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Abstract

The aim of this study was to determine the energy expenditure of a group of cavers of both

genders and different ages and experience during a 10 hour subterranean exploration, using

portable metabolimeters. The impact of caving activity on body composition and hydration

were also assessed through bioelectrical impedance, and nutritional habits of cavers sur-

veyed. During cave activity, measured total energy expenditure (TEE) was in the range 225–

287 kcal/h for women-men (MET = 4.1), respectively; subjects had an energy intake from

food in the range 1000–1200 kcal, thus inadequate to restore lost calories. Bayesian statisti-

cal analysis estimated the effect of predictive variables on TEE, revealing that experienced

subjects had a 5% lower TEE than the less skilled ones and that women required a compara-

tively larger energy expenditure than men to perform the same task. BIVA (bioelectrical

impedance vector analysis) showed that subjects were within the range of normal hydration

before and after cave activity, but bioelectrical changes indicated a reduction of extracellular

water in men, which might result in hypo-osmolal dehydration in the case of prolonged under-

ground exercise. All these facts should be considered when planning cave explorations, pre-

paring training programs for subjects practising caving, and optimizing a diet for cavers.

Further, information gathered through this study could be of value to reduce accidents in

caves related to increase in fatigue.

Introduction

Caves are an hostile environment for human beings. Total darkness, high air humidity, muddy

and slippery conditions, the recurring presence of rivers, waterfalls and/or lakes, characterise

the underground world [1]. Temperature is usually constant within a cave, but can vary greatly

in absolute terms, as caves are found in a variety of settings, from cold alpine environment to

warm tropical rain forests. Notwithstanding these conditions, tens of thousands of cavers

worldwide enjoy the exploration of natural cave systems as a recreational outdoor activity,

although it certainly cannot be considered a mass sport [2]. Caves are abundant around the

world. In Italy alone, some forty thousands caves are known [3]. In Britain, the main caving
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areas are the Mendip Hills, the Yorkshire Dales, and the Derbyshire Peak District, where lime-

stone formations can be found [4]. The US are home to some of the most extensive cave sys-

tems in the word, including Mammoth Cave, with more than 400 miles explored [5].

Caving is a peculiar recreational activity, given the uniqueness of the environment where it

takes place. The morphology of caves is very variable. Depths of several hundreds meters and

kilometric lengths are not unusual, with explorations by cavers (also called spelunkers, potho-

lers, or speleologists) lasting many hours, or even days, and requiring extensive walking, crawl-

ing, climbing and ropework, and considerable physical stamina [6].

Besides being the field for recreational cavers, caves have been also used as a natural

laboratory where significant research activity is carried out by scientists of different disci-

plines, like geology, hydrogeology, and biology. Also, natural chambers, caverns and caves

are sometimes found in mines. Cave systems have also been used as military transporta-

tion and escape routes and as weapons caches. Finally, showcase caves are visited by mil-

lions of tourists each year.

Despite this intense human frequentation of caves, however, very little is known about

human behaviour in this austere environment. In particular, knowledge on physical activity

and associated physiological processes during caving explorations is scant. The effects of high

humidity, more commonly associated to elevated temperatures, on human exercise perfor-

mance has been studied to some extent. In particular, it is well understood that dehydration

(and hyperthermia), if sufficiently severe, will impair prolonged aerobic exercise performance,

and that while acclimatization/adaptation might reduce the impact of high environmental

temperatures, it provides limited protection when humidity is high [7–9]. However, given the

particular mix of environmental conditions in the underground world, this knowledge cannot

be transferred to exercise during cave exploration in a straightforward manner. As for caves,

indeed, most of the available biomedical scientific literature deals with human circadian sys-

tems in caves [10] and with caving injuries [11–13], probably not surprisingly if one considers

the medical and logistical challenges associated with cave rescue operations. Some specific

studies have focused on very peculiar cases, such as the analysis of the cardio-vascular, neuro-

logical and metabolic physiological activities of cavers in the Naica Caves, Mexico, where tem-

perature exceeds 45˚ C and humidity is well over 90% [14]. On the other hand, more limited

attention has been devoted to the modification of biochemical and haematological parameters

during conventional speleological practice [15–17].

In the attempt to contribute to fill this gap, we have measured the energy expenditure

and impact of caving activity on body composition and hydration status of a group of cav-

ers of both genders and different ages and experience during a 10 hour subterranean explo-

ration. To this purpose, we have applied bioelectrical impedance vector analysis (BIVA)

[18], a procedure usable in the field, that has demonstrated to accurately evaluate hydration

status (classic BIVA) and body composition according to the two-compartment model

(specific BIVA). Given the particular environment and the long-lasting sessions of caving

it is possible to hypothesise that this kind of physical activity may lead to a physical stress

which can be not trivial for the body homeostasis. In particular, we were interested in the

potential impact of caving on hydration and energy expenditure. This knowledge would

allow the design of specific training programs able to induce the specific adaptations

required by caving, and to make informed recommendations regarding the proper nutri-

tion and hydration of cavers during underground activity. Furthermore, information gath-

ered through this study could be of value to reduce accidents in caves related to increase in

fatigue.

Energy expenditure in caving
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Materials and methods

Participants

A total of forty subjects, 16 women and 24 men, were enrolled for this study. The study was

performed in accordance with the Declaration of Helsinki and was approved by the Ethics

Committee of the University of Cagliari. Written informed consent was obtained from all par-

ticipants. They were all Italians, mean age (± standard deviation, SD) 44 ± 19 (range 25–63

years), and were categorized into three groups according to their caving experience: beginners

(<5 years experience), amateurs (5–10 years experience) and experts (> 10 years experience).

Before entering the study, subjects were carefully screened for cardiac, pulmonary, and meta-

bolic problems, and for neurological diseases. None of them had any cardiovascular, respira-

tory, metabolic, or neurological disease, confirmed by clinical history, basal ECG and physical

examination. None of the involved subjects has been taking any drug during the two weeks

before cave exploration. Assessment of physical capacity was performed duringin the labor an

incremental exercise test (IET) on cycle-ergometer (CUSTO Med, Ottobrunn, Germany). Gas

exchange analysis was conducted with a gas analyzer (ULTIMA CPX, MedGraphics St. Paul,

MN) calibrated immediately before each IET. Values anaerobic threshold (AT), maximum

workload (Wmax) and maximum oxygen uptake (VO2max) were assessed. For all subjects, sev-

eral anthropometric and nutritional status parameters were also measured, together with the

hydration status before and after the cave exploration (see below). Cavers entered the cave in

small groups (6–7 individuals) in different dates between June and September 2015. The

underground exploration followed a common route for all subjects (total distance� 3 Km),

and began in the morning (10 a.m.) and ended in the evening of the same day (6:00–8:00 p.

m.), lasting between 8 and 10 hours. While underground, all the subjects kept continuously on

the move apart from short technical pauses (e.g., ropes and narrow passages) and a brief half-

an-hour rest before beginning the way back toward the exit, and did not sleep.

Cave description

Field measurements were performed in the Su Palu cave, no. 1988 SA/OG of the Sardinian

regional registry of caves [19], situated in the karst area of the Gulf of Orosei, central-east Sar-

dinia, Italy (Fig 1). The cave is part, together with the Su Spiria-Monte Longos cave, of the

Codula Ilune karst system extending for over 70 km, one of the largest in Europe [20,21]. Su

Palu cave has been selected because of the size and proper combination of the elements which

cavers usually encounter during their explorations, including pitches–that require complete per-

sonal equipment for progression on ropes–extensive sub-horizontal galleries, narrow passages,

subterranean rivers and lakes. The internal temperature is constant year round� 14–15˚C, and

cave air relative humidity is� 95–100%, a normal value for caves with active waters [22].

Measurement of underground energy expenditure

Energy expenditure was measured in 36 cavers (13 women, 23 men; age: 42.4 ± 8.5). Exclusion

of four subjects from energy expenditure measurement was not due to any particular reason

but availability of metabolimeters on the day of cave exploration. Anthropometric parameters

and changes in bodycomposition and hydration status (see below) were assessed for all 40 cav-

ers involved in the study. Metabolic parameters were assessed before, during and after caving

activity by means of SenseWear Armband Fit Core (BodyMedia, Inc., Pittsburgh, PA), a wire-

less activity monitor which is equipped with sensors measuring skin temperature, heat flux,

galvanic skin response and acceleration (sensor of movement) (Fig 2) [23,24]. The physiologi-

cal data obtained were then analysed and elaborated by a dedicated algorithm available in the

Energy expenditure in caving
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software (software V.6.1, algorithm V.2.2.3), and the metabolic data (total, active, and rest

energy expenditure; metabolic equivalents of task (METs); total number of steps; physical

activity duration; sleep duration; rest duration) collected. The software calculates the energy

expenditure for each minute of data using complex pattern recognition algorithms, composed

of ‘‘activity classification” (context detection) and ‘‘energy expenditure estimation” [23].

According to the manufacturer, the armband system accuracy is as follows: total calories/METs

for free living activities, mean error<10%; total minutes of physical activity, mean error<5%;

total step count, mean error<9%. The monitor is worn on the upper arm over the triceps mus-

cle and at midhumerus point and is lightweight and comfortable enough to be used in the cave

environment without hampering movement. All subjects were instructed to remove the arm-

band only for bathing purposes (at about 200 m fom the cave’s entrance, a short sump must be

passed to enter the inner part of the cave); when downloading the data, the software provided

percentages of on-body time, confirming that all subjects weared the armband for at least 98%

of the time they spent in the cave. Accelerometers are a practical and effective compromise

Fig 1. A snapshot of Su Palu cave, Gulf of Orosei, central-east Sardinia, Italy.

doi:10.1371/journal.pone.0170853.g001
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between accuracy and feasibility for measuring energy expenditure. They are relatively inexpen-

sive and generally well tolerated by research participants. The accuracy of SenseWear armbands

in the measurement of energy expenditure both during daily life and exercise has been con-

firmed by several dedicated studies [25–27].

Anthropometric measurements

Weight and height, upper arm, wrist, chest, waist, hip, thigh, ankle, and calf circumferences

were taken by an experienced operator in accordance with standard international criteria [28].

Body mass index was calculated as weight/height2 (kg/m2).

Fig 2. Cavers wearing armbands after a sump passage in the Su Palu cave (see main text for more details).

doi:10.1371/journal.pone.0170853.g002
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Nutritional status and dietary intake

Nutritional status of participants was assessed through bioelectric impedance (see below).

Energy intake was determined by means of a self-administered dietary recall lasting four days,

which included the day of cave activity. Reported data were analyzed through the Winfood1

software.

Bioimpedance analysis

The bioelectrical measurements (resistance, R, Ohm; reactance, Xc, Ohm) were taken according

to standard international criteria [29], using the impedentiometer analyzer BIA 101 (Akern, Flor-

ence, Italy). Both the classic [30] and specific [31] bioelectrical vector analyses (BIVA) were

applied. In classic BIVA, bioelectrical values are adjusted for height (R/H, Ohm/m; Xc/H, Ohm/

m) in order to eliminate the conductor length effect, while in specific BIVA (R sp, Ohm cm; Xc

sp, Ohm cm) they are adjusted for the whole conductor volume (correction factor A/L, in meters,

where A (area) and L (length) are estimated as: A = (0.45 arm area + 0.10 waist area + 0.45 calf

area) (m2); L = 1.1 H (m) and multiplied by a factor of 100. The phase angle is calculated as arc-

tan Xc/R (degrees) in both BIVA approaches. Classic and specific vectors can be projected on a

Cartesian plane defined by the adjusted resistance and reactance. Individual or sample character-

istics can be compared with tolerance ellipses representing the variability of the reference popula-

tion, thus allowing a semi-quantitative evaluation of body composition. In classic BIVA, the

major axis of the tolerance ellipses refers to hydration status (dehydrated individuals towards the

upper pole), while in specific BIVA it refers to the relative amount of fat mass. In both cases, the

minor axis refers to body cell mass (higher values on the left side), particularly to muscular mass,

and to extracellular-intracellular (ECW/ICW) water ratio (higher values on the right side). In this

study, the reference population was represented by Italian adults [32] in classic BIVA and by

Italo-Spanish young adults in specific BIVA [33]. The analyses of classic BIVA [34] and specific

BIVA (http://specificbiva.unica.it/) were realized using freely available BIVA software.

Statistical analysis

Weight and bioelectrical measurements taken before and after cave activity were compared

using Student’s t test for paired samples. A Bayesian model of linear regression was applied

[35] to estimate the effect of predictive variables on total energy expenditure (TEE; in log

scale), considering the repetition of measurements in a normal day and in the day of cave

activity (partial, i.e. limited to the activity in the cave, and full day, i.e. along the 24 hours). The

Bayesian model is similar to an ordinary linear regression except that it provides the probabil-

ity distribution of the coefficient, given the data, and it also allows for random individual effect,

which are not possible with an ordinary linear regression. As every Bayesian model, it is esti-

mated using prior distributions that are very weakly informative with respect to the sample

size. Approximately, prior distributions employed in the research are as informative as just one

observed subject. In this way, the inference is almost totally data driven and the prior has very

little importance. Because of the large number of involved parameters the model has been esti-

mated using Integrated Nested Laplace Approximation (INLA) [36] instead of the more usual

Markov Chain Monte Carlo (MCMC) methods [35]. The regression included individual ran-

dom effects in order to account for possible specific individual heterogeneity in the TEE which

is not related to the predictive variables. Normality of the response variable was assessed either

informally with a Quantile-Quantile plot as well as formally with the Kolmogorov-Smirnov test

which did not reject the normality with a strong evidence in favor of it (p-value = 0.945). The

effect of each variable is evaluated by calculating the exponential of the mean coefficient which

corresponds to the increase or decrease in LOG in the TEE for a change in the predictive

Energy expenditure in caving
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variable. An effect was considered significant if its posterior probability of being positive or neg-

ative was at least 95%. For example, if the coefficient of variable gender when it is M (men) has

a 95% credible interval (i.e. the interval which contains the true value with 95% of probability)

represented by an entirely positive range, the predicted variable TEE can be considered signifi-

cantly higher in men than in women. The degree of the increment is estimated by the mean

coefficient and the uncertainty by the 95% posterior credible interval. Positive values of the coef-

ficient indicate a higher TEE value, while negative coefficient a reduced one. The set of predic-

tors along with their interactions have been chosen according to Bayes Factors between the set

of all possible involved models with all main effects and all two-by-two interactions. The good-

ness of the regression model has been empirically evaluated by comparing the observed data

with those estimated by the model, considering the posterior credible interval of the predicted

value of TEE. If such interval contains the observed value then it is possible to state that the case

is adequately predicted by the model, otherwise not. The proportion of observed TEE ade-

quately predicted by the model represents the goodness of fit measure of the regression model.

This analysis avoids the use of p-values to assess the significance of the effects (i.e. predictors) in

estimating the TEE, instead providing the probability of a significant effect and also its magni-

tude. Statistical analyses were performed using the free software R (http://www.R-project.org).

Results

Anthropometric parameters of all 40 cavers involved in the study, and data concerning mea-

sured energy expenditure of the 36 cavers wearing metabolimeters during underground activ-

ity, are shown in Table 1. Results of the IET show that on average AT occurred at 163.9±12.5 w

(i.e. about 74.5% of Wmax), while their Wmax was 220.5±16.5 w. VO2max was 2532.7±348.6

ml�min-1 (i.e. 34.6±3.4 ml/kg�min-1). These data indicated that cavers had a level of aerobic fit-

ness higher than that of a sedentary population. Mean BMI was indicative of normal weight in

both genders, even if a non-trivial proportion (50%) of men was overweight. However, cavers

of both genders in general showed a quite low quantity of relative fat mass with respect to the

reference sample of Italo-Spanish young adults, as measured through specific BIVA (Fig 3).

Comparison of dietary intake and energy expenditure (TEE) in a normal day versus the full

cave day and cave activity per se, offers interesting cues (Table 1). For both men and women,

despite the fact that the intake during full cave day was significantly greater than an average

Table 1. Anthropometric measurements, physiological variables, and dietary intake.

Men Women

Mean SD Mean SD

Height (m) 1.7 0.1 1.6 0.1

Weight (kg) 73.2 11.7 55.4 6.0

BMI 24.7 3.0 21.8 2.1

TEE (kcal/24h), normal day 3487.9 528.2 2367.3 316.6

TEE (kcal/24h), cave day 5128.5 862.5 3980.9 441.1

TEE (kcal/h), cave activity 287.5 48.5 225.4 27.9

MET’s, cave activity 4.1 0.7 4.1 0.5

Intake (kcal/24 h), normal day 2640.7 673.5 1858.1 324.3

Intake (kcal/24 h), cave day 3393.7 1530.3 2672.9 732.3

Intake (kcal/10 h), cave activity 1186.8 473.4 1008.2 513.2

BMI, body mass index; MET, metabolic equivalent of task; TEE, total energy expenditure; SD, standard

deviation.

doi:10.1371/journal.pone.0170853.t001
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normal day, energy expenditure during cave day largely exceeded the energy supplied by diet.

Also, cave activity burned more energy than that present in food consumed underground.

During full cave day, most of the intake was concentrated in the post-cave meal.

The time course of total energy expenditure (TEE, kcal/h) for women and men during cav-

ing activity is shown in Fig 4. The graph gives a precise idea of the energy required by all sub-

jects to sustain cave activity, and shows for both women and men a rather constant energetic

effort along the entire 10 hours span of underground exploration. The decrease in energy

expenditure notable at two hours after cave entrance, followed by a rapid increase in energy

expenditure at three hours after cave entrance, are probably due to the particular morphology

of Su Palu cave, and the succession of technical pauses (e.g., passage of sump) and climbing/

rope work. Most likely, initial acclimatization to cave environment also played a role in shap-

ing the time course of energy expenditure [37], but more focused experimental work should

be conducted to ascertain this.

During the day of cave activity, weight (Student’s t = 2.4; p< 0.05), classic and specific reac-

tance (Student’s t = -2.6 in both cases; p< 0.05), and phase angle (Student’s t = -2.9; p< 0.05)

increased significantly in men, but not in women (Table 2). The lack of significant variation in

specific resistance indicates that the percentage of fat mass remained quite constant [31]. As

for hydration status, classic BIVA showed that cavers were within the range of normal hydra-

tion before and after the cave activity (Fig 5). However, the bioelectrical change observed in

men indicates a reduction of extracellular water [31].

The regression model allowed the correct estimate of 62% of the observations. Of the eight

variables considered in the regression along with three interactions, five variables–gender,

physical status, intake, physical activity level (PAL), cave activity–significantly predicted TEE,

Fig 3. Individual bioelectrical vectors (specific BIVA). Individual bioelectrical vectors projected on the

Italo-Spanish reference [33]. Men on the left, women on the right.

doi:10.1371/journal.pone.0170853.g003

Fig 4. Time course of total energy expenditure (TEE, kcal/h) during cave activity, for women and men.

Dotted lines show confidence interval.

doi:10.1371/journal.pone.0170853.g004
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together with the interaction among gender and cave activity (partial), and among gender and

intake (Table 3, Fig 6). In particular, not surprisingly men showed a TEE higher than that of

women, with a mean value of 1.79, that is 79% more TEE than women. Overweight individuals

showed 8% more TEE than normal weight ones, while age was not significantly related to TEE.

Experienced cavers had a 5% lower TEE than the less skilled ones. Full day cave activity

induced a significantly larger effect than normal day activity (32% more TEE), while partial

day cave activity did not show a larger TEE with respect to the normal full day. Men showed a

significantly lower TEE (around 22% less) than women during cave activity, as shown by the

significant interaction between gender and partial day activity. In other terms, women

required comparatively more energetic efforts than men during underground activity to per-

form the same task. The intake and PAL were both significantly related to TEE (11% and

0.01% of increase of TEE, respectively). Intake also showed a significant interaction with

Table 2. Bioelectrical values before (pre) and after (post) partial day cave activity.

Pre-cave activity Post-cave activity

Mean SD Mean SD p

Men

R/H 296.6 38.5 297.5 33.1

Xc/H 28.1 5.9 30.3 6.2 *

Rsp 335.7 38.3 338.5 42.3

Xcsp 31.5 5.0 34.0 5.5 *

Phase angle 9.4 1.3 10.1 1.7 **

Women

R/H 388.6 34.1 389.2 36.8

Xc/H 33.7 3.2 34.2 4.7

Rsp 349.5 29.5 349.9 30.4

Xcsp 30.4 3.6 30.8 4.4

Phase angle 8.7 0.8 8.8 1.0

H, height; R, resistance; Rsp, specific resistance; Xc, reactance; Xcsp: specific reactance

* p < 0.05

** p < 0.01; SD, standard deviation.

doi:10.1371/journal.pone.0170853.t002

Fig 5. Mean bioelectrical vectors (classic BIVA). Mean bioelectrical values projected on the Italian

reference [32]. Men on the left, women on the right.

doi:10.1371/journal.pone.0170853.g005
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gender in predicting TEE, as in men the increase of TEE was slightly but significantly lower

than women (1/10000 less).

Discussion

This is the first study to measure energy expenditure during cave exploration. Whether caving

should be regarded as a sport or rather a recreational physical activity is a matter of discussion.

Historically, caving can be considered a descendant of mountaineering (alpinism) and climb-

ing, and most of the caving techniques and equipment derive directly from those used in those

disciplines. Climbing (climbing wall) will be on display as a new sport at the Buenos Aires

Youth Olympic Games in 2018, a teaser of what is to come in 2020 at the Olympic Games in

Tokyo [38]. On the other hand, what certainly is lacking in caving to be fully defined as a sport

Table 3. Posterior distribution of effects along with posterior credible intervals.

Mean SD 95% Credible Interval Statistical significance

Gender (men) 0.58 0.11 (0.36, 0.80) yes

Age -0.03e-1 0.02e-1 (-0.07e-1, 0.06e-2) no

BMI class (overweight) 0.08 0.03 (0.01, 0.15) yes

Intake (cave activity) 0.01e-2 0.00 (0.00, 0.02e-2) yes

PAL 0.10 0.02 (0.06, 0.14) yes

Experience -0.05 0.02 (-0.09, -0.02e-1) yes

Day cave 0.32 0.07 (0.18, 0.46) yes

Day cave, partial -0.15 0.08 (-0.31, 0.08e-1) no

Gender (men)—intake -0.01e-2 0.00 (-0.02e-2, 0.00) yes

Gender (men)—day cave -0.08e-1 0.08 (-0.17, 0.15) no

Gender (men)—day cave, partial -0.25 0.09 (-0.42, -0.08) yes

Significant effects are those for which the respective posterior credible intervals do not contain 0; BMI, body mass index; PAL, physical activity level; SD,

standard deviation. For more details, see Methods.

doi:10.1371/journal.pone.0170853.t003

Fig 6. Bayesan linear regression estimate of the effect of predictive variables on total energy

expenditure. Mean effects (bullets) along with 95% posterior credible intervals. Significant effects are in red.

GEN (M), gender (men); BMI (OW), BMI class (overweight); PAL, Physical Activity Level; Day cave P, Day

cave, partial; GEN (M)–DC, gender (men)—Day cave; GEN (M)–DCP, gender (men)—Day cave, partial;

GEN (M)–INT, gender (men)–intake.

doi:10.1371/journal.pone.0170853.g006
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is that it does not include any element of competition [39]. We opt for considering caving as a

recreational physical activity.

Comparing our recorded data on energy expenditure during caving with published surveys

of the intensity of physical activity in sports [40,41] and guidelines on the definition of the

level of intensity of general physical activities [42], it emerges that caving can be considered a

moderate intensity exercise. Although caving is sometimes resembled to alpinism and climb-

ing, as explained above, both rock ascending and rappelling are much more energy intense

[40,41,43]. When non-competitive, recreational physical activities are taken as a reference, the

exercise intensity required by caving sits in an intermediate position between, say, recreational

visits to natural environments (�3–3,5 METs) [44] and recreational scuba diving (�5–6 METs)

[45]. However, since cave explorations are usually carried out for a prolonged time, cavers must

often sustain an overall elevated energy expenditure and thus might well experience a consider-

able increase in fatigue, which in turn can increase the risk of injuries. Great care should there-

fore be paid to planning underground activities taking into proper consideration the physical

condition and experience of involved cavers. As our study shows, experienced cavers have a

lower mean energy expenditure than less skilled ones, and can therefore sustain more extensive

underground explorations. Thus, experienced cavers have a higher yield (work/energy expendi-

ture), i.e. consume less energy for doing the same thing everyone else is doing: a well known

fact in biomechanics [46]. However, while optimized efficiency–intended as minimized energy

expenditure and maximized work output–is evident for experienced cavers versus less experi-

enced ones, it not clear at this stage whether these results can be achieved only through exten-

sive frequentation of caves or if a specific outdoor/indoor training program, designed to closely

reproduce the type of physical activity cavers will be performing during cave exploration, would

have comparable effects on efficiency during caving activity [47,48].

We determined the nutritional habits of cavers, both during a normal day and during cave

activity. In general terms, the main purpose of nutrition is to ensure the compensation of

increased energy consumption and the need for nutrients in the subject’s body, thereby

enabling maximum adaptation to physical loads and also to reduce dehydration and further

sustain the activity. Our survey indicates that, while underground, cavers tend to introduce

less calories than those burned during cave activity. Subjects had a cave energy intake in the

range 1000–1200 kcal, while TEE was in the range 225–287 kcal/h, for 8–10 hours. Cavers con-

sumed light-weight, physically tough, high-energy-dense foods, such as dried fruits, nuts,

chocolate, energetic bars, parmesan cheese, and honey. Such dietary choices are in line with

the necessity of avoiding heavy loads to be carried over long distances during cave exploration

and the inclination to stick to easy-to-digest foods during exercise [49]. Such a large discrep-

ancy between energy intake and energy expenditure is probably sustainable in the case of cave

explorations lasting up to 15–16 hours. However, for longer underground explorations, a

more balanced diet is required, with food portions high in carbohydrates, low in fat, and

adequate in protein, able to fully restore lost calories. Clearly, energy intake is an important

variable to be considered when devising strategies for optimizing performance, even in recrea-

tional physical activities such as caving. However, our survey showed that cavers did not adopt

any particular nutritional strategy during the days before cave activity, not complying specifi-

cally with any of the available recommendations on energy intake before, during and after

exercise [50]. As mentioned above, the selection of foods consumed during cave activity was

merely based on previous experience and practicality, rather than an estimation of energy

intake needs and subsequent preparation of adequate food portions. Although poor compli-

ance with official nutritional recommendations is not rare among athletes [51], in the case of

caving the lack of evidence-based knowledge on nutritional requirements for this activity

makes the problem more radical, and calls for tailored studies aimed to drafting guidelines for
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an adequate nutrition pre- and during-cave activity, to improve performance and reduce the

risk of incidents.

Hydration is an important physiological parameter for subjects performing exercise in gen-

eral. In particular, hypohydration and electrolyte balance perturbations can impair aerobic

exercise performance, this effect being closely related to environmental parameters like heat,

cold, and air humidity [52]. In the case of cavers, it is especially intriguing to monitor fluid bal-

ance and body water, given the long-duration activity and the reduced tendency to drink in

the underground environment because of high air humidity. As skin temperature is elevated

in proportion to ambient temperature and humidity, and high skin temperature is in turn

linked to an increased requirement on sweat secretion and evaporation to regulate body tem-

perature [52], the possibility of hypohydration (mainly due to sweat loss) during caving is con-

crete. BIVA analysis indicated a normal overall level of hydration for cavers, but a tendency to

the reduction of extracellular water in men. This suggests that a more prolonged, or physically

demanding cave activity might ensue in hypo-osmolal dehydration, if an appropriate amount

of salts is not introduced together with water [53]. Ingestion of fluids is effective in limiting the

detrimental effects on performance but while in our case cavers only drank salt-free water

(max. 1 L per person), it might be recommendable to make use of thirst quenchers able to

replace the electrolytes lost with sweat, in addition to water.

As caves vary greatly in shape, length, and environmental conditions (relative air humidity

and temperature), it is not possible to translate our results to all caving activities in a straightfor-

ward manner. For example, it would be of great interest to measure energy expenditure and var-

iations of body composition (hydration) in subjects involved in explorations of caves in tropical

settings, where air temperature can easily attain 35˚C [54]. In these cases, indeed, the combina-

tion of hot air and humidity would probably lead to a heat load that would impact heavily on

hydration and exercise efficiency [37]. Also, not all cavers perform the same activities. For

example, cave rescue teams might be called to sustain heavy work loads underground for many

hours, sometimes days, to complete rescue operations [55]. Finally, caves have lately been

selected as natural environments apt to train astronauts for long periods of permanence in

space and extraterrestrial exploration. This because “caves are dark, remote places, with con-

stant temperature, many logistic problems and stressors (isolation, communication and supply

difficulties, physical barriers), and their exploration requires discipline, teamwork, technical

skills and a great deal of behavioural adaptation,” [56]. In all these cases a deep knowledge of

physical adaptation to exercise and/or permanence in cave environments and associated

changes in body composition and nutritional requirements, as preliminarily assessed by our

study, would be crucial in order to achieve better performances and reduce the risk of injury.

Conclusions

In conclusion, we have provided evidence that, despite inherent logistic difficulties, energy

expenditure and modification of physiological parameters and body composition during cav-

ing can be measured and interpreted. Also, nutritional habits and hydration of cavers were

assessed, revealing interesting details that will be useful in defining an ideal diet for this special

type of physical activity that requires a protracted, although moderately intense, exercise under

singular environmental conditions. Since the scientific literature on caving is scarce, its distin-

guishing characteristics call for more research to better determine the physiological basis of

this activity in a variety of settings and for multiple purposes. From a methodological point of

view, we have shown the usefulness and suitability of bioimpedance vector analysis to evaluate

body composition variations in subjects performing physical activity in extreme environments,

such as those related to cave exploration.
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33. Ibáñez ME, Mereu E, Buffa R, Gualdi-Russo E, Zaccagni L, Cossu S, et al. New specific bioelectrical

impedance vector reference values for assessing body composition in the Italian-Spanish young adult

population. Am J Hum Biol. 2015; 27: 871–876. doi: 10.1002/ajhb.22728 PMID: 25892076

34. Piccoli A, Pastori G. BIVA software. Padova: Department of Medical and Surgical Sciences, University

of Padova, 2002. Available from: http://www.renalgate.it/formule_calcolatori/BIVAguide.pdf

35. Hoff PD. A first course in Bayesian statistical methods. New York: Springer-Verlag; 2009.

36. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using inte-

grated nested Laplace approximations. J R Stat Soc Series B. 2009; 71: 319–392.

37. Wendt D, van Loon LJC, van Marken Lichtenbelt WD. Thermoregulation during exercise in the heat

strategies for maintaining health and performance. Sports Med. 2007; 37: 669–682. PMID: 17645370

38. International Olympic Committee. Three new sports to join Buenos Aires 2018 YOG progamme. 6

December 2016. Available from: https://www.olympic.org/news/three-new-sports-to-join-buenos-aires-

2018-yog-programme.

39. SportAccord. Definition of sport. 2016. Available from. http://www.sportaccord.com/about/membership/

definition-of-sport.php.

40. Kent M. Food and Fitness: A Dictionary of Diet and Exercise. Oxford: Oxford University Press; 1997.

Energy expenditure in caving

PLOS ONE | DOI:10.1371/journal.pone.0170853 February 3, 2017 14 / 15

http://dx.doi.org/10.1136/bjsm.2005.021402
http://www.ncbi.nlm.nih.gov/pubmed/16505080
http://dx.doi.org/10.1038/ejcn.2014.170
http://www.ncbi.nlm.nih.gov/pubmed/25139557
http://www.catastospeleologicoregionale.sardegna.it/webgis/
http://www.catastospeleologicoregionale.sardegna.it/webgis/
http://www.federazionespeleologicasarda.it/
http://dx.doi.org/10.1249/MSS.0b013e3181e0b3ff
http://www.ncbi.nlm.nih.gov/pubmed/20386334
http://dx.doi.org/10.1016/j.jsams.2015.01.013
http://www.ncbi.nlm.nih.gov/pubmed/25804422
http://www.ncbi.nlm.nih.gov/pubmed/15126727
http://www.ncbi.nlm.nih.gov/pubmed/17344495
http://dx.doi.org/10.1136/bjsm.2008.048868
http://www.ncbi.nlm.nih.gov/pubmed/18628358
http://www.ncbi.nlm.nih.gov/pubmed/7967368
http://dx.doi.org/10.1371/journal.pone.0058533
http://dx.doi.org/10.1371/journal.pone.0058533
http://www.ncbi.nlm.nih.gov/pubmed/23484033
http://www.ncbi.nlm.nih.gov/pubmed/7840061
http://dx.doi.org/10.1002/ajhb.22728
http://www.ncbi.nlm.nih.gov/pubmed/25892076
http://www.renalgate.it/formule_calcolatori/BIVAguide.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17645370
https://www.olympic.org/news/three-new-sports-to-join-buenos-aires-2018-yog-programme
https://www.olympic.org/news/three-new-sports-to-join-buenos-aires-2018-yog-programme
http://www.sportaccord.com/about/membership/definition-of-sport.php
http://www.sportaccord.com/about/membership/definition-of-sport.php


41. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical

activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000; 32 (Suppl. 9):

S498–S504.

42. Centers for Disease Control and Prevention. General physical activities defined by level of intensity.

Available from: http://www.cdc.gov/nccdphp/dnpa/physical/pdf/PA_Intensity_table_2_1.pdf

43. España-Romero V, Jensen RL, Sanchez X, Ostrowski ML, Szekely JE, Watts PB. Physiological

responses in rock climbing with repeated ascents over a 10-week period. Eur J Appl Physiol. 2012;

112: 821–828. doi: 10.1007/s00421-011-2022-0 PMID: 21674246

44. Elliott LR, White MP, Taylor AH, Herbert S. Energy expenditure on recreational visits to different natural

environments. Soc Sci Med. 2015; 139: 53–60. doi: 10.1016/j.socscimed.2015.06.038 PMID:

26151390

45. Buzzacott P, Pollock NW, Rosenberg M. Exercise intensity inferred from air consumption during recrea-

tional scuba diving. Diving Hyperb Med. 2014; 44: 74–78. PMID: 24986724

46. Hamill J, Knutzen K, Derrick T. Biomechanical basis of human movement. 4th ed. Philadelphia: Lippin-

cott Williams & Wilkins; 2014.

47. Plowman SA, Smith DL. Exercise physiology for health, fitness, and performance. 4th ed. Baltimore:

Lippincott Williams & Wilkins; 2014.

48. Hollowell RP, Willis LH, Slentz CA, Topping JD, Bhakpar M, Kraus WE. Effects of exercise training

amount on physical activity energy expenditure. Med Sci Sports Exerc. 2009; 41: 1640–1644. doi: 10.

1249/MSS.0b013e31819c71a4 PMID: 19568195

49. MIT Caving Club. An introduction to caving for the novice caver. 1999. Available from: http://www.mit.

edu/activities/spelunk/introtocaving.html.

50. Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, et al. ISSN exercise & sport nutri-

tion review: research & recommendations. J Int Soc Sports Nutr. 2010; 7: 7. doi: 10.1186/1550-2783-7-

7 PMID: 20181066

51. Praz C, Granges M, Burtin C, Kayser B. Nutritional behaviour and beliefs of ski-mountaineers: a semi-

quantitative and qualitative study. J Int Soc Sports Nutr. 2015; 12: 46. doi: 10.1186/s12970-015-0108-5

PMID: 26664337

52. Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and human performance: impact of environ-

ment and physiological mechanisms. Sports Med. 2015; 45 Suppl 1: S51–S60.

53. Zubieta-Calleja G, Paulev P-E. New Human Physiology. 2nd ed. Textbook in Medical Physiology And

Pathophysiology Essentials and clinical problems. Copenhagen: The University of Copenhagen; 2004.

Available from: http://www.zuniv.net/physiology/book/index.htm.

54. Cheeptham N, editor. Cave Microbiomes: A Novel Resource for Drug Discovery. New York: Springer-

Verlag; 2013.

55. Hempel JC, Fregeau-Conover A. On Call: A Complete Reference for Cave Rescue. Huntsville:

National Speleological Society; 2001.

56. Bessone L, Beblo-Vranesevic K, Antonello Cossu Q, De Waele J, Leuko S, Marcia P, et al. ESA

CAVES: Training astronauts for space exploration. In: Proceedings of the 16th International Congress

of Speleology. Brno; 2013. pp. 321–327.

Energy expenditure in caving

PLOS ONE | DOI:10.1371/journal.pone.0170853 February 3, 2017 15 / 15

http://www.cdc.gov/nccdphp/dnpa/physical/pdf/PA_Intensity_table_2_1.pdf
http://dx.doi.org/10.1007/s00421-011-2022-0
http://www.ncbi.nlm.nih.gov/pubmed/21674246
http://dx.doi.org/10.1016/j.socscimed.2015.06.038
http://www.ncbi.nlm.nih.gov/pubmed/26151390
http://www.ncbi.nlm.nih.gov/pubmed/24986724
http://dx.doi.org/10.1249/MSS.0b013e31819c71a4
http://dx.doi.org/10.1249/MSS.0b013e31819c71a4
http://www.ncbi.nlm.nih.gov/pubmed/19568195
http://www.mit.edu/activities/spelunk/introtocaving.html
http://www.mit.edu/activities/spelunk/introtocaving.html
http://dx.doi.org/10.1186/1550-2783-7-7
http://dx.doi.org/10.1186/1550-2783-7-7
http://www.ncbi.nlm.nih.gov/pubmed/20181066
http://dx.doi.org/10.1186/s12970-015-0108-5
http://www.ncbi.nlm.nih.gov/pubmed/26664337
http://www.zuniv.net/physiology/book/index.htm

