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Abstract: A new model for Polyatomic and for Dense Gases has been proposed in literature
in the last five years in the framework of Extended Thermodynamics. The case with an
arbitrary but fixed number of moments has been recently studied, both with the kinetic
approach than with the macroscopic approach; this last one is more general and includes the
results of the kinetic approach only as a particular case.

Scope of the “closure problem” is to find the expression of some arbitrary functions which

appear in the balance equations. Up to now only a recurrence procedure has been published

which outlines how to find the solution of this problem with the macroscopic approach; by

using this procedure, a numberable set of solutions has been found and written explicitly,

while we find here the most general exact solution. It is determined except for some arbirary

terms and it is interesting that these terms appear also in the 24 moments model; so we find

here that they are transmitted from the model with 24 moments to those with an arbitrary

number of moments, without any further arbitrary term.
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1. Introduction

Extended Thermodynamics of Polyatomic Gases (ETDG) with many moments
proposes for every number N the following balance equations

∂tF
i1···in + ∂kF

ki1···in = P i1···in forn = 0, · · ·N + 2. (1)

∂tG
i1···im + ∂kG

ki1···im = Qi1···im form = 0, · · ·N .

and the resulting model is called an N −Model (See [1]-[4] ).

Another possibility is that the index m in eq. (1)2 goes from 0 to an
arbitrary number M restricted by M ≤ N + 1 and the resulting model can be
called the (N − 2,M)− Model as in [5] which belongs to the kinetic approach.
But this apparently more general model can be obtained from the present one
in the following way:

• Let us consider firstly the eqs. (1) with N +M instead of N , that is the
(N +M)−Model.

• Let us consider now the subsystem obtained from the above one by simply
removing from (1)1 the equations for n = N + 3, · · ·N +M +2 and from
(1)2 the equations for m =M +1, · · ·N +M ; this can be done by simply
putting equal to zero the corresponding Lagrange multipliers according
to the technique outlined in [6].

In this way, the (N − 2,M)− Model is recovered starting from the present one.
Now, always in [5], it is shown that in the context of the kinetic approach is
necessary to choose N = M − 1 if we want characterisic velocities depending
on the degrees of freedom of a molecule. This is not a problem because we can
proceed in the following way:

Let us consider the subsystem obtained by simply removing from (1)1 the
equation for n = N + 2; this can be done by simply putting equal to zero the
corresponding Lagrange multiplier according to the technique outlined in [6].
In this way the number of the eqs. (1)2 will be equal to that of (1)1 decreased
of an unity obtaining in this way the same set of equations of [5].

In conclusion, we may consider the N −Model without loss of generality
and this choice is motivated by the fact that within the macroscopic approach
this model is easier to handle.

Before going on, we now recall that the present model belongs to the frame-
work of Extended Thermodynamics (ET) which started with the articles [7],
[8] and produced many other articles the majority of which are reported in the
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book [9]. It used only eqs. (1)1 obtaining the important result to have a sym-
metric hyperbolic system of partial differential equations, with finite speed of
propagation of shock waves and other important properties. But the structure
of ET implied the restriction p = 2

3ρǫ, where p is the equilibrium pressure and ǫ
the internal energy. This problem have been overcome in ETDG by considering
all the balance equations (1) of which the first one is called the ”Mass-Block”
of equations and the second is called the ”Energy-Block” of equations.

The first article on this subject is [10] and, after that, a prolific production
followed; we can read in the references of the book [11] the majority of the
subsequent articles on this subject. The last significative aricle on this subject
is [12], while the contribute of some of the present author in this framework are
[13]-[17] besides those cited above. In (1) the independent variables are F i1···in

and Gi1···im; the quantities F ki1···in and Gki1···im are their corresponding fluxes.
We see that each flux is equal to the independent variable of the subsequent
equation, except for the flux in the last equation of the Mass-Block and for that
in the last equation of the Energy-Block; for these last fluxes we know only that
they are symmetric tensors. We will refer to this property as ”the symmetry
conditions”. The problem will be closed when we know the expressions of
F ki1···iN+2 and Gki1···iN as functions of the independent variables. Restrictions
on their generality are obtained by imposing the entropy principle, the Galilean
relativity principle and the symmetry conditions.

The Entropy Principle can be exploited through Liu’ s Theorem [18] and
by using a bright idea conceived by Ruggeri [19]; so it becomes equivalent to
assuming the existence of Lagrange Multipliers µA and λB which can be taken
as independent variables and, after that, we have

F i1···in =
∂h′

∂µi1···in
, Gi1···im =

∂h′

∂λi1···im
(2)

F ki1···in =
∂h′k

∂µi1···in
, Gki1···im =

∂h′k

∂λi1···im
.

which expresses all the moments in terms of only two unknown functions, the
4-potentials h′, h′k. A nice consequence of eqs. (2) is that the field equations
assume the symmetric form. Another consequence of (2) is that the above
mentioned symmetry conditions and the Galilean Relativity Principle can be
expressed as

∂h′k

∂µi1···in
=

∂h′

∂µki1···in
forn = 0, · · · , N + 1 ;

∂h′[k

∂µi1]i2···iN+2

= 0
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∂h′k

∂λi1···im
=

∂h′

∂λki1···im
form = 0, · · · , N − 1 ;

∂h′[k

∂λi1]···iN
= 0 .

∂h′

∂µk
µi +

N+1
∑

n=1

∂h′

∂µkj1···jn
[(n + 1)µij1···jn + 2λj1···jn−1

δjni] +

+
N−1
∑

s=0

∂h′

∂λkh1···hs
(s+ 1)λih1···hs + h′δki = 0 . (3)

We don’ t go in the details on how the the Galilean Relativity Principle, thanks
also to the other conditions, is equivalent to (3)5; this equivalence can be already
found in literature. In the next section, eqs. (4) and (5), we will exhibit a
particular but significative solution of the conditions (3), which is expressed
through a Taylor’ s expansion around equilibrium; this is defined as the state
where µi1···in = 0 for n = 1, · · · , N + 2, λi1···im = 0 for m = 1, · · · , N , so that
the only variables which are not zero at equilibrium are µ and λ. The first of
these is the chemical potential, while λ = 1

2T with T absolute temperature.

In sect. 3 we will report a part of the proof that eqs. (4) and (5) give a
solution of (3). The second and final part of the proof is described in sect. 4.

2. An Exact Solution of the Conditions (3).

Before writing our solution we need to describe an hard but straightforward
notation:

To do the derivatives with respect to µi1···in a number pn of times, we use
the compact form An,1 to indicate a set of n indexes, An,2 to indicate another
set of n indexes, and so on up to An,pn . For example,

∂p2h′k

∂µh1k1∂µh2k2 · · · ∂µhp2kp2
in the compact notation becomes

∂p2h′k

∂µA2,1
∂µA2,2

· · · ∂µA2,p2

because the first index of A··· ,··· indicates how many indexes has the correspond-
ing µ···, while the second index of A··· ,··· indicates how many derivatives we are
taking with respect to it.

Similarly,
∂p3h′k

∂µh1k1j1∂µh2k2j2 · · · ∂µhp3kp3jp3
becomes
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∂p3h′k

∂µA3,1
∂µA3,2

· · · ∂µA3,p3

and so on. By using this notation, we can now write our solution and it is

h′ =

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
· (4)

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri
[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1)
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

+
∞
∑

r0=0

1

r0!
(−2)

∑N
i=0 ri ·

·

(

N
∑

i=0

ri

)

!C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0

}

·

·δ
(A1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · · µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

h′k =

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri odd

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
· (5)
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·

[

∑N+2
i=1 ipi +

∑N
i=1 iri

]

!!
[

∑N+2
i=0 (i− 2)pi +

∑N
i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri)

∂
∑N

i=1 ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

+
∞
∑

r0=0

1

r0!
(−2)

∑N
i=0 ri

(

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0 ri ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri)

(λ)r0
}

·

·δ
(kA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · · µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · · λBN,1
· · ·λBN,rN

,

where Cr,s is a family of constants such that Cr,s = 0 if at least one of the indexes
r, s is negative or if r > s. Despite the appearance, these expressions are not
complicated. In fact, the factorial 1

p1!
appears also in the Taylor’ s expansions

of functions depending on a single variable; we have here one of these for every
variable, both of the mass block than of the energy block. Moreover, in these
expressions appears the sum of these numbers p1 + p2 + · · ·+ pN+2 of the mass
block and r1 + r2 + · · · + rN of the energy block. Moreover, these numbers
appear also through p1 +2p2 + · · ·+(N +2)pN+2 + r1 +2r2 + · · ·+NrN where
these numbers are multiplied by the order of the Lagrange multiplier which
they represent; after that, their sum is taken. The condition ”p1 + 2p2 + · · ·+
(N + 2)pN+2 + r1 + 2r2 + · · ·+NrN odd” in the expression of h′k is necessary
because the following δ··· must have an even number of indexes; similarly, for
the expression of h′. Here we find only a letter δ··· but it is understood that it is
a shortened symbol denoting the product of some δ··· each one with 2 indexes,
and with a final symmetrization over all these indexes. Finally, in the last line
there is the product of the variables with respect to which we have done the
Taylor’ s expansions.
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3. Proof of the Solution (4) and (5) - Part I

We prove now that (4), (5) is a solution of (3)1−4, while (3)5 will be considered
in the next section.

• Let us begin with (3)1.

To verify it we have to take into account that µi1···in here is denoted with
µAn,1

, or with µAn,2
, and so on up to µAn,pn

. Similarly, µki1···in is denoted
with µAn+1,1

, or with µAn+1,2
, and so on up to µAn+1,pn+1

. Consequently,

the left hand side of (3)1 causes, with respect to the expression (5), a rise
of one unity of the index pn; similarly, the right hand side of (3)1 causes,
with respect to the expression (4), a rise of one unity of the index pn+1.
More precisely, we obtain for both sides the following expression

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN

n+
∑N+2

i=1 ipi +
∑N

i=1 iri odd

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

n+
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!
[

n− 2 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 , n−2+

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri) ·

·
∂
∑N

i=1 ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0 ri

(

N
∑

i=0

ri

)

! ·

· C(1+
∑N+2

i=0
pi+

∑N
i=0

ri , n−2+
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri) (λ)
r0
}

·

·δ
(ki1···inA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

.
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• It is easy to verify (3)2,4.

• Let us continue verifying (3)3 in the case m ≥ 1.

To verify it we have to take into account that λi1···im here is denoted
with λBm,1

, or with λBm,2
, and so on up to λBm,rm

. Similarly, λki1···im
is denoted with λBm+1,1

, or with λBm+1,2
, and so on up to λBm+1,rm+1

.

Consequently, the left hand side of (3)3 with m ≥ 1 causes, with respect
to the expression (5), a rise of one unity of the index rm; similarly, the
right hand side of (3)3 with m ≥ 1 causes, with respect to the expression
(4), a rise of one unity of the index rm+1. More precisely, we obtain for
both sides the following expression

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN

m+
∑N+2

i=1 ipi +
∑N

i=1 iri odd

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

m+
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!
[

m+
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 , m+

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri)

·

·
∂1+

∑N
i=1

ri

∂λ1+
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)1+

∑N
i=0

ri

(

1 +

N
∑

i=0

ri

)

!·

·C(1+
∑N+2

i=0
pi+

∑N
i=0

ri , m+
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri) (λ)
r0
}

·

·δ
(ki1···imA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · · λBN,1
· · ·λBN,rN

,

• Let us conclude verifying (3)3 in the case m = 0.



THE GENERAL EXACT SOLUTION FOR THE MANY... 835

We have the same situation of the above case for its right hand side,
while for its left hand side we have to take simply the derivative of (5)
with respect to λ. More precisely, we obtain for both sides the following
expression

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri odd

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

∑N+2
i=1 ipi +

∑N
i=1 iri

]

!!
[

∑N+2
i=0 (i− 2)pi +

∑N
i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri)·

∂1+
∑N

i=1 ri

∂λ1+
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)1+

∑N
i=0 ri

(

1 +

N
∑

i=0

ri

)

! ·

· C(1+
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri) (λ)
r0
}

·

·δ
(kA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

·µA1,1
· · ·µA1,p1

· · · µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

.

So we have finished to verify that (4), (5) is a solution of (3)1−4 and there
remains to prove that it satisfies also (3)5.

4. Proof of the Solution (4) and (5) - Part II

We prove now that (4), (5) is a solution of (3)5. To this regard we note firstly
that in this condition we can put under an unique summation the coefficients
of µ···, from the first coefficient of a λ··· we can isolate the term with n = 1 and
in the other ones we can change the index of the summation according to the
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law n = 2 + s. In this way (3)5 can be rewritten as

N+1
∑

n=0

∂h′

∂µkj1···jn
(n+ 1)µij1···jn +

∂h′

∂µki
2λ+

N−1
∑

s=0

2λj1···js+1

∂h′

∂µkj1···js+1i

+

+
N−1
∑

s=0

∂h′

∂λkh1···hs
(s + 1)λih1···hs + h′δki = 0 . (6)

• Now, for the first term of this relation we can use (4) and the derivation
causes a presence of the factor pn+1, the substitution of µAn+1,1

· · ·µAn+1,pn+1

with µAn+1,1
· · ·µAn+1,pn+1−1

and the new free indexes kj1 · · · jn in the ex-
pression of δ··· ; more precisely, that term becomes

N+1
∑

n=0

(n+ 1)µij1···jn
∂h′

∂µkj1···jn
=

N+1
∑

n=0

(n+ 1)pn+1 · (7)

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri
[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1)

∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0 ri ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) (λ)

r0
}

·

·δjn+1iδ
(kj1···jnA1,1···A1,p1

···An+1,1···An+1,pn+1−1···AN+2,1···AN+2,pN+2
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B1,1···B1,r1
···BN,1···BN,rN

) ·

·(µ)p0µA1,1
· · ·µA1,p1

· · · µAn+1,1
· · · µAn+1,pn+1−1

·

·µj1···jn+1
· · ·µAN+2,1

· · ·µAN+2,pN+2
λB1,1

· · ·λB1,r1
· · ·λBN,1

· · · λBN,rN
,

where we have also substituted µij1···jn with µj1···jn+1
δjn+1i. Now in this expres-

sion we can insert a symmetrization over all the indexes of the set

j1 · · · jn+1An+1,1 · · ·An+1,pn+1−1

because that expression remains the same if we exchange two of these indexes.
This fact is evident if the two indexes are taken between j1 · · · jn+1; for the
proof in the other cases, let us consider the shortened expression

δjn+1iδ(kj1···jnk1···knkn+1··· )µj1···jn+1
µk1···kn+1

.

Here we can exchange the nomes of the indexes j· with those of the k·, so that
the above shortened expression becomes

δkn+1iδ(kk1···knj1···jnjn+1··· )µk1···kn+1
µj1···jn+1

.

Now we can exchange the indexes k1 · · · kn with the indexes j1 · · · jn in the
expression of δ(kk1···knj1···jnjn+1··· ) because this is a symmetric tensor.

We obtain δkn+1iδ(kj1···jnk1···knjn+1··· )µk1···kn+1
µj1···jn+1

. By comparing this
result with the expression which we started from, it is the same if he had
exchanged the indexes jn+1 and kn+1. This completes the proof of the fact
that the expression (7) remains the same if we exchange two indexes of the set
j1 · · · jn+1An+1,1 · · ·An+1,pn+1−1; so we can insert there a symmetrization over
those indexes and (7) becomes

N+1
∑

n=0

(n+ 1)µij1···jn
∂h′

∂µkj1···jn
=

N+1
∑

n=0

(n+ 1)pn+1· (8)

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri
[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·
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·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1)·

·
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0
}

·

·δjn+1iδ
(kj1···jnA1,1···A1,p1

···An+1,1···An+1,pn+1−1···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···BN,1···BN,rN

) ·

·(µ)p0µA1,1
· · ·µA1,p1

· · ·µAn+1,1
· · ·µAn+1,pn+1−1

µj1···jn+1
· · ·

µAN+2,1
· · · µAN+2,pN+2

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

where underlined indexes denote symmetrization over these indexes. Now
we observe that (n + 1)pn+1 is exactly the number of the indexes of the set
j1 · · · jn+1An+1,1 · · ·An+1,pn+1−1 and that, thanks to the summation

∑N+1
n=0 the

index near i in δjn+1i can be every index of the set
A1,1 · · ·A1,p1 · · ·An+1,1 · · ·An+1,pn+1

· · ·AN+2,1 · · ·AN+2,pN+2
. These

facts allow to rewrite (8) as

N+1
∑

n=0

(n+ 1)µij1···jn
∂h′

∂µkj1···jn
=

[

N+1
∑

n=0

(n+ 1)pn+1

]

· (9)

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri
[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1)·
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·
∂
∑N

i=1
ri

∂λ
∑N

i=1 ri

[(

−1

2λ

)r0
]

+
∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0
}

·

·δjn+1iδ
(kj1···jnA1,1···A1,p1

···An+1,1···An+1,pn+1−1···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···BN,1···BN,rN

) ·

·(µ)p0µA1,1
· · ·µA1,p1

· · · µAn+1,1
· · · µAn+1,pn+1−1

·

·µj1···jn+1
· · ·µAN+2,1

· · ·µAN+2,pN+2
λB1,1

· · ·λB1,r1
· · ·λBN,1

· · · λBN,rN
.

• For the fourth term of (6) we can do similar passages (the difference is
that we have the λ··· instead of the µ···, N − 2 instead of N and s instead
of n); in this way that term becomes

N−1
∑

s=0

(s+ 1)λih1···hs
∂h′

∂λkh1···hs
=

[

N−1
∑

s=0

(s + 1)rs+1

]

· (10)

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri
[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1)·

·
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0
}

·



840 M.C. Carrisi, R.E. Tchame, M. Obounou, S. Pennisi

·δhs+1iδ
(kh1···hsA1,1···A1,p1

···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···Bs+1,1···Bs+1,rs+1−1···BN,1···BN,rN

)
·

·(µ)p0µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · ·λBs+1,1
· · ·λBs+1,rs+1−1

· · ·λBN,1
· · ·λBN,rN

.

• If we look at the last term of (6), we see that it can be written together
with (9) and (10) and they become

N+1
∑

n=0

∂h′

∂µkj1···jn
(n+ 1)µij1···jn +

N−1
∑

s=0

∂h′

∂λkh1···hs
(s + 1)λih1···hs+ (11)

+h′δki =

[

1 +
N+1
∑

n=0

(n+ 1)pn+1 +
N−1
∑

s=0

(s+ 1)rs+1

]

·

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri
[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1)·

·
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0 ri ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) (λ)

r0
}

·

·δkiδ
(A1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·
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·(µ)p0µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · · λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

where also the index k has been put under the symmetrization and we recall
that a property of symmetrization is δikδ(···) = δikδ··· = δ(ik··· ). It is interesting
to see that the coefficient in square bracket at the beginning of the right hand
side of eq. (11) has become equal to the denominator of the half factorial of
that right hand side!

• For the second term of (6), we can use (4) and the derivation causes
someway the rising of one unity of the index p2; more precisely we have

∂h′

∂µki
2λ = (12)

= 2λ

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
N+2
∑

i=1

ipi +
N
∑

i=1

iri

]

!!
1 +

∑N+2
i=0 (i− 2)pi +

∑N
i=1 iri

[

1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1)·

·
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+
∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

! ·

· C(1+
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0
}

·

·δ
(kiA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·(µ)p0µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · · λBN,rN

,
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• There remains to consider the third term of (6); for it we can use (4) and
the derivation causes someway the rising of one unity of the index ps+3;
more precisely we have

N−1
∑

s=0

2λj1···js+1

∂h′

∂µkj1···js+1i

=

N−1
∑

s=0

2λj1···js+1
· (13)

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN

s+ 3 +
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

s+ 4 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!

s+ 4 +
∑N+2

i=1 ipi +
∑N

i=1 iri
·

·
1

[

s+
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri+s)+

·
∂
∑N

i=1
ri

∂λ
∑N

i=1 ri

[(

−1

2λ

)r0
]

+
∞
∑

r0=0

1

r0!
(−2)

∑N
i=0 ri

(

N
∑

i=0

ri

)

! ·

·C(1+
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri+s) (λ)
r0
}

·

·δ
(kj1···js+1iA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

·µA1,1
· · ·µA1,p1

· · · µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · · λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

In this expression, we can substitute λj1···js+1
with λBs+1,rs+1+1

and j1 · · · js+1

with Bs+1,rs+1+1; moreover, we substitute 1
rs+1!

with
rs+1+1

(rs+1+1)! and, after that, decrease rs+1 of one unity (which is equivalent to a
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change of index). So this expression becomes

N−1
∑

s=0

2λj1···js+1

∂h′

∂µkj1···js+1i

=
N−1
∑

s=0

2rs+1· (14)

·

0···∞
∑

p0, · · · , pN+2, r1, · · · , rN

2 +
∑N+2

i=1 ipi +
∑N

i=1 iri even

1

p0!

1

p1!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

i=1 iri

]

!!
[

−1 +
∑N+2

i=0 (i− 2)pi +
∑N

i=1 iri

]

!!
·

·

{

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1)·

·
∂−1+

∑N
i=1

ri

∂λ−1+
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)−1+

∑N
i=0

ri

(

−1 +

N
∑

i=0

ri

)

! ·

· C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0
}

·

·δ
(kiA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)(µ)p0 ·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · · λB1,r1

· · ·λBN,1
· · ·λBN,rN

.

It is true that with change of index we have in the summation the extra term
with rs+1 = 0; but it doesn’t effect the result for the presence of the coefficient
rs+1.
If we look at the expressions (11), (12) and (14) we conclude that to prove (6)
it is sufficient that the following relation holds

0 =
∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) · (15)
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·
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

!·

·C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0 +

+2λ

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) ·

·
∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[(

−1

2λ

)r0
]

+ 2λ

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0

ri

(

N
∑

i=0

ri

)

!

·C(1+
∑N+2

i=0
pi+

∑N
i=0 ri ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) (λ)

r0 +

+
N−1
∑

s=0

2rs+1

{

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 , −1+

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri)·

·
∂−1+

∑N
i=1 ri

∂λ−1+
∑N

i=1
ri

[(

−1

2λ

)r0
]

+

∞
∑

r0=0

1

r0!
(−2)−1+

∑N
i=0 ri

(

−1 +

N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0 ri ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) (λ)

r0
}

.

Now the terms in lines 3, 5 of this relation can be written together as

∂
∑N

i=1
ri

∂λ
∑N

i=1
ri

[

2λ

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 , −1+

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri) ·

·

(

−1

2λ

)r0
]

=

= −
∂
∑N

i=1
ri

∂λ
∑N

i=1 ri

[

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 , −1+

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri)·

·

(

−1

2λ

)r0−1
]

=

= −
∂
∑N

i=1
ri

∂λ
∑N

i=1 ri





∞
∑

ψ=0

C(
∑N+2

i=0
pi−ψ , −1+

∑N+2

i=0
(i−2)pi+

∑N
i=1

iri)·
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·

(

−1

2λ

)ψ
]

=

= −
∂
∑N

i=1 ri

∂λ
∑N

i=1
ri





∞
∑

ψ=1

C(
∑N+2

i=0
pi−ψ ,−1+

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri)

(

−1

2λ

)ψ





where in the second passage we have changed index with the law r0 = ψ+1 and
in the last passage we have excluded the value with ψ = 0 because the derivative
of a constant is zero; obviously this excludes the case with r1+r2+ · · ·+rN = 0.
The result is exactly the opposite of the first term in eq. (15) in the case
r1 + r2 + · · ·+ rN 6= 0. Instead of this, if r1 + r2 + · · ·+ rN = 0 (that is r1 = 0,
r2 = 0, · · · , rN = 0) the term in line 5 of eq. (15) is not present and, while
those in lines 1, 3 reduce to

0 =
∞
∑

r0=1

C(
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi−1)

(

−1

2λ

)r0

+

−

∞
∑

r0=1

C(1+
∑N+2

i=0
pi−r0 ,

∑N+2

i=0
(i−2)pi−1)

(

−1

2λ

)r0−1

=

= −C(
∑N+2

i=0
pi ,

∑N+2

i=0
(i−2)pi−1)

where in the second passage we have changed the index of the second summa-
tion with the law r0 = ψ + 1.
So, up to now, we have found that the terms in lines 1, 3, 5 of eq. (15) are
present only if r1 = 0, r2 = 0, · · · , rN = 0 and, in this case, their sum is

−C(
∑N+2

i=0
pi ,

∑N+2

i=0
(i−2)pi−1) .

Now the term in line 4 of eq. (15) can be transformed by substituting 1
r0!

with
r0+1

(r0+1)! and then decreasing r0 of an unity; in this way it becomes

2
∞
∑

r0=0

r0

r0!
(−2)−1+

∑N
i=0

ri

(

−1 +
N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0 .

It is true that int this way we have added the term with r0 = 0, but this term
gives no contribute, thanks to the factor r0. The result, jointly with the term
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in line 6 of eq. (15) becomes

2
∞
∑

r0=0

1

r0!
(−2)−1+

∑N
i=0 ri

(

N
∑

s=0

rs

)

·

(

−1 +
N
∑

i=0

ri

)

! ·

·C(
∑N+2

i=0
pi+

∑N
i=0 ri ,

∑N+2

i=0
(i−2)pi+

∑N
i=1 iri−1) (λ)

r0 .

Consequently, the sum of the elements in lines 2, 4, 6 of eq. (15) is

∞
∑

r0=0

1

r0!
(−2)

∑N
i=0 ri

[(

N
∑

i=0

ri

)

!−

(

N
∑

s=0

rs

)

·

(

−1 +
N
∑

i=0

ri

)

!

]

·

·C(
∑N+2

i=0
pi+

∑N
i=0

ri ,
∑N+2

i=0
(i−2)pi+

∑N
i=1

iri−1) (λ)
r0

which is zero if r1 + r2 + · · ·+ rN 6= 0, while it is equal to

C(
∑N+2

i=0
pi ,

∑N+2

i=0
(i−2)pi−1) ,

if r1 = 0, r2 = 0, · · · , rN = 0, as a consequence of the identity

r!− r(r − 1)! =

{

0 r > 0
1 r = 0

.

So we have found that the sum of the lines 2, 4, 6 of eq. (15) is the opposite of
the sum of its lines 1, 3, 5. This concludes the proof of eq. (15) and of all the
arguments which we had to prove.

5. Comparison with Previously Known Results

• Let us begin with N = 0, that is the eleven moments model.

We see that in the expression (4) of h′, the second index of C·,· is negative so
that we have h′ = 0.
In the expression (5) of h′k, the second index of C·,· is not negative iff p0 = 0,
p1 = 0 so that
∑2

i=1 ipi cannot be odd; it follows h′k = 0.
These results confirm the closure found in [17] where the contribute (4) and (5)
for h′ and h′k is not present.

• Let us consider the case N = 1, that is the 24 moments model.
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We firstly note that in (4) and (5) we have to impose that the second index of

C·,· must be non negative. For this reason
∑∞

p0=0 transforms in
∑

r+s−p−2

2

p0=0 in

the expression for h′ which is present in eq. (27) of [17] and in
∑

r+s−p−1

2

p0=0 in the

expression for h′k which is present in eq. (26) of [17].

After that, we note that in the line 4 of the present eq. (4) is present the
term

Cp0+p1+p2+p3+r0+r1 ,−2p0−p1+p3+r1−1 whose first index is greater than the
second one. Then this term is zero. There remains only the term in line 3. In
order not to have the first index negative we have to impose r0 ≤ p0+p1+p2+p3;
in order not to have the first index greater than the second one, we have to
impose r0 ≥ 3p0 + 2p1 + p2 − r1 + 1. For this reason

∑∞
r0=1 transforms in

∑p0+p1+p2+p3
ϑ=max{1 , 3p0+2p1+p2−r1+1 in the expression for h′ which is present in eq. (27)

of [17].

For what concerns h′k, we note that in the line 4 of the present eq. (5) is
present a term C·,· whose first index is not greater than the second one only if

p0 = 0, p1 = 0, p2 = 0, r0 = 0 so that
∑N+2

i=1 ipi +
∑N

i=1 iri = 3p3 + r1. It is
easy to identify this term with that in the last line, eq. (26) of [17] with

Fr,s =
(r + 3s)!!

(r + s)!!
(−2)rr!Cr+s, r+s .

For what concerns the term in line 3, in order not to have the first index negative
we have to impose r0 ≤ p0 + p1 + p2 + p3; in order not to have the first index
greater than the second one, we have to impose r0 ≥ 3p0 + 2p1 + p2 − r1. For
this reason

∑∞
r0=1 transforms in

∑p0+p1+p2+p3
ϑ=max{1 , 3p0+2p1+p2−r1

in the expression for

h′k which is present in eq. (26) of [17].

Under every other aspect, the present (4) and (5) are the same thing than
(27) and (26) of [17].

So in the present article we have seen how these terms originated from the
1-Model are transmitted also to the models with subsequent values of N .

Conclusions: In this paper we have found the general exact solution for the
macroscopic approach to extended thermodynamics of polyatomic gases with
many moments. In fact, we can take for h′ the sum of the present expression
(4), of the expression (4) of [2] and of (5) in [4]. Similarly, we can take for h′k

the sum of the present expression (5), of the expression (5) of [2] and of (6) in
[4]. The result is also a solution of the conditions (3) and, in the particular case
N = 1, it is equal to (4) and (5) of [2]. There is no possible further additional
term for h′ and h′k, as outlined in the conclusions of [1]. This confirms the fact
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that the present results completely determine the requested solution for h′ and
h′k.
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