Ω̃. Let X̄i =
∑t

j=1 X j
i

t be an estimator for the
Shapley-value for node i. To understand how close the estimator is to the original
Shapley-value, we first need to compute the variance of the random variable X̄i,

i.e., Var(X̄i) =
∑t

j=1
{X j

i −X̄i}
2

t(t−1) . To evaluate the quality of the estimator, we need to
consider the confidence interval so that we have a certain level of confidence that
the considered interval contains the real Shapley-value. In particular, if we have
that P(X̄i − δ < φi < X̄i + δ) = γ, we can say that the probability, or confidence, is
γ that the interval (X̄i − δ, X̄i + δ) will contain the real Shapley-value φi.

Given these notions, it is possible to construct (1 − α)100 percent confidence
intervals of the form

(
X̄i − z α

2

[
s

t0.5

]
, X̄i + z α

2

[
s

t0.5

])
. Where s is the standard devi-

ation of the random sample and z is the standard normal random variable. For
instance, for α = 0.05 we obtain a 95 percent confidence interval. Moreover, the
random sample size t is a further parameter to be properly set. From the definition
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of confidence interval, we have (1 − α)100 percent probability that the estimator
X̄i deviates from the real Shapley-value by less than z α

2

s
t0.5 which is called as error

e. The value for the error e is important as we can find the sample size t required
to obtain a (1 − α)100 percent confidence interval of width 2e, (X̄i − e, X̄i + e), for

the Shapley-value which is: t ≈
(

z α
2

s

e

)2
.

For a correct evaluation, the parameters for the approximated computation
should be properly set. In particular, we set α = 0.1 so that we get a 90 percent
confidence interval. The error value e is instead computed as the average value of
an initial t′ marginal contribution, multiplied by α. For the initial setting for the
value of t′, we are in line with the observation obtained in [44]. In particular, it
is possible to obtain a good approximation for the marginal contributions of the
nodes even with a moderate size of t′ (i.e., t′ = 60). Based on this initial set of
permutations, we can determine sample size t required to obtain the wished 90%
confidence interval of width 2e as we defined earlier in this section.
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Figure 2: Approximated vs. exact Shapley-value computation in a sample network.

For a clearer view on the effectiveness of the approximated Shapley-value
computation, we analyze a sample study case for a small network where Nmax = 5
so that the exact Shapley-value can also be computed. With reference to Figure 2,
we present the analysis of the situation where an object has to select its best set of
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Nmax friends among six possible choices (i.e., objects with identifier 3, 4, 6, 7, 9,
10). In the plotted results, we report the approximated Shapley-value computation
considering the two proposed utility functions (the bars), their confidence inter-
val (note that α was set to 0.1 for a 90 percent confidence interval) and the exact
Shapley-value for the objects (marked with a ’*’). From the plots, we observe
that in some cases the approximated and the exact Shapley-values actually match,
whereas in the other cases the exact Shapley-value falls within the confidence in-
terval for the approximated value. However, the most important observation to
the scope of our work, is that the object will perform the selection of the same
set of friends as for the exact Shapley-value computation. In particular, with the
average local clustering utility function the selected friends are objects with ID
7, 10, 6, 3, 9 excluding object with ID 4, whereas for the group degree centrality
the preference order for the objects is 6, 10, 7, 3, 9, 4. Noteworthy, even if this
is a sample case, the same results yield for any value of Nmax and network config-
uration. In fact, the proposed approximated computation is applied to the single
objects separately with similar results as those reported in this sample study case.

Considering the proposed approximated Shapley-value computation, the over-
all computational complexity for the algorithm includes the construction of the
preference list (which includes the approximated Shapley-value computation) and
the selection of the best nodes from the list. In particular, the marginal contribu-
tion for each object is computed in O(t(n2)) for the average local clustering model
and in O(t(n)) for the group degree centrality model. Then the sorting algorithm
to order the list of marginal contributions for each object has a complexity of
O(nlog2(n)), whereas the selection of the best nodes from the ordered vector has a
constant cost K equal to Nmax. Thus, the overall computational complexity for the
Shapley-based scheme is O(t(n2)) + nlog2(n) + K) and O(t(n)) + nlog2(n) + K) for
the average local clustering model and the group degree centrality model respec-
tively, where t is a polynomial in n. This shows how the second utility function
introduces a lower computationally burden to the solution.

7. Performance Evaluation

A numerical evaluation has been conducted by using the Matlab® tool for a
wide set of scenarios, to observe the performance of the proposed strategies in
terms of network navigability. To perform the simulations we had to generate
synthetic data about social networks of objects as no real data is available for sig-
nificant numbers of nodes. The approach used to construct the synthetic network
is based on the following main steps:
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1. a social network among humans is analyzed;
2. the social activities of the objects are derived from the previous analysis by

considering that objects encounter each other on the basis of the activities
of the human owners;

3. characteristics of the resulting network are analyzed;
4. a model is then used to create a synthetic network with properties similar to

those observed in the previous step.

We thus rely on the Barabási-Albert model [52], which is able to generate
scale-free (independently from the size) networks based on preferential attach-
ment with the same characteristics of desired target social networks. Preferential
attachment means that the more connected a node is, the more likely it is to re-
ceive new links. The model starts with a small number of nodes and, at each step,
it adds a new node with m edges (m is a parameter for the model set to m = 4 in
our simulations) linked to nodes which are already part of the system. The proba-
bility pi that a new node is connected to an existing node i depends on its degree ki

and on the sum made over all pre-existing nodes j, so that pi = ki/(
∑

j k j) leading
to the name preferential attachment. The model is used to create a network of
the desired size. In our simulations, we started from the data set of the location-
based online social network Brightkite obtained from the Stanford Large Network
Dataset Collection [53]. We terminated the generation of the network when 15k
nodes and 60k edges have been obtained.

As already discussed in [23], the maximum number of friendship relation-
ships Nmax for each node is dynamically changed to keep under control the num-
ber of hubs in the network. Indeed, a constant value for Nmax would bring to a
flat network without hubs, which would adversely affect the network navigability.
Specifically, Nmax has been increased by a value of 10% whenever

there are x% of N nodes in the network with at least y% of Nmax

friends,

where x represents the maximum percentage of hubs in the network, and y
represents the threshold for a node to become a hub.

On the basis of these preliminaries, we proceeded with evaluating the effec-
tiveness of the proposed strategies in terms of network navigability by making use
of local routing rules. To this we selected a simple routing rule which works as it
follows. Consider a scenario where a given object A wishes to communicate with
node B. The first task to perform is to check whether it has a direct connection
with object B, that is, B is among its friends. If not, A asks to the friend object
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with the highest connectivity degree, let say X, to find a route to reach B. Then,
object X repeats the same procedure until object B is finally reached.
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Figure 3: Average path length for different values of the maximum percentage of hubs in the
network.

In Figure 3 the average path length is reported, for different values in the range
[0.05−0.4]% of the maximum percentage of hubs x in the network and by consid-
ering either y = 50%, y = 80% or y = 90%. The proposed solutions are compared
to the case where no limit is set for the number of friends and then no selection
strategy is needed (labeled as “no limit” in the plots), and to a dummy strategy
whereby a node refuses any new request of friendship after reaching Nmax friends
and the connections are static (labeled as “FIFS” in the plots, i.e., First In First
Served).

As we can observe from the plots in Figure 3, a reduction in the number of
hubs in the network (lower values for x) allows for an improvement in the perfor-
mance as the average path length is reduced for all the tested solutions, but the “no
limit” case. This result is in line with what was suggested by the output of Klein-
berg’s studies. A similar effect is also obtained when decreasing the threshold for
a node to become a hub, i.e., the y-value. In fact, this makes it “easier” to happen
that x% of nodes in the network have at least y% of Nmax friends; thus, Nmax in-
creases more rapidly. However, if we relax too much the control parameters, we
fall again in the “no limit” scenario; this is the case of x = 0.05% and y = 50%.
In fact, for this combination of parameters, no matter the strategy adopted, all of
them converge to a performance level equal to the “no limit” case. Theoretically,
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if x is set to 1
N %, then for every node reaching a number of friends equal to y%

of Nmax, the value of Nmax increases. On the other hand, if we set y = 0%, every
node is considered as an hub and Nmax increases no matter what the value for x is.

When comparing the Shapley-based algorithms to the FIFS strategy, we ob-
serve how both utility functions outperform the FIFS solution performing up to
50% better. Additionally, the solution based on the group degree utility performs
better than the solution based on the average local clustering coefficient utility.
This is true independently from the y threshold being set to 80% or 90%. This re-
sult is important as it shows that the ability to reach a larger number of nodes in the
network, as the average degree based utility pursues, is more important than the
ability to reach nodes with low values of local clustering, as pursued by the second
utility function we considered. As was expected, the best performance are always
reached with the “not limit” approach, which however has the major drawback
that the number of friends managed by each object becomes significantly high, as
it is discussed in the following.
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Figure 4: Maximum number of friends for different values of the maximum percentage of hubs in
the network.

The second important result we investigated, is the maximum number of friend-
ships established by a node, which is plotted in Figure 4. We can observe how this
number is mostly influenced by the value of y rather than the particular strategy
implemented (e.g., for y = 90% the plots are overlapping in many of the tested
points). However, it is important to point out how the proposed algorithm is able
to drastically decrease the number of friends that a node has to manage w.r.t. to
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the “no limit” case. This is an interesting result, as it has a positive effect on the
computational burden for the objects.

By comparing Figures 3 and 4, an important observation is that if the number
of hubs in the network is low, then each hub has to manage many friends. This
feature also means that by using more stringent values for x and y parameters, it
is possible to achieve better performance in terms of local navigability, but this
goes at the cost of an increase in the memory consumption, computational power,
and battery life. To limit this problem, an enhancement for the solution could be
to adjust the maximum number of friendships Nmax based on the node features
and then allow only nodes with high computation capabilities, such as vehicles or
smart devices, to become hubs.
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Figure 5: Number of permutations with the corresponding Nmax value, in the computation of the
approximated Shapley-value adopting the average local clustering as utility function. The sample
case is presented with x = 0.4% and y = 80%.

7.1. Influence of the utility function on the approximated Shapley-value computa-
tional cost

The computational burden for the approximated Shapley-value is the focus of
the next set of plots. In particular, in Figures 5 and 6, we report the number of per-
mutations needed to compute the Shapley-value during the simulations (blue line)
and the corresponding value for the maximum number of friends Nmax (green line)
when considering respectively the average local clustering and the group degree
centrality as utility function for the algorithm. In particular, a single study case
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Figure 6: Number of permutations with the corresponding Nmax value, in the computation of the
approximated Shapley-value adopting the group degree centrality as utility function. The sample
case is presented with x = 0.4% and y = 80%

is presented where low restrictive control parameter values are adopted, namely
x = 0.4% and y = 80%, so that more computations are considered. The first ob-
servation is that the maximum value reached by the Nmax parameter is the same in
the two cases (this is consistent with the results in Figure 4).

Further interesting observations derive from the careful observation of these
plots. First of all, when considering the group degree centrality in Figure 6, we ob-
serve that the computational burden (expressed in number of permutations to con-
sider) is influenced by the Nmax value. In fact, the number of permutations needed
to compute the approximated Shapley-value increases every time the maximum
number of friends for the nodes is increased. This feature is not observed instead
when adopting average local clustering as utility function in Figure 5, where a
more constant trend is observed independently from the Nmax value. This behav-
ior can be justified with reference to the high variance of the utility values in the
first t samples computed (please refer to Section 6 for the definition of the t-value).
This results in a high number of samples to consider for a correct approximation
of the Shapley-value (i.e., the t-value). Differently, in the group degree centrality
a change in the value of Nmax will have a lower impact on the variation of utility.
Another observation is related to the number of permutations reduction shown
with the group degree centrality model during a single simulation. It is important
to remind that the model starts with a small number of nodes and, in consecutive
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steps, it adds a new node with m links to nodes that are already part of the system.
According to the approximated Shapley-value computation, when a new friend-
ship request triggers the friendship selection algorithm, the variance of the initial
samples of marginal contributions determines the total number of permutations t
needed to obtain the wished confidence interval (see Section 6 for the details). On
the other hand, when a new node joins a pre-existing set of friends, the variance
is influenced by the strength of the marginal contributions of the original set of
friends. Adopting the group degree centrality model, which forms a set of friends
so that as much nodes as possible are reached, the perturbation of a new node
joining a pre-existing set of friends is relatively low in terms of the utility func-
tion variance. This again leads to a moderate value for the number of samples to
consider for a correct approximation of the Shapley-value, the t-value. Instead, in
the average clustering model a new node can potentially affect the local cluster-
ing coefficient value of every other node in the coalition, so that, on average, the
variance on the initial set of permutations leads to a high number of total marginal
contributions.

8. Conclusion

In this paper we defined the problem of friendship selection in the Social Net-
work of Things, highlighting that if a SIoT is properly created then it can show
the characteristics of a small world network and comply with the condition for
network navigability. Based on this knowledge, we proposed a model for a dis-
tributed friendship selection that relies on the Shapley-value. To this aim, the
friendship selection process in the SIoT is mapped onto the coalition formation
problem for a corresponding cooperative game. Based on two different utility
functions, that meet the constraints for the system, the Shapley-value nicely mod-
els the importance of an object in the social IoT network and is thus used to set
the friendship preferences. The resulting network navigability, in terms of average
number of hops by using local peer search operations, is evaluated and compared
with a standard solution where no limit on the friendships is set for the objects.
The results showed how a better management of the number of friendships is ob-
tained, at the expense of a negligible increase in the number of hops needed to
reach a destination.

A further extension for the implementation of the proposed solution that will
be considered in our future research, is to consider enhancing aspects referring to
the average path length. In particular, in our simulations we have considered all
the possible pairs of nodes to be uniformly distributed over the network. However,

26



it has been proven that friends share similar interests (bringing to the homophily
phenomenon [54]), so that it is highly probable to find another node in the friends
list or in the friend of a friend (FOAF) list, thus reducing the average path length
among all the pairs of nodes. Node similarity for the routing operations has not
been considered so far; indeed, in our simulations nodes try to reach their destina-
tion by using only information about the degree of their neighbors. However, ex-
ternal properties could be used to select the right nodes (among available friends)
to which the desired service is requested. One of these properties is the profile of
the friend involved (accounting for its trustworthiness and the type of relationship
that links it to the requester).
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