PSEUDO-RIEMANNIAN SYMMETRIES ON HEISENBERG GROUPS

MICHEL GOZE, PAOLA PIU AND ELISABETH REMM

Abstract

The notion of Γ-symmetric space is a natural generalization of the classical notion of symmetric space based on \mathbb{Z}_{2}-grading on Lie algebras. We consider homogeneous spaces G / H such that the Lie algebra \mathfrak{g} of G admits a Γ-grading where Γ is a finite abelian group. In this work we study Riemannian metrics and Lorentzian metrics on the Heisenberg group \mathbb{H}_{3} adapted to the symmetries of a Γ-symmetric structure on \mathbb{H}_{3}. We prove that the classification of Riemannian and Lorentzian \mathbb{Z}_{2}^{2}-symmetric metrics on \mathbb{H}_{3} corresponds to the classification of its left-invariant Riemannian and Lorentzian metrics, up to isometry. We study also the \mathbb{Z}_{2}^{k}-symmetric structures on G / H when G is the $(2 p+1)$-dimensional Heisenberg group. This gives examples of non-Riemannian symmetric spaces. When $k \geq 1$, we show that there exists a family of flat and torsion free affine connections adapted to the \mathbb{Z}_{2}^{k}-symmetric structures.

1. Introduction

A symmetric space can be considered as a reductive homogeneous space G / H on which acts an abelian subgroup Γ of the automorphisms group of G with Γ isomorphic to $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ and H the subgroup of G composed of the fixed points of the automorphisms belonging to Γ. If we suppose that the Lie groups G and H are connected and that G is simply connected, it is equivalent to provide G / H with a symmetric structure or to provide the Lie algebra \mathfrak{g} of G with a \mathbb{Z}_{2}-graduation $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]=\mathfrak{g}_{i+j(\bmod 2)}$. Riemannian symmetric spaces form an interesting class of symmetric spaces. But there are symmetric spaces which are not Riemannian symmetric. We describe examples when G is the Heisenberg group. Nevertheless, a symmetric space is always provided with an affine connection ∇ which is torsion free and has a curvature tensor satisfying $\nabla R=0$. When the symmetric space is Riemannian, this connection is the Levi-Civita connection of the metric. A natural generalization of the notion of symmetric space can be obtained by considering that the subgroup Γ is abelian, finite and not necessarily isomorphic to \mathbb{Z}_{2}. When Γ is cyclic isomorphic to \mathbb{Z}_{k} it corresponds to the generalized symmetric spaces of $[2,13,15]$. These structures are also characterized by \mathbb{Z}_{k}-graduations of the complexified Lie algebra $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes \mathbb{C}$ of \mathfrak{g}. We get another interesting case when $\Gamma=\mathbb{Z}_{2}^{k}$ because the characteristic graduation is defined on \mathfrak{g} and not on $\mathfrak{g}_{\mathbb{C}}$. When \mathfrak{g} is simple the \mathbb{Z}_{2}^{2}-graduations of \mathfrak{g} have been classified as well as the \mathbb{Z}_{2}^{2}-symmetric spaces G / H when G is simple connected ($[1,12]$). All these spaces are Riemannian (see [16]). But, in this paper, we provide some examples of non Riemannian symmetric spaces studying symmetric spaces G / H when G is the Heisenberg group $\mathbb{H}_{2 p+1}$. We study also, for $k>1, \mathbb{Z}_{2}^{k}$-symmetric structures on these homogeneous spaces showing, in particular, that these spaces are Riemannian and affine. But contrary to the symmetric

[^0]case, there exist on these spaces affine connections different from the canonical (or the LeviCivita) connection and more adapted to the symmetries of G / H that the canonical one. We describe these connections and we prove that there exists connections adapted to the \mathbb{Z}_{2}^{k} symmetries which are flat and torsion free.

2. \mathbb{Z}_{2}^{k}-SYMMETRIC SPACES

2.1. Recall on symmetric and Riemannian symmetric spaces. A symmetric space is a triple (G, H, σ) where G is a connected Lie group, H a closed subgroup of G and σ an involutive automorphism of G such that $G_{e}^{\sigma} \subset H \subset G^{\sigma}$ where $G^{\sigma}=\{x \in G, \sigma(x)=x\}$, G_{e}^{σ} the identity component of G^{σ}. If (G, H, σ) is a symmetric space, to each point \bar{x} of the homogeneous manifold $M=G / H$ corresponds an involutive diffeomorphism $\sigma_{\bar{x}}$ which has \bar{x} as an isolated fixed point. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H. The automorphism $\sigma \in \operatorname{Aut}(G)$ induces an involutive automorphism of \mathfrak{g}, denoted by σ again, such that \mathfrak{h} consists of all elements of \mathfrak{g} which are left fixed by σ. We deduce that the Lie algebra \mathfrak{g} is \mathbb{Z}_{2}-graded: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ with $\mathfrak{m}=\{X \in \mathfrak{g}, \sigma(X)=-X\},[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m},[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$ and $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}$. If we assume that G is simply connected and H connected, then the \mathbb{Z}_{2}-grading $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ defines a symmetric space stucture (G, H, σ). Thus, under these hypothesis, it is equivalent to speak about \mathbb{Z}_{2}-grading of Lie algebras or symmetric spaces.

An important class of symmetric spaces consists of Riemannian symmetric spaces. A Riemannian symmetric space is a Riemannian manifold M whose curvature tensor field associated with the Levi-Civita connection is parallel. In this case the geodesic symmetry at a point $u \in M$ attached to the Levi-Civita connection is an isometry and, if we fix u, it defines an involutive automorphism σ of the largest group of isometries G of M which acts transitively on M. We deduce that M is an homogeneous manifold $M=G / H$ and the triple (G, H, σ) is a symmetric space. Let us note that, in this case, H is compact. When $H \cap Z(G)=\{e\}$, this last condition is equivalent to $a d_{\mathfrak{g}}(H)$ compact. Here $Z(G)$ denotes the center of G. Conversely, if (G, H, σ) is a symmetric space such that the image $a d_{\mathfrak{g}}(H)$ of H under the adjoint representation of G is a compact subgroup of $G l(\mathfrak{g})$, then \mathfrak{g} admits an $a d_{\mathfrak{g}}(H)$-invariant inner product and \mathfrak{h} and \mathfrak{m} are orthogonal with respect to it. This inner product restricted to \mathfrak{m} induces an G-invariant Riemannian metric on G / H and G / H is a Riemannian symmetric space. For example, if H is compact, $a d_{\mathfrak{g}}(H)$ is also compact and (G, H, σ) is a Riemannian symmetric space. Assume now that H is connected, then $a d_{\mathfrak{g}}(H)$ is compact if and only if the connected Lie group associated with the linear algebra $a d_{\mathfrak{g}}(\mathfrak{h})=\{a d X, X \in \mathfrak{h}\}$ is compact. In this case, \mathfrak{g} admits an $a d_{\mathfrak{g}}(\mathfrak{h})$-invariant inner product φ, that is, $\varphi([X, Y], Z)+\varphi(Y,[X, Z])=0$ for all $X \in \mathfrak{h}$ and $Y, Z \in \mathfrak{g}$ such that $\varphi(\mathfrak{h}, \mathfrak{m})=0$. An interesting particular case is the following. Assume that \mathfrak{g} is \mathbb{Z}_{2}-graded and that this grading is effective that is \mathfrak{h} doesn't contain non trivial ideal of \mathfrak{g}. If $a d_{\mathfrak{g}}(\mathfrak{h})$ is irreducible on \mathfrak{m}, then \mathfrak{g} is simple, or a sum $\mathfrak{g}_{1}+\mathfrak{g}_{1}$ with \mathfrak{g}_{1} simple or \mathfrak{m} abelian. In the first case, the Killing-Cartan form K of \mathfrak{g} induces a negative or positive defined bilinear form on \mathfrak{m}. It follows a classification of \mathbb{Z}_{2}-graded Lie algebras when \mathfrak{g} is simple or semi-simple.

Many results on the problem of classifications concern more particularly the simple Lie algebras. For solvable or nilpotent Lie algebras, it is an open problem. A first approach is to study induced grading on Borel or parabolic subalgebras of simple Lie algebras. In this work we describe Γ-grading of the Heisenberg algebras. Two reasons for this study

- Heisenberg algebras are nilradical of some Borel subalgebras.
- The Riemannian and Lorentzian geometries on the 3-dimensional Heisenberg group have been studied recently by many authors.
Thus it is interesting to study the Riemannian and Lorentzian symmetries with the natural symmetries associated with a Γ-symmetric structure on the Heisenberg group. In this paper
we prove that these geometries are entirely determinated by Riemannian and Lorentzian structures adapted to \mathbb{Z}_{2}^{2}-symmetric structures.

2.2. Γ-symmetric spaces. Let Γ be a finite abelian group.

Definition 1. A Γ-symmetric space is a triple $(G, H, \tilde{\Gamma})$ where G is a connected Lie group, H a closed subgroup of G and $\tilde{\Gamma}$ a finite abelian subgroup of the group $\operatorname{Aut}(G)$ of automorphisms of G isomorphic to Γ such that $G_{e}^{\Gamma} \subset H \subset G^{\Gamma}$ where $G^{\Gamma}=\{x \in G, \sigma(x)=x \quad \forall \sigma \in \tilde{\Gamma}\}, G_{e}^{\Gamma}$ the identity component of G^{Γ}.

If Γ is isomorphic to \mathbb{Z}_{2} then we find the notion of symmetric spaces again. If Γ is isomorphic to \mathbb{Z}_{k} with $k \geq 3$, then Γ is a cyclic group generated by an automorphism of order k. The corresponding spaces are called generalized symmetric spaces and have been studied by A.J. Ledger, M. Obata [15], A. Gray, J. A. Wolf, [9] and O. Kowalski [13]. The general notion of Γ-symmetric spaces was introduced by R. Lutz [14] and was algebraically reconsidered by Y. Bahturin and M. Goze [1].

An equivalent and useful definition is the following:
Definition 2. Let Γ be a finite abelian group. A Γ-symmetric space is an homogeneous space G / H such that there exists an injective homomorphism $\rho: \Gamma \rightarrow \operatorname{Aut}(G)$ where $\operatorname{Aut}(G)$ is the group of automorphisms of the Lie group G, the subgroup H satisfies $G_{e}^{\Gamma} \subset H \subset G^{\Gamma}$ where $G^{\Gamma}=\{x \in G / \rho(\gamma)(x)=x, \forall \gamma \in \Gamma\}$ and G_{e}^{Γ} is the connected identity component of G^{Γ} of G.

In [1], one proves that, if G and H are connected, then the triple $(G, H, \tilde{\Gamma})$ is a Γ-symmetric space if and only if the complexified Lie algebra $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ of \mathfrak{g} is Γ-graded: $\mathfrak{g}_{\mathbb{C}}=\bigoplus_{\gamma \in \Gamma} \mathfrak{g}_{\gamma}$ where $\mathfrak{g}_{\epsilon}=\mathfrak{h}$ is the Lie algebra of H with ϵ the unit of Γ. In this case, we have the relations $\left[\mathfrak{g}_{\gamma}, \mathfrak{g}_{\gamma^{\prime}}\right] \subset \mathfrak{g}_{\gamma \gamma^{\prime}}$ for all $\gamma, \gamma^{\prime} \in \Gamma$.

In fact, the derivative of an automorphism σ of G belonging to $\tilde{\Gamma}$ is an automorphism of \mathfrak{g}, still denoted σ. So if γ runs over $\tilde{\Gamma}$, we obtain a subgroup $\hat{\Gamma}$ of the group of automorphisms of \mathfrak{g} which is isomorphic to Γ. The elements of $\hat{\Gamma}$ are automorphisms of \mathfrak{g} of finite order, pairwise commuting and the Γ-grading corresponds to the spectral decomposition of $\mathfrak{g}_{\mathbb{C}}$ associated with the abelian finite group $\hat{\Gamma}$. Conversely, if we have a Γ-grading of $\mathfrak{g}_{\mathbb{C}}$, and if we denote by $\check{\Gamma}$ the dual group of Γ, that is, the group of characters, thus $\check{\Gamma}$ is a finite abelian group isomorphic to Γ. Any element $\chi \in \check{\Gamma}$ can be considered as an automorphism of $\mathfrak{g}_{\mathbb{C}}$ by $\chi(X)=\chi(\gamma) X$ for any homogeneous vector $X \in \mathfrak{g}_{\gamma}$. Thus $\check{\Gamma}$ is an abelian subgroup of $\operatorname{Aut}\left(\mathfrak{g}_{\mathbb{C}}\right)$ isomorphic to Γ and the Γ-grading of \mathfrak{g} corresponds to the spectral decomposition associated with $\check{\Gamma}$ considered as an abelian finite subgroup of $A u t\left(\mathfrak{g}_{\mathbb{C}}\right)$. Then, if we assume that G is also simply connected, we have a one-to-one correspondence between the set of Γ-symmetric stuctures and the Γ-gradings of \mathfrak{g}.

In [14], it is shown that for any $\bar{x} \in M=G / H$, there exists a subgroup $\Gamma_{\bar{x}}$ of the group $\mathcal{D} \operatorname{iff}(M)$ of diffeomorphisms of M, isomorphic to Γ, such that \bar{x} is the unique point of M satisfying $\sigma(\bar{x})=\bar{x}$ for any $\sigma \in \Gamma_{\bar{x}}$. By extension, the elements of $\Gamma_{\bar{x}}$ are also called symmetries of M.
2.3. \mathbb{Z}_{2}^{k}-symmetric spaces. Assume that $\Gamma=\mathbb{Z}_{2}^{k}$. In this case any element of $\hat{\Gamma}$ is an involutive automorphism of \mathfrak{g} and the eigenvalues are real. Since the elements of $\hat{\Gamma}$ are pairwise commuting, we define a spectral decomposition of \mathfrak{g} itself. This implies a \mathbb{Z}_{2}^{k}-grading defined on $\mathfrak{g}: \mathfrak{g}=\bigoplus_{\gamma \in \Gamma} \mathfrak{g}_{\gamma}$. For example, if $k=2$, then $\Gamma=\{a, b, c, \epsilon\}$ where ϵ is the identity, with $a^{2}=b^{2}=c^{2}=\epsilon, \quad a b=c, \quad b c=a, \quad c a=b$. and $\hat{\Gamma}$ contains 4 elements, $\sigma_{a}, \sigma_{b}, \sigma_{c}$ and the identity $I d$. These maps are involutive and satisfy $\sigma_{a} \circ \sigma_{b}=\sigma_{c}, \quad \sigma_{b} \circ \sigma_{c}=\sigma_{a}, \quad \sigma_{c} \circ \sigma_{a}=\sigma_{b}$.

Each one of these linear maps is diagonalizable, and because they are pairwise commuting, we can diagonalize all these maps simultaneously. Let $\mathfrak{g}_{a}=\left\{X \in \mathfrak{g}, \sigma_{a}(X)=X, \sigma_{b}(X)=-X\right\}$, $\mathfrak{g}_{b}=\left\{X \in \mathfrak{g}, \sigma_{a}(X)=-X, \sigma_{b}(X)=X\right\}, \mathfrak{g}_{c}=\left\{X \in \mathfrak{g}, \sigma_{a}(X)=-X, \sigma_{b}(X)=-X\right\}$ and $\mathfrak{g}_{\epsilon}=\left\{X \in \mathfrak{g}, \sigma_{a}(X)=X, \sigma_{b}(X)=X\right\}$ be the root spaces. We have $\mathfrak{g}=\mathfrak{g}_{\epsilon} \oplus \mathfrak{g}_{a} \oplus \mathfrak{g}_{b} \oplus \mathfrak{g}_{c}$.

Let us return to the general case $\Gamma=\mathbb{Z}_{2}^{k}$. If G is connected and simply connected and H connected, then the Γ-grading of \mathfrak{g} determine a structure of Γ-symmetric space on the triple $(G, H, \tilde{\Gamma})$. We will say also that the homogeneous space G / H is a \mathbb{Z}_{2}^{k}-symmetric space.

Proposition 3. Any \mathbb{Z}_{2}^{k}-symmetric homogeneous space G / H is reductive.
Proof. In fact if $\mathfrak{g}=\bigoplus_{\gamma \in \mathbb{Z}_{2}^{k}} \mathfrak{g}_{\gamma}$ is the associated decomposition of \mathfrak{g}, thus putting $\mathfrak{m}=\bigoplus_{\gamma \in \Gamma, \gamma \neq \epsilon} \mathfrak{g}_{\gamma}$,
we have $\mathfrak{g}=\mathfrak{g}_{\epsilon} \oplus \mathfrak{m}$ with $\left[\mathfrak{g}_{\epsilon}, \mathfrak{g}_{\epsilon}\right] \subset \mathfrak{g}_{\epsilon}$ and $\left[\mathfrak{g}_{\epsilon}, \mathfrak{m}\right] \subset \mathfrak{m}$. The decomposition $\mathfrak{g}=\mathfrak{g}_{\epsilon} \oplus \mathfrak{m}$ is reductive.

In general $[\mathfrak{m}, \mathfrak{m}]$ is not a subset of \mathfrak{g}_{ϵ}, except if $k=1$.
Two \mathbb{Z}_{2}^{k}-gradings $\mathfrak{g}=\bigoplus_{\gamma \in \mathbb{Z}_{2}^{k}} \mathfrak{g}_{\gamma}$ and $\mathfrak{g}=\bigoplus_{\gamma^{\prime} \in \mathbb{Z}_{2}^{k}} \mathfrak{g}^{\prime} \gamma^{\prime}$ of \mathfrak{g} are called equivalent if there exist an automorphism π of \mathfrak{g} and an automorphism ω of \mathbb{Z}_{2}^{k} such that $\mathfrak{g}_{\gamma^{\prime}}^{\prime}=\pi\left(\mathfrak{g}_{\omega(\gamma)}\right)$ for any $\gamma^{\prime} \in \mathbb{Z}_{2}^{k}$. If we consider only connected and simply connected groups G, and connected subgroups H, then the classification of \mathbb{Z}_{2}^{k}-symmetric spaces is equivalent to the classification, up to equivalence, to \mathbb{Z}_{2}^{k}-gradings on Lie algebras. For example, the \mathbb{Z}_{2}^{2}-grading of classical simple complex Lie algebras are classified in [1]. This classification is completed for exceptional simple algebras in [12].
2.4. Riemannian and pseudo-Riemannian \mathbb{Z}_{2}^{k}-symmetric spaces. Let $\left(G, H, \mathbb{Z}_{2}^{k}\right)$ be a \mathbb{Z}_{2}^{k}-symmetric space with G and H connected. The homogeneous space $M=G / H$ is reductive. Then there exists a one-to-one correspondence between the G-invariant pseudoRiemannian metrics g on M and the non-degenerated symmetric bilinear form B on \mathfrak{m} satisfying $B([Z, X], Y)+B(X,[Z, Y])=0$ for all $X, Y \in \mathfrak{m}$ and $Z \in \mathfrak{g}_{\epsilon}$.

Definition 4. [8] $A \mathbb{Z}_{2}^{k}$-symmetric space $M=G / H$ with $A d_{G}(H)$ compact, is called Riemannian \mathbb{Z}_{2}^{k}-symmetric if M is provided with a G-invariant Riemannian metric g whose associated bilinear form B satisfies
(1) $B\left(\mathfrak{g}_{\gamma}, \mathfrak{g}_{\gamma^{\prime}}\right)=0$ if $\gamma \neq \gamma^{\prime} \neq \epsilon \neq \gamma$
(2) The restriction of B to $\mathfrak{m}=\oplus_{\gamma \neq \epsilon} \mathfrak{g}_{\gamma}$ is positive definite.

In this case the linear automorphisms which belong to $\hat{\Gamma}$ are linear isometries. Some examples are described in [16].
Proposition 5. Let $\left(G, H, \mathbb{Z}_{2}^{k}\right)$ be a Riemannian \mathbb{Z}_{2}^{k}-symmetric space, G and H supposed to be connected. Then H is compact.

Proof. In fact, H coincides with the identity component of the isotropy group which is compact.
Example: \mathbb{Z}_{2}^{k}-symmetric nilpotent spaces. Let $\left(G, H, \mathbb{Z}_{2}^{k}\right)$ be a \mathbb{Z}_{2}^{k}-symmetric space with G nilpotent. Such a space will be called a \mathbb{Z}_{2}^{k}-symmetric nilpotent space. If $k=1$, we cannot have on G / H a Riemannian symmetric metric except if G is abelian. But, if $k \geq 2$, there exist Riemannian \mathbb{Z}_{2}^{k}-symmetric nilpotent spaces. For example, let G be the 3-dimensional Heisenberg Lie group. Its Lie algebra \mathfrak{h}_{3} admits a basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ with $\left[X_{1}, X_{2}\right]=X_{3}$. We have a \mathbb{Z}_{2}^{2}-grading of \mathfrak{h}_{3} :

$$
\mathfrak{h}_{3}=\{0\} \oplus \mathbb{R}\left\{X_{1}\right\} \oplus \mathbb{R}\left\{X_{2}\right\} \oplus \mathbb{R}\left\{X_{3}\right\}
$$

and the metric $g=\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}$ defines a structure of Riemannian \mathbb{Z}_{2}^{k}-symmetric nilpotent space on $H_{3} /\{e\}=H_{3}$ where $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ is the dual basis of $\left\{X_{1}, X_{2}, X_{3}\right\}$. We will develop this calculus in the next sections.

A Lorentzian metric on a n-dimensional differential manifold M is a smooth field of non-degenerate quadratic forms of signature $(n-1,1)$. We say that a homogeneous space ($M=G / H, g$) provided with a Lorentzian metric g is Lorentzian if the canonical action of G on M preserves the metric. If M is reductive and if $\mathfrak{g}=\mathfrak{g}_{\epsilon} \oplus \mathfrak{m}$, the Lorentzian metric is determinate by the $a d \mathfrak{g}_{\epsilon}$-invariant non-degenerate bilinear form B with signature $(n-1,1)$.
Definition 6. Let $\left(G, H, \mathbb{Z}_{2}^{k}\right)$ be a \mathbb{Z}_{2}^{k}-symmetric space. It is called Lorentzian if there exists on the homogeneous space $M=G / H$ a Lorentzian metric g such that one of the two conditions is satisfied:
(1) The homogeneous non trivial components \mathfrak{g}_{γ} of the \mathbb{Z}_{2}^{k}-graded Lie algebra \mathfrak{g} are orthogonal and non-degenerate with respect to the induced bilinear form B.
(2) One non trivial component $\mathfrak{g}_{\lambda_{0}}$ is degenerate, the other components are orthogonal and non-degenerate.
Let us note that, in this case, H is not necessarily compact. Some examples of Lorentzian \mathbb{Z}_{2}^{k}-symmetric nilpotent spaces are described in the next sections.

3. Affine structures on \mathbb{Z}_{2}^{k}-Symmetric spaces

Let $\left(G, H, \mathbb{Z}_{2}^{k}\right)$ be a \mathbb{Z}_{2}^{k}-symmetric space. Since the homogeneous space G / H is reductive, from [11], Chapter X, we deduce that $M=G / H$ admits two G-invariant canonical connections denoted by ∇ and $\bar{\nabla}$. The first canonical connection, ∇, satisfies

$$
\left\{\begin{array}{l}
R(X, Y)=-\operatorname{ad}\left([X, Y]_{\mathfrak{h}}\right), \quad T(X, Y)=-[X, Y]_{\mathfrak{m}}, \quad \forall X, Y \in \mathfrak{m} \\
\nabla T=0 \\
\nabla R=0
\end{array}\right.
$$

where T and R are the torsion and the curvature tensors of ∇. The tensor T is trivial if and only if $[X, Y]_{\mathfrak{m}}=0$ for all $X, Y \in \mathfrak{m}$. This means that $[X, Y] \in \mathfrak{h}$ that is $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$. If the grading of \mathfrak{g} is given by \mathbb{Z}_{2}^{k} with $k>1$, then $[\mathfrak{m}, \mathfrak{m}]$ is not a subset of \mathfrak{h} and then the torsion T need not to vanish. In this case the other connection $\bar{\nabla}$ is given by $\bar{\nabla}_{X} Y=\nabla_{X} Y-T(X, Y)$. This is an affine invariant torsion free connection on G / H which has the same geodesics as ∇. This connection is called the second canonical connection or the torsion-free canonical connection.
Remark. Actually, there is another way of writing the canonical affine connection of a Γ-symmetric space, without any reference to Lie algebras. This is done by an intrinsic construction of Γ-symmetric spaces proposed by Lutz in [14].
3.1. Associated affine connection. Any symmetric space G / H is an affine symmetric space, that is, it is provided with an affine connection ∇ whose torsion tensor T and curvature tensor R satisfy

$$
T=0, \quad \nabla R=0
$$

where

$$
\begin{aligned}
\nabla R\left(X_{1}, X_{2}, X_{3}, Y\right)= & \nabla\left(Y, R\left(X_{1}, X_{2}, X_{3}\right)\right)-R\left(\nabla\left(Y, X_{1}\right), X_{2}, X_{3}\right) \\
& -R\left(X_{1}, \nabla\left(Y, X_{2}\right), X_{3}\right)-R\left(X_{1}, X_{2}, \nabla\left(Y, X_{3}\right)\right)
\end{aligned}
$$

for any vector fields X_{1}, X_{2}, X_{3}, Y on G / H. It is the only affine connection which is invariant by the symmetries of G / H. This means that the two canonical connections, which are defined on an homogeneous reductive space, coincide if the reductive space is symmetric.

For example, if G / H is a Riemannian symmetric space, this connection ∇ coincides with the Levi-Civita connection associated with the Riemannian metric.

Let us return to the general case. Let us assume that G / H is a reductive homogeneous space, and let $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ be the reductive decomposition of \mathfrak{g}. Any connection on G / H is given by a linear map $\bigwedge: \mathfrak{m} \rightarrow g l(\mathfrak{m})$ satisfying $\bigwedge[X, Y]=[\bigwedge(X), \lambda(Y)]$ for all $X \in \mathfrak{m}$ and $Y \in \mathfrak{h}$, where λ is the linear isotropy representation of \mathfrak{h}. The corresponding torsion and curvature tensors are given by: $T(X, Y)=\bigwedge(X)(Y)-\bigwedge(Y)(X)-[X, Y]_{\mathfrak{m}}$ and $R(X, Y)=$ $[\bigwedge(X), \bigwedge(Y)]-\bigwedge[X, Y]-\lambda\left([X, Y]_{\mathfrak{h}}\right)$ for any $X, Y \in \mathfrak{m}$.

Let $\left(G, H, \mathbb{Z}_{2}^{k}\right)$ be a \mathbb{Z}_{2}^{k}-symmetric space. We have recalled that, when $k=1$, the homogeneous space G / H is an affine symmetric space. But, as soon as $k>1$, in general the two canonical connections do not coincide and the torsion tensor of the first one is not trivial. We can consider connections adapted to the \mathbb{Z}_{2}^{k}-symmetric structures.

Definition 7. Let ∇ be an affine connection on the \mathbb{Z}_{2}^{k}-symmetric space G / H defined by the linear map $\bigwedge: \mathfrak{m} \rightarrow g l(\mathfrak{m})$. Then this connection is called adapted to the \mathbb{Z}_{2}^{k}-symmetric structure, if $\bigwedge\left(X_{\gamma}\right)\left(\mathfrak{g}_{\gamma^{\prime}}\right) \subset \mathfrak{g}_{\gamma \gamma^{\prime}}$ for any $\gamma, \gamma^{\prime} \in \mathbb{Z}_{2}^{k}, \gamma, \gamma^{\prime} \neq \epsilon$. The connection is called homogeneous if any homogeneous component \mathfrak{g}_{γ} of \mathfrak{m} is invariant by Λ.

Examples

(1) If $k=1$, the affine canonical connection is adapted and homogeneous.
(2) Let us consider the 5 -dimensional nilpotent Lie algebra, \mathfrak{l}_{5} whose Lie brackets are given in a basis $\left\{X_{1}, \cdots, X_{5}\right\}$ by $\left[X_{1}, X_{i}\right]=X_{i+1}, i=2,3,4$. This algebra admits a \mathbb{Z}_{2}-grading $\mathfrak{l}_{5}=\mathbb{R}\left\{X_{3}, X_{5}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{2}, X_{4}\right\}$. Thus $\bigwedge\left(X_{1}\right), \bigwedge\left(X_{2}\right), \bigwedge\left(X_{4}\right)$ are matrices of order 3. If we assume that the torsion T is zero, we obtain

$$
\Lambda\left(X_{1}\right)=\left(\begin{array}{ccc}
a & 0 & 0 \\
b & 0 & 0 \\
c & d & \frac{a}{2}
\end{array}\right), \quad \bigwedge\left(X_{2}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & e & 0 \\
d & f & \frac{a}{2}
\end{array}\right), \quad \Lambda\left(X_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
-\frac{a}{2} & 0 & 0
\end{array}\right) .
$$

The linear isotropy representation of H whose Lie algebra is \mathfrak{h} is given by taking the differential of the map $\mathfrak{l}_{5} / H \rightarrow \mathfrak{l}_{5} / H$ corresponding to the left multiplication $\bar{x} \rightarrow h \bar{x}$ with $\bar{x}=x H_{4}$. We obtain

$$
\lambda\left(X_{3}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda\left(X_{5}\right)=(0)
$$

We deduce that the curvature is always non zero.

4. The \mathbb{Z}_{2}^{k}-SYMMETRIC SPACES $\left(\mathbb{H}_{3}, H, \mathbb{Z}_{2}^{k}\right)$

We denote by \mathbb{H}_{3} the 3 -dimensional Heisenberg group, that is the linear group of dimension 3 consisting of matrices

$$
\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \quad a, b, c \in \mathbb{R}
$$

Its Lie algebra, \mathfrak{h}_{3} is the real Lie algebra whose elements are matrices

$$
\left(\begin{array}{ccc}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right) \quad \text { with } \quad x, y, z \in \mathbb{R}
$$

The elements of $\mathfrak{h}_{3}, X_{1}, X_{2}, X_{3}$, corresponding to $(x, y, z)=(1,0,0),(0,1,0)$ and $(0,0,1)$ form a basis of \mathfrak{h}_{3} and the Lie brackets are given in this basis by $\left[X_{1}, X_{2}\right]=X_{3},\left[X_{1}, X_{3}\right]=$ $\left[X_{2}, X_{3}\right]=0$.
4.1. Description of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$. Denote by $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ the group of automorphisms \mathfrak{h}_{3}. Every $\tau \in \operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ admits in the basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ the following matricial representation:

$$
\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & 0 \tag{1}\\
\alpha_{3} & \alpha_{4} & 0 \\
\alpha_{5} & \alpha_{6} & \Delta
\end{array}\right) \quad \text { with } \quad \Delta=\alpha_{1} \alpha_{4}-\alpha_{2} \alpha_{3} \neq 0
$$

We will denote by $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right)$ any element of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ in this representation. Let Γ be a finite abelian subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$. It admits a cyclic decomposition. If Γ contains a component of the cyclic decomposition which is isomorphic to \mathbb{Z}_{k}, then there exists an automorphism τ satisfying $\tau^{k}=I d$. The aim of this section is to determinate the cyclic decomposition of any finite abelian subgroup Γ.

- Subgroups of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to \mathbb{Z}_{2}

Let $\tau \in \operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ satisfying $\tau^{2}=I d$. If we consider the matricial representation (1) of τ, we obtain:

$$
\left(\begin{array}{ccc}
\alpha_{1}^{2}+\alpha_{2} \alpha_{3} & \alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{4} & 0 \\
\alpha_{1} \alpha_{3}+\alpha_{3} \alpha_{4} & \alpha_{2} \alpha_{3}+\alpha_{4}^{2} & 0 \\
\alpha_{1} \alpha_{5}+\alpha_{3} \alpha_{6}+\Delta \alpha_{5} & \alpha_{2} \alpha_{5}+\alpha_{4} \alpha_{6}+\Delta \alpha_{6} & \Delta^{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Proposition 8. Any involutive automorphism τ of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ is equal to one of the following automorphisms

$$
\begin{gathered}
I d, \quad \tau_{1}\left(\alpha_{3}, \alpha_{6}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
\alpha_{3} & 1 & 0 \\
\frac{\alpha_{3} \alpha_{6}}{2} & \alpha_{6} & -1
\end{array}\right), \quad \tau_{2}\left(\alpha_{3}, \alpha_{5}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha_{3} & -1 & 0 \\
\alpha_{5} & 0 & -1
\end{array}\right), \\
\tau_{3}\left(\alpha_{1}, \alpha_{2} \neq 0, \alpha_{6}\right)=\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & 0 \\
\frac{1-\alpha_{1}^{2}}{\alpha_{2}} & -\alpha_{1} & 0 \\
\frac{\left(1+\alpha_{1}\right) \alpha_{6}}{\alpha_{2}} & \alpha_{6} & -1
\end{array}\right), \quad \tau_{4}\left(\alpha_{5}, \alpha_{6}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
\alpha_{5} & \alpha_{6} & 1
\end{array}\right) .
\end{gathered}
$$

Corollary 9. Any subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to \mathbb{Z}_{2} is one of the following:

$$
\begin{array}{ll}
\Gamma_{1}\left(\alpha_{3}, \alpha_{6}\right)=\left\{I d, \tau_{1}\left(\alpha_{3}, \alpha_{6}\right)\right\}, & \Gamma_{2}\left(\alpha_{3}, \alpha_{5}\right)=\left\{I d, \tau_{2}\left(\alpha_{3}, \alpha_{5}\right)\right\}, \\
\Gamma_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}\right)=\left\{I d, \tau_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}\right), \alpha_{2} \neq 0\right\}, & \Gamma_{4}\left(\alpha_{5}, \alpha_{6}\right)=\left\{I d, \tau_{4}\left(\alpha_{5}, \alpha_{6}\right)\right\} .
\end{array}
$$

- Subgroups of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to $\mathbb{Z}_{k}, k \geq 3$. If $\tau=\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right) \in$ $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ satisfies $\tau^{k}=I d$, then $\Delta=\alpha_{1} \alpha_{4}-\alpha_{2} \alpha_{3}=1$ and its minimal polynomial has 3 simple roots and it is of degree 3 . More precisely, it is written

$$
m_{\tau}(x)=(x-1)\left(x-\mu_{k}\right)\left(x-\overline{\mu_{k}}\right)
$$

where μ_{k} is a root of order k of 1 . Since we can assume that τ is a generator of a cyclic subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to \mathbb{Z}_{k}, the root μ_{k} is a primitive root of 1 . There exists m relatively prime with k such that $\mu_{k}=\exp \left(\frac{2 m i \pi}{k}\right)$. We have $\alpha_{1}+\alpha_{4}=\mu_{k}+\overline{\mu_{k}}$ and $\alpha_{1}+\alpha_{4}=2 \cos \frac{2 m \pi}{k}$. Thus

$$
\alpha_{1}=\cos \frac{2 m \pi}{k}-\sqrt{\cos ^{2} \frac{2 m \pi}{k}-1-\alpha_{2} \alpha_{3}},
$$

or

$$
\alpha_{4}=\cos \frac{2 m \pi}{k}+\sqrt{\cos ^{2} \frac{2 m \pi}{k}-1-\alpha_{2} \alpha_{3}}
$$

$$
\alpha_{1}=\cos \frac{2 m \pi}{k}+\sqrt{\cos ^{2} \frac{2 m \pi}{k}-1-\alpha_{2} \alpha_{3}},
$$

$$
\alpha_{4}=\cos \frac{2 m \pi}{k}-\sqrt{\cos ^{2} \frac{2 m \pi}{k}-1-\alpha_{2} \alpha_{3}} .
$$

If τ^{\prime} and $\tau^{\prime \prime}$ denote the automorphisms corresponding to these solutions, we have, for a good choice of the parameters $\alpha_{i}, \tau^{\prime} \circ \tau^{\prime \prime}=I d$ and $\tau^{\prime \prime}=\left(\tau^{\prime}\right)^{k-1}$. Thus these automorphisms generate the same subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$. Moreover, with same considerations, we can choose $m=1$. Thus we have determinate the automorphism $\tau_{5}\left(\alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}\right)$ whose matrix is

$$
\left(\begin{array}{ccc}
\cos \frac{2 \pi}{k}+\sqrt{\cos ^{2} \frac{2 \pi}{k}-1-\alpha_{2} \alpha_{3}} & \alpha_{2} & 0 \\
\alpha_{3} & \cos \frac{2 \pi}{k}-\sqrt{\cos ^{2} \frac{2 \pi}{k}-1-\alpha_{2} \alpha_{3}} & 0 \\
\alpha_{5} & \alpha_{6} & 1
\end{array}\right)
$$

Proposition 10. Any abelian subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to $\mathbb{Z}_{k}, k \geq 3$, is equal to

$$
\Gamma_{6, k}\left(\alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}\right)=\left\{I d, \tau_{6}\left(\alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}\right), \cdots, \tau_{6}^{k-1}, \quad \alpha_{2} \alpha_{3} \leq-1+\cos ^{2} \frac{2 \pi}{k}\right\}
$$

General case. Suppose now that the cyclic decomposition of a finite abelian subgroup Γ of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ is isomorphic to $\mathbb{Z}_{2}^{k_{2}} \times \mathbb{Z}_{3}^{k_{3}} \times \cdots \times \mathbb{Z}_{p}^{k_{p}}$ with $k_{i} \geq 0$.

Lemma 11. Let Γ be an abelian finite subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ with a cyclic decomposition isomorphic to $\mathbb{Z}_{2}^{k_{2}} \times \mathbb{Z}_{3}^{k_{3}} \times \cdots \times \mathbb{Z}_{p}^{k_{p}}$. Then
(1) If there is $i \geq 3$ such that $k_{i} \neq 0$, then $k_{2} \leq 1$.
(2) If $k_{2} \geq 2$, then Γ is isomorphic to $\mathbb{Z}_{2}^{k_{2}}$.

Proof. Assume that there is $i \geq 3$ such that $k_{i} \geq 1$. If $k_{2} \geq 1$, there exist two automorphisms τ and τ^{\prime} satisfying $\tau^{\prime i}=\tau^{2}=I d$ and $\tau^{\prime} \circ \tau=\tau \circ \tau^{\prime}$. Thus τ^{\prime} and τ can be reduced simultaneously in the diagonal form and admit a common basis of eigenvectors. Since for any $\sigma \in \operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ we have $\sigma\left(X_{3}\right)=\Delta X_{3}, X_{3}$ is an eigenvector for τ^{\prime} and τ associated to the eigenvalue 1 for τ^{\prime} and ± 1 for τ. As the two other eigenvalues of τ^{\prime} are complex conjugate numbers, the corresponding eigenvectors are complex conjugate. This implies that the eigenvalues of τ distinguished of $\Delta= \pm 1$ are equal and from Proposition $8, \tau=\tau_{4}\left(\alpha_{5}, \alpha_{6}\right)$. If we assume that $k_{2} \geq 2$, there exist τ and $\tau^{\prime \prime}$ not equal and belonging to $\mathbb{Z}_{2}^{k_{2}}$. Thus we have $\tau=\tau_{4}\left(\alpha_{5}, \alpha_{6}\right)$ and $\tau^{\prime \prime}=\tau_{4}\left(\alpha_{5}^{\prime}, \alpha_{6}^{\prime}\right)$. But $\tau_{4}\left(\alpha_{5}, \alpha_{6}\right) \circ \tau_{4}\left(\alpha_{5}^{\prime}, \alpha_{6}^{\prime}\right)=\tau_{4}\left(\alpha_{5}^{\prime}, \alpha_{6}^{\prime}\right) \circ \tau_{4}\left(\alpha_{5}, \alpha_{6}\right)$ if and only if $\alpha_{5}=\alpha_{5}^{\prime}, \alpha_{6}=\alpha_{6}^{\prime}$ and $\tau=\tau^{\prime \prime}$, this contradicts the hypothesis.

From this lemma, we have to determine, in a first step, the subgroups Γ of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic a $\left(\mathbb{Z}_{2}\right)^{k}$ with $k \geq 2$.

- Any involutive automorphism τ commuting with $\tau_{1}\left(\alpha_{3}, \alpha_{6}\right)$ with $\tau \neq \tau_{1}\left(\alpha_{3}, \alpha_{6}\right)$ is equal to $\tau_{2}\left(-\alpha_{3}, \alpha_{5}\right)$ or $\tau_{4}\left(\alpha_{5},-\alpha_{6}\right)$ and we have $\tau_{1}\left(\alpha_{3}, \alpha_{6}\right) \circ \tau_{2}\left(-\alpha_{3}, \alpha_{5}\right)=\tau_{4}\left(-\frac{\alpha_{3} \alpha_{6}}{2}-\alpha_{5},-\alpha_{6}\right)$ and $\left[\tau_{2}\left(-\alpha_{3}, \alpha_{5}\right), \tau_{4}\left(-\frac{\alpha_{3} \alpha_{6}}{2}-\alpha_{5},-\alpha_{6}\right)\right]=0$. Thus

$$
\Gamma_{7}\left(\alpha_{3}, \alpha_{5}, \alpha_{6}\right)=\left\{I d, \tau_{1}\left(\alpha_{3}, \alpha_{6}\right), \tau_{2}\left(-\alpha_{3}, \alpha_{5}\right), \tau_{4}\left(-\frac{\alpha_{3} \alpha_{6}}{2}-\alpha_{5},-\alpha_{6}\right)\right\}
$$

is a subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to \mathbb{Z}_{2}^{2}. Moreover it is the only subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ of type $\left(\mathbb{Z}_{2}\right)^{k}, k \geq 2$, containing an automorphism of type $\tau_{1}\left(\alpha_{3}, \alpha_{6}\right)$.

- A direct computation shows that any abelian subgroup Γ containing $\tau_{2}\left(\alpha_{3}, \alpha_{5}\right)$ is either isomorphic to \mathbb{Z}_{2} or equal to Γ_{7}.
- Assume that $\tau_{3}\left(\alpha_{1}, \alpha_{3}, \alpha_{6}\right) \in \Gamma$. The automorphisms $\tau_{3}\left(-\alpha_{1},-\alpha_{2}, \alpha_{6}^{\prime}\right)$ and $\tau_{4}\left(\alpha_{5}, \alpha_{6}^{\prime}\right)$ commute with $\tau_{3}\left(\alpha_{1}, \alpha_{3}, \alpha_{6}\right)$. Since

$$
\tau_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}\right) \circ \tau_{3}\left(-\alpha_{1},-\alpha_{2}, \alpha_{6}^{\prime}\right)=\tau_{4}\left(\frac{\alpha_{6}^{\prime}\left(1-\alpha_{1}\right)-\alpha_{6}\left(1+\alpha_{1}\right)}{\alpha_{2}},-\alpha_{6}-\alpha_{6}^{\prime}\right)
$$

we obtain the following subgroup, denoted $\Gamma_{8}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}, \alpha_{6}^{\prime}\right)$:

$$
\left\{I d, \tau_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}\right), \tau_{3}\left(-\alpha_{1},-\alpha_{2}, \alpha_{6}^{\prime}\right), \tau_{4}\left(\frac{\alpha_{6}^{\prime}\left(1-\alpha_{1}\right)-\alpha_{6}\left(1+\alpha_{1}\right)}{\alpha_{2}},-\alpha_{6}-\alpha_{6}^{\prime}\right)\right\}
$$

which is isomorphic to \mathbb{Z}_{2}^{2}.

- We suppose that $\tau_{4}\left(\alpha_{5}, \alpha_{6}\right) \in \Gamma$. If Γ is not isomorphic to \mathbb{Z}_{2}, then Γ is one of the groups Γ_{7}, Γ_{8}.
Theorem 12. Any finite abelian subgroup Γ of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to $\left(\mathbb{Z}_{2}\right)^{k}$ is one of the following
(1) $k=1, \Gamma=\Gamma_{1}\left(\alpha_{3}, \alpha_{6}\right), \Gamma_{2}\left(\alpha_{3}, \alpha_{5}\right), \Gamma_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}\right), \alpha_{2} \neq 0, \Gamma_{4}\left(\alpha_{5}, \alpha_{6}\right)$,
(2) $k=2, \Gamma=\Gamma_{7}\left(\alpha_{3}, \alpha_{5}, \alpha_{6}\right), \Gamma_{8}\left(\alpha_{1}, \alpha_{2}, \alpha_{6}, \alpha_{6}^{\prime}\right)$.

Assume now that Γ is isomorphic to $\mathbb{Z}_{3}^{k_{3}}$ with $k_{3} \geq 2$. If $\tau \in \Gamma_{5}$, its matricial representation is

$$
\left(\begin{array}{ccc}
\frac{-1-\sqrt{-3-4 \alpha_{2} \alpha_{3}}}{2} & \alpha_{2} & 0 \\
\alpha_{3} & \frac{-1+\sqrt{-3-4 \alpha_{2} \alpha_{3}}}{2} & 0 \\
\alpha_{5} & \alpha_{6} & 1
\end{array}\right) .
$$

To simplify, we put $\lambda=\frac{-1-\sqrt{-3-4 \alpha_{2} \alpha_{3}}}{2}$. The eigenvalues of τ are $1, j, j^{2}$ and the corresponding eigenvectors X_{3}, V, \bar{V} with

$$
V=\left(1,-\frac{\lambda-j}{\alpha_{2}},-\frac{\alpha_{5}}{1-j}+\frac{\alpha_{6}(\lambda-j)}{\alpha_{2}(1-j)}\right)
$$

if $\alpha_{2} \neq 0$. If τ^{\prime} is an automorphism of order 3 commuting with τ, then $\tau^{\prime} V=j V$ or $j^{2} V$. But the two first components of $\tau^{\prime}(V)$ are $\lambda^{\prime}-\frac{\beta_{2}}{\alpha_{2}}(\lambda-j), \beta_{3}-\frac{\lambda^{\prime}(\lambda-j)}{\alpha_{2}}$ where β_{i} and λ^{\prime} are the corresponding coefficients of the matrix of τ^{\prime}. This implies $\alpha_{2} \lambda^{\prime}-\beta_{2}(\lambda-j)=\alpha_{2} j$ or $\alpha_{2} j^{2}$. Considering the real and complex parts of this equation, we obtain

$$
\left\{\begin{array}{l}
\alpha_{2} \lambda^{\prime}-\beta_{2} \lambda=0, \\
\beta_{2} j=\alpha_{2} j \quad \text { or } \quad \alpha_{2} j^{2} .
\end{array}\right.
$$

As $\alpha_{2} \neq 0$, we obtain $\alpha_{2}=\beta_{2}$ and $\lambda=\lambda^{\prime}$. Let us compare the second component of $\tau^{\prime}(V)$. We obtain $\beta_{3} \alpha_{2}-\lambda^{\prime}(\lambda-j)=-(\lambda-j) j$ or $-(\lambda-j) j^{2}$. As $\lambda=\lambda^{\prime}$, we have in the first case $2 \lambda j=j^{2}$ and in the second case $2 \lambda j=j^{3}=1$. In any case, this is impossible. Thus $\alpha_{2}=0$ and, from Section $2.2, \tau=I d$. This implies that $k_{3}=1$ or 0 .

Theorem 13. Let Γ be a finite abelian subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$. Thus Γ is isomorphic to one of the following group
(1) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
(2) $\mathbb{Z}_{2}^{k_{2}} \times \mathbb{Z}_{3}^{k_{3}} \times \cdots \times \mathbb{Z}_{p}^{k_{p}}$ with $k_{i}=0$ or 1 for $i=2, \cdots, p$.

To prove the second part, we show as in the case $i=3$ that $k_{i}=1$ as soon as $k_{i} \neq 0$.
Remark. We have determined the finite abelian subgroups of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$. There are nonabelian finite subgroups with elements of order at most 3. Take for example the subgroup generated by

$$
\sigma_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{ccc}
-\frac{1}{2} & \alpha & 0 \\
-\frac{3}{4 \alpha} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \alpha \neq 0
$$

The relations on the generators are $\sigma_{1}^{2}=I d, \sigma_{2}^{3}=I d, \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2}^{2}$. Thus the group generated by σ_{1} and σ_{2} is isomorphic to the symmetric group Σ_{3} of degree 3 .
4.2. Description of the \mathbb{Z}_{2} and \mathbb{Z}_{2}^{2}-gradings of \mathfrak{h}_{3}. Let Γ be a finite abelian subgroup of $\operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ isomorphic to $\mathbb{Z}_{2}^{k}(k=1$ or 2$)$.

- If $\Gamma=\mathbb{Z}_{2}$, we have obtained $\Gamma=\Gamma_{i}, i=1,2,3,4$. Up to equivalence of gradings, the \mathbb{Z}_{2}-grading of \mathfrak{h}_{3} are:

$$
\mathfrak{h}_{3}=\mathbb{R}\left\{X_{2}\right\} \bigoplus \mathbb{R}\left\{X_{1}, X_{3}\right\} \quad \text { and } \quad \mathfrak{h}_{3}=\mathbb{R}\left\{X_{1}\right\} \bigoplus \mathbb{R}\left\{X_{2}, X_{3}\right\}
$$

- If $\Gamma=\mathbb{Z}_{2}^{2}$ then $\Gamma=\Gamma_{7}$ or $\Gamma=\Gamma_{8}$.

Lemma 14. There is an automorphism $\sigma \in \operatorname{Aut}\left(\mathfrak{h}_{3}\right)$ such that $\sigma^{-1} \Gamma_{7} \sigma=\Gamma_{8}$.
The proof is a simple computation. There also exists $\sigma \in A u t\left(\mathfrak{h}_{3}\right)$ such that

$$
\left\{\begin{array}{l}
\sigma^{-1} \tau_{1}\left(\alpha_{3}, \alpha_{6}\right) \sigma=\tau_{1}(0,0) \\
\sigma^{-1} \tau_{2}\left(-\alpha_{3}, \alpha_{5}\right) \sigma=\tau_{2}(0,0)
\end{array}\right.
$$

We deduce:
Proposition 15. Every \mathbb{Z}_{2}^{2}-grading on \mathfrak{h}_{3} is equivalent to the grading defined by $\Gamma_{7}(0,0,0)=$ $\left\{I d, \tau_{1}(0,0), \tau_{2}(0,0), \tau_{4}(0,0)\right\}$.

This grading corresponds to $\mathfrak{h}_{3}=\{0\} \oplus \mathbb{R}\left\{X_{1}\right\} \oplus \mathbb{R}\left\{X_{2}\right\} \oplus \mathbb{R}\left\{X_{3}\right\}$.
4.3. Non existence of Riemannian symmetric structures on \mathbb{H}_{3} / H. Consider the symmetric space \mathbb{H}_{3} / H_{1} associated with the grading

$$
\mathfrak{h}_{3}=\mathbb{R}\left\{X_{2}\right\} \bigoplus \mathbb{R}\left\{X_{1}, X_{3}\right\} .
$$

Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be the dual basis of $\left\{X_{1}, X_{2}, X_{3}\right\}$. Any pseudo-Riemannian metric on the symmetric space \mathbb{H}_{3} / H_{1} where H_{1} is a one-dimensional connected Lie group whose Lie algebra $\mathfrak{g}_{0}=\mathbb{R}\left\{X_{2}\right\}$ is given by a non-degenerate $a d \mathfrak{g}_{0}$-invariant bilinear form $B=a \omega_{1}^{2}+$ $b \omega_{1} \wedge \omega_{3}+c \omega_{3}^{2}$ on $\mathfrak{g}_{1}=\mathbb{R}\left\{X_{1}, X_{3}\right\}$. This implies $B\left(\left[X_{2}, X_{1}\right], X_{3}\right)=-B\left(X_{3}, X_{3}\right)=-c=0$. But we have also $B\left(\left[X_{2}, X_{1}\right], X_{1}\right)+B\left(X_{1},\left[X_{2}, X_{1}\right]\right)=-2 B\left(X_{3}, X_{1}\right)=-2 b=0$. We deduce

Proposition 16. The nilpotent symmetric space \mathbb{H}_{3} / H associated to the grading $\mathfrak{h}_{3}=$ $\mathbb{R}\left\{X_{2}\right\} \bigoplus \mathbb{R}\left\{X_{1}, X_{3}\right\}$ doesn't admit any pseudo-Riemannian symmetric metric.

Consider now the symmetric space \mathbb{H}_{3} / H_{2} associated with the grading
$\mathfrak{h}_{3}=\mathbb{R}\left\{X_{3}\right\} \bigoplus \mathbb{R}\left\{X_{1}, X_{2}\right\}$. Then H_{2} is the Lie subgroup whose Lie algebra is $\mathbb{R}\left\{X_{3}\right\}$ and the bilinear form $B=a \omega_{1}^{2}+b \omega_{1} \wedge \omega_{2}+c \omega_{2}^{2}$ on $\mathfrak{g}_{1}=\mathbb{R}\left\{X_{1}, X_{2}\right\}$ is adX X_{3}-invariant because $a d X_{3}=0$. But $A d_{G}$ is an homomorphism of G onto the group of inner automorphisms of \mathfrak{g} with kernel the center of G, we deduce that $A d_{G}(H)$ is compact in this case and any non-degenerate bilinear form B on \mathfrak{g}_{1} defines a Riemannian or a Lorentzian structure on the symmetric space \mathbb{H}_{3} / H_{2}.

Proposition 17. The nilpotent symmetric space \mathbb{H}_{3} / H_{2} associated to the grading $\mathfrak{h}_{3}=$ $\mathbb{R}\left\{X_{3}\right\} \bigoplus \mathbb{R}\left\{X_{1}, X_{2}\right\}$ admits a structure of Riemannian symmetric space. It admits also a structure of Lorentzian symmetric space.
4.4. Riemannian \mathbb{Z}_{2}^{2}-symmetric structures on \mathbb{H}_{3}. Consider on \mathbb{H}_{3} a \mathbb{Z}_{2}^{2}-symmetric structure. It is determined, up to equivalence, by the \mathbb{Z}_{2}^{2}-grading of \mathfrak{h}_{3}

$$
\mathfrak{h}_{3}=\{0\} \oplus \mathbb{R}\left\{X_{1}\right\} \oplus \mathbb{R}\left\{X_{2}\right\} \oplus \mathbb{R}\left\{X_{3}\right\} .
$$

Since every automorphism of \mathfrak{h}_{3} is an isometry of any invariant Riemannian metric on \mathbb{H}_{3}, we deduce

Theorem 18. Any Riemannian \mathbb{Z}_{2}^{2}-symmetric structure on \mathbb{H}_{3} is isometric to the Riemannian structure associated with the grading $\mathfrak{h}_{3}=\{0\} \oplus \mathbb{R}\left\{X_{1}\right\} \oplus \mathbb{R}\left\{X_{2}\right\} \oplus \mathbb{R}\left\{X_{3}\right\}$ and the Riemannian \mathbb{Z}_{2}^{2}-symmetric metric is written $g=\omega_{1}^{2}+\omega_{2}^{2}+\lambda^{2} \omega_{3}^{2}$ with $\lambda \neq 0$, where $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ is the dual basis of $\left\{X_{1}, X_{2}, X_{3}\right\}$.
Proof. Indeed, since the components of the grading are orthogonal, the Riemannian metric g, which coincides with the form B satisfies $g=\alpha_{1} \omega_{1}^{2}+\alpha_{2} \omega_{2}^{2}+\alpha_{3} \omega_{3}^{2}$ with $\alpha_{1}>0, \alpha_{2}>0$, $\alpha_{3}>0$.

According to [6], we reduce the coefficients to $\alpha_{1}=\alpha_{2}=1$.
Remark. According to [7] and [10], this metric is naturally reductive for any λ.
Corollary 19. A Riemannian tensor g on \mathbb{H}_{3} determines a Riemannian \mathbb{Z}_{2}^{2}-symmetric structure over \mathbb{H}_{3} if and only if it is a left-invariant metric on \mathbb{H}_{3}.

This is a consequence of the previous theorem and of the classification of left-invariant metrics on Heisenberg groups ([6]).
4.5. Lorentzian \mathbb{Z}_{2}^{2}-symmetric structures on \mathbb{H}_{3}. We say that an homogeneous space ($M=G / H, g$) is Lorentzian if the canonical action of G on M preserves a Lorentzian metric (i.e. a smooth field of non-degenerate quadratic forms of signature $(n-1,1)$) (see [3]).

Proposition 20 ([5]). Modulo an automorphism and a multiplicative constant, there exists on \mathbb{H}_{3} one left-invariant metric assigning a strictly positive length on the center of \mathfrak{h}_{3}.

The Lie algebra \mathfrak{h}_{3} is generated by the central vector X_{3} and X_{1} and X_{2} such that $\left[X_{1}, X_{2}\right]=X_{3}$. The automorphisms of the Lie algebra preserve the center and then send the element X_{3} on λX_{3}, with $\lambda \in \mathbb{R}^{*}$. Such an automorphism acts on the plane generated by X_{1} and X_{2} as an automorphism of determinant λ.
It is shown in [17] and [18] that, modulo an automorphism of \mathfrak{h}_{3}, there are three classes of invariant Lorentzian metrics on \mathbb{H}_{3}, corresponding to the cases where $\left\|X_{3}\right\|$ is negative, positive or zero.
We propose to look at the Lorentzian metrics that are associated with the \mathbb{Z}_{2}^{2}-symmetric structures over \mathbb{H}_{3}. If \mathfrak{g} is the Heisenberg algebra equipped with a \mathbb{Z}_{2}^{2}-grading, then by automorphism, we can reduce to the case where $\Gamma=\Gamma_{7}$. In this case, the grading of \mathfrak{h}_{3} is given by:

$$
\mathfrak{h}_{3}=\mathfrak{g}_{0}+\mathfrak{g}_{+-}+\mathfrak{g}_{-+}+\mathfrak{g}_{--}
$$

with $\mathfrak{g}_{0}=\{0\}$, and

$$
\mathfrak{g}_{+-}=\mathbb{R}\left\{X_{2}-\frac{\alpha_{6}}{2} X_{3}\right\}, \quad \mathfrak{g}_{-+}=\mathbb{R}\left\{X_{1}-\frac{\alpha_{3}}{2} X_{2}+\frac{\alpha_{5}}{2} X_{3}\right\}, \quad \mathfrak{g}_{--}=\mathbb{R}\left\{X_{3}\right\}
$$

Assume $Y_{1}=X_{1}-\frac{\alpha_{3}}{2} X_{2}+\frac{\alpha_{5}}{2} X_{3}, Y_{2}=X_{2}-\frac{\alpha_{6}}{2} X_{3}, Y_{3}=X_{3}$. The dual basis is

$$
\vartheta_{1}=\omega_{1} \quad \vartheta_{2}=\omega_{2}+\frac{\alpha_{3}}{2} \omega_{1} \quad \vartheta_{3}=\omega_{3}-\frac{\alpha_{6}}{2} \omega_{2}-\left(\frac{\alpha_{3} \alpha_{6}}{4}+\frac{\alpha_{5}}{2}\right) \omega_{1}
$$

where $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ is the dual basis of the base $\left\{X_{1}, X_{2}, X_{3}\right\}$.

Case I The components $\mathfrak{g}_{+-}, \mathfrak{g}_{-+}, \mathfrak{g}_{--}$are non-degenerate. The quadratic form induced on \mathfrak{h}_{3} therefore writes

$$
g=\lambda_{1} \omega_{1}^{2}+\lambda_{2}\left(\omega_{2}+\frac{\alpha_{3}}{2} \omega_{1}\right)^{2}+\lambda_{3}\left(\omega_{3}-\frac{\alpha_{6}}{2} \omega_{2}-\left(\frac{\alpha_{5}}{2}+\frac{\alpha_{3} \alpha_{6}}{4}\right) \omega_{1}\right)^{2}
$$

with $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 0$. The change of basis associated with the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & \\
\frac{\frac{\alpha_{3}}{2}}{2} & 1 & 0 \\
-\frac{\alpha_{5}}{2}-\frac{\alpha_{3} \alpha_{6}}{4} & -\frac{\alpha_{6}}{2} & 1
\end{array}\right)
$$

is an automorphism. Thus g is isometric to $g=\lambda_{1} \omega_{1}^{2}+\lambda_{2} \omega_{2}^{2}+\lambda_{3} \omega_{3}^{2}$. Since the signature is $(2,1)$ one of the λ_{i} is negative and the two others positive.

Proposition 21. Every Lorentzian \mathbb{Z}_{2}^{2}-symmetric metric g on \mathbb{H}_{3} such that the components of the grading of \mathfrak{h}_{3} are non-degenerate, is reduced to one of these two forms: $g=-\omega_{1}^{2}+$ $\omega_{2}^{2}+\lambda^{2} \omega_{3}^{2}$ or $g=\omega_{1}^{2}+\omega_{2}^{2}-\lambda^{2} \omega_{3}^{2}$

Case $I I$ Suppose that a component is degenerate. When this component is $\mathbb{R}\left\{X_{2}+\frac{\alpha_{6}}{2} X_{3}\right\}$ or $\mathbb{R}\left\{X_{1}-\frac{\alpha_{3}}{2} X_{2}+\frac{\alpha_{5}}{2} X_{3}\right\}$ then, by automorphism, it reduces to the above case.
Suppose then that the component containing the center is degenerate.
Thus the quadratic form induced on \mathfrak{h}_{3} is written

$$
g=\omega_{1}^{2}+\left[\omega_{3}-\frac{\alpha_{6}}{2} \omega_{2}-\frac{2 \alpha_{5}+\alpha_{3} \alpha_{6}}{4} \omega_{1}\right]^{2}-\left[\omega_{2}-\omega_{3}+\frac{\alpha_{6}}{2} \omega_{2}+\frac{2 \alpha_{5}+\alpha_{3} \alpha_{6}}{4} \omega_{1}\right]^{2}
$$

The change of basis associated with the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & \\
\frac{\alpha_{3}}{2} & 1 & 0 \\
-\frac{\alpha_{5}}{2}-\frac{\alpha_{3} \alpha_{6}}{4} & -\frac{\alpha_{6}}{2} & 1
\end{array}\right)
$$

is given by an automorphism. Thus g is isomorphic to $g=\omega_{1}^{2}+\omega_{3}^{2}-\left(\omega_{2}-\omega_{3}\right)^{2}$.
Proposition 22. Every Lorentzian \mathbb{Z}_{2}^{2}-symmetric metric g on \mathbb{H}_{3} such that the component of the grading of \mathfrak{h}_{3} containing the center is degenerate, is reduced to the form $g=\omega_{1}^{2}+$ $\omega_{3}^{2}-\left(\omega_{2}-\omega_{3}\right)^{2}$.

Corollary 23. A Lorentzian tensor g on \mathbb{H}_{3} determines a Lorentzian \mathbb{Z}_{2}^{2}-symmetric structure over \mathbb{H}_{3} if and only if it is a left-invariant Lorentzian metric on \mathbb{H}_{3}.

The classification, up to isometry, of left-invariant Lorentzian metrics on \mathbb{H}_{3} is described in [4] and in [18]. It corresponds to the previous classification of Lorentzian \mathbb{Z}_{2}^{2}-symmetric metrics.

5. \mathbb{Z}_{2}^{k}-SYMMETRIC SPACES BASED ON $\mathbb{H}_{2 p+1}$

5.1. \mathbb{Z}_{2}^{k}-gradings of $\mathfrak{h}_{2 p+1}$. Let σ be an involutive automorphism of the ($2 p+1$)-dimensional Heisenberg algebra $\mathfrak{h}_{2 p+1}$. Let $\left\{X_{1}, \cdots, X_{2 p+1}\right\}$ be a basis of $\mathfrak{h}_{2 p+1}$ whose structure constants are given by

$$
\left[X_{1}, X_{2}\right]=\cdots=\left[X_{2 p-1}, X_{2 p}\right]=X_{2 p+1} .
$$

Since the center $\mathbb{R}\left\{X_{2 p+1}\right\}$ is invariant by σ, it is contained in an homogeneous component of the grading $\mathfrak{h}_{2 p+1}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ associated with σ. But for any $X \in \mathfrak{h}_{2 p+1}, X \neq 0$, there exists $Y \neq 0$ such that $[X, Y]=a X_{2 p+1}$ with $a \neq 0$. We deduce that any \mathbb{Z}_{2}-grading is equivalent to one of the following:
(1) If $X_{2 p+1} \in \mathfrak{g}_{0}$, then

- $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{2}, \cdots, X_{2 p}\right\}$
- $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{1}, X_{2}, X_{3}, \cdots, X_{2 k}, X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{2 k+1}, X_{2 k+2}, \cdots, X_{2 p}\right\}$
(2) If $X_{2 p+1} \in \mathfrak{g}_{1}$, then
- $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\} \oplus \mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}, X_{2 p+1}\right\}$
- $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}, X_{2 p+1}\right\}$.

Let $\mathfrak{h}_{2 p+1}=\bigoplus_{\gamma \in \mathbb{Z}_{2}^{k}} \mathfrak{g}_{\gamma}$ be a \mathbb{Z}_{2}^{k}-grading of the Heisenberg algebra. The support of this grading is the subset $\left\{\gamma \in \mathbb{Z}_{2}^{k}, \mathfrak{g}_{\gamma} \neq 0\right\}$. We will say that this grading is irreducible if the subgroup of \mathbb{Z}_{2}^{k} generated by its support is the full group \mathbb{Z}_{2}^{k}.
Lemma 24. If $\mathfrak{h}_{2 p+1}$ admits an irreducible \mathbb{Z}_{2}^{k}-grading, then $k=1$ or $k=2$.
In fact, this is a consequence of the previous classification of the \mathbb{Z}_{2}-gradings of $\mathfrak{h}_{2 p+1}$. We deduce also that any \mathbb{Z}_{2}^{2}-grading is equivalent to

$$
\mathfrak{h}_{2 p+1}=\{0\} \oplus \mathbb{R}\left\{X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\} \oplus \mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}\right\} .
$$

5.2. Pseudo-Riemannian symmetric spaces $\mathbb{H}_{2 p+1} / H$. We consider the symmetric spaces $\mathbb{H}_{2 p+1} / H$ corresponding to the previous symmetric decomposition of $\mathfrak{h}_{2 p+1}$, where H is a connected Lie subgroup of $\mathbb{H}_{2 p+1}$ whose Lie algebra is \mathfrak{g}_{0}.

- With the \mathbb{Z}_{2}-grading $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{2}, \cdots, X_{2 p}\right\}$. Since $\operatorname{ad}\left(X_{2 p+1}\right)$ is zero any non-degenerate bilinear form on \mathfrak{g}_{1} defines a symmetric pseudo-Riemannian metric on $\mathbb{H}_{2 p+1} / H$ where H is a connected one-dimensional Lie Group.
- Consider the \mathbb{Z}_{2}-grading

$$
\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{1}, X_{2}, X_{3}, \cdots, X_{2 k}, X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{2 k+1}, X_{2 k+2}, \cdots, X_{2 p}\right\}
$$

In this case, H is a Lie subgroup isomorphic to $\mathbb{H}_{2 k+1}$. Since we have $\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right]=0$, any nondegenerate bilinear form on \mathfrak{g}_{1} defines a symmetric pseudo-Riemannian metric on $\mathbb{H}_{2 p+1} / \mathbb{H}_{2 k+1}$

- We consider the \mathbb{Z}_{2}-gradings

$$
\begin{aligned}
& \mathfrak{h}_{2 p+1}
\end{aligned}=\mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\} \oplus \mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}, X_{2 p+1}\right\}, ~ 子, ~\left(X_{2 p}, X_{2 p+1}\right\} .
$$

In this case, any bilinear form on \mathfrak{g}_{1} which is $a d\left(\mathfrak{g}_{0}\right)$-invariant is degenerate. In fact, if B is such a form, we have

$$
B\left(\left[X_{2 k+1}, X_{2 k+2}\right], X_{1}\right)=B\left(X_{2 p+1}, X_{2 p+1}\right)=0
$$

and for any $k=0, \cdots, p-1$ and $s \neq k+1$

$$
B\left(\left[X_{2 k+1}, X_{2 k+2}\right], X_{2 s}\right)=B\left(X_{2 p+1}, X_{2 s}\right)=0
$$

and $X_{2 p+1}$ is in the kernel of B. We have the same proof for the second grading.
Proposition 25. The symmetric spaces $\mathbb{H}_{2 p+1} / H$ corresponding to the \mathbb{Z}_{2}-grading of $\mathfrak{h}_{2 p+1}$:

- $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\} \oplus \mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}, X_{2 p+1}\right\}$
- $\mathfrak{h}_{2 p+1}=\mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}, X_{2 p+1}\right\}$
are not pseudo-Riemannian symmetric spaces.
5.3. Riemannian \mathbb{Z}_{2}^{2}-symmetric spaces $\mathbb{H}_{2 p+1} / H$. Let us consider the \mathbb{Z}_{2}^{2}-grading of the Heisenberg algebra

$$
\mathfrak{h}_{2 p+1}=\{0\} \oplus \mathbb{R}\left\{X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\} \oplus \mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}\right\} .
$$

Since $\mathfrak{g}_{0}=\{0\}$, then H is reduced to the identity and the \mathbb{Z}_{2}^{2}-symmetric space $\mathbb{H}_{2 p+1} / H$ is isomorphic to $\mathbb{H}_{2 p+1}$. The reductive decomposition $\mathfrak{h}_{2 p+1}=\mathfrak{g}_{0} \oplus \mathfrak{m}$ is reduced to \mathfrak{m}. Since $\mathfrak{g}_{0}=\{0\}$, any bilinear definite positive form on \mathfrak{m} for which the homogeneous components
$\mathbb{R}\left\{X_{2 p+1}\right\}, \mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\}$ and $\mathbb{R}\left\{X_{1}, X_{4}, \cdots, X_{2 p}\right\}$ are pairwise orthogonal defines a Riemannian \mathbb{Z}_{2}^{2}-symmetric structure on $\mathbb{H}_{2 p+1}$.

The Levi-Civita connection associated with this Riemannian metric is an affine connection. In case of Riemannian symmetric space, the Levi-Civita connection associated with the Riemannian symmetric metric is torsion-free and the curvature tensor R satisfies $\nabla R=0$, where ∇ is the covariant derivative of this connection, and correspond to the canonical connection defined in [11] which defines the natural affine structure on a symmetric space. This is not the case for Riemannian \mathbb{Z}_{2}^{2}-symmetric spaces. In the next section, we define a class of affine connections adapted to the \mathbb{Z}_{2}^{2}-symmetric structures, and we prove, in case of the Riemannian \mathbb{Z}_{2}^{2}-symmetric space $\mathbb{H}_{2 p+1} / H$, that there exist adapted connections with torsion and curvature-free.
5.4. Adapted affine connections on the \mathbb{Z}_{2}^{2}-symmetric spaces $\mathbb{H}_{2 p+1} / H$. Let G / H be a \mathbb{Z}_{2}^{k}-symmetric space. Since G / H is a reductive homogeneous space, that is \mathfrak{g} admits a decomposition $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{m}$ with $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subset \mathfrak{g}_{0}$ and $\left[\mathfrak{g}_{0}, \mathfrak{m}\right] \subset \mathfrak{m}$, any connection is given by a linear map

$$
\bigwedge: \mathfrak{m} \rightarrow g l(\mathfrak{m})
$$

satisfying

$$
\bigwedge[X, Y]=[\bigwedge(X), \lambda(Y)]
$$

for all $X \in \mathfrak{m}$ and $Y \in \mathfrak{g}_{0}$, where λ is the linear isotropy representation of \mathfrak{g}_{0}. The corresponding torsion and curvature tensors are given by:

$$
\begin{aligned}
T(X, Y) & =\bigwedge(X)(Y)-\bigwedge(Y)(X)-[X, Y]_{\mathfrak{m}} \\
\text { and } \quad R(X, Y) & =[\bigwedge(X), \bigwedge(Y)]-\bigwedge[X, Y]-\lambda\left([X, Y]_{\mathfrak{g}_{0}}\right)
\end{aligned}
$$

for any $X, Y \in \mathfrak{m}$.
Definition 26. Consider the affine connection on the \mathbb{Z}_{2}^{k}-symmetric space G / H defined by the linear map

$$
\bigwedge: \mathfrak{m} \rightarrow g l(\mathfrak{m})
$$

Then this connection is called adapted to the \mathbb{Z}_{2}^{k}-symmetric structure, if any

$$
\bigwedge\left(X_{\gamma}\right)\left(\mathfrak{g}_{\gamma^{\prime}}\right) \subset \mathfrak{g}_{\gamma \gamma^{\prime}}
$$

for any $\gamma, \gamma^{\prime} \in \mathbb{Z}_{2}^{k}, \gamma, \gamma \neq 0$. The connection is called homogeneous if any homogeneous component \mathfrak{g}_{γ} of \mathfrak{m} is invariant by Λ.

Now we consider the case where $G / H=\mathbb{H}_{2 p+1} / H$ is the \mathbb{Z}_{2}^{2}-symmetric space defined by the grading

$$
\mathfrak{h}_{2 p+1}=\{0\} \oplus \mathbb{R}\left\{X_{2 p+1}\right\} \oplus \mathbb{R}\left\{X_{1}, X_{3}, \cdots, X_{2 p-1}\right\} \oplus \mathbb{R}\left\{X_{2}, X_{4}, \cdots, X_{2 p}\right\} .
$$

We have seen that H is reduced to the identity and $\mathbb{H}_{2 p+1} / H$ is isomorphic to $\mathbb{H}_{2 p+1}$. Consider an adapted connection and let \bigwedge be the associated linear map. Since the connection is adapted to the \mathbb{Z}_{2}^{2}-symmetric structure, \bigwedge satisfies:

$$
\left\{\begin{array}{lll}
\bigwedge\left(X_{2 k+1}\right)\left(X_{2 l+1}\right)=\bigwedge\left(X_{2 s}\right)\left(X_{2 t}\right)=0, & k, l=0, \cdots, p-1, & s, t=1, \cdots, p, \\
\bigwedge\left(X_{2 k+1}\right)\left(X_{2 s}\right)=C_{s}^{2 k+1} X_{2 p+1}, & s=1, \cdots, p, & k=0, \cdots, p-1, \\
\bigwedge\left(X_{2 s}\right)\left(X_{2 k+1}\right)=C_{k}^{2 s} X_{2 p+1}, & s=1, \cdots, p, & k=0, \cdots, p-1, \\
\bigwedge\left(X_{2 k+1}\right)\left(X_{2 p+1}\right)=\sum_{s=1}^{p} a_{2 k+1}^{s} X_{2 s}, & k=0, \cdots, p-1, & \\
\bigwedge\left(X_{2 s}\right)\left(X_{2 p+1}\right)=\sum_{k=0}^{p} a_{2 s}^{k} X_{2 k+1}, & s=1, \cdots, p . &
\end{array}\right.
$$

Theorem 27. Any adapted connection ∇ on the \mathbb{Z}_{2}^{2}-symmetric space $\mathbb{H}_{2 p+1} / H=\mathbb{H}_{2 p+1}$ satisfies $T=0$ and $R=0$ where T and R are respectively the torsion and the curvature of ∇ if and only if the corresponding linear map \bigwedge satisfies

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\bigwedge\left(X_{2 k+1}\right)\left(X_{2 s}\right)=C_{s}^{2 k+1} X_{2 p+1}, & s=1, \cdots, p, & k=0, \cdots, p-1 \\
\bigwedge\left(X_{2 k+1}\right)\left(X_{i}\right)=0, & k=0, \cdots, p-1, & i \notin\{2, \cdots, 2 p\}
\end{array}\right. \\
& \begin{cases}\bigwedge\left(X_{2 s}\right)\left(X_{2 k+1}\right)=C_{s}^{2 k+1} X_{2 p+1}, & s=1, \cdots, p, \quad k=0, \cdots, p-1, k \neq s-1, \\
\bigwedge\left(X_{2 s}\right)\left(X_{2 s-1}\right)=\left(C_{s}^{2 k+1}-1\right) X_{2 p+1}, & s=1, \cdots, p, \\
\bigwedge\left(X_{2 s}\right)\left(X_{i}\right)=0, & s=1, \cdots, p, \quad i \notin\{1, \cdots, 2 p-1\}\end{cases}
\end{aligned}
$$

In fact, we determine in a first step, all the connection adapted to the \mathbb{Z}_{2}^{2}-symmetric structure and which are torsion-free. In this case, Λ satisfies

$$
\bigwedge(X)(Y)-\bigwedge(Y)(X)-[X, Y]=0, \text { for any } X, Y \in \mathfrak{h}_{2 p+1}
$$

References

[1] Bahturin, Y., Goze, M.; $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-symmetric spaces. Pacific J. Math. 236, no. 1, 1-21, 2008.
[2] Bahturin, Y., Goze, M.,Remm, E.; Group gradings on Lie Algebras and Applications to Geometry: II. Chapter 1. Developments and Retrospectives in Lie theory. Developments in Mathematics, 37. G. Mason and al. editors. Springer International Publishing (2014). DOI 10.1007/978-3-319-09934-7-1
[3] Calvaruso, G.; Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57, no. 4, 1279-1291, 2007.
[4] Cordero, L.A., Parker, P.E.; Left-invariant Lorentzian metrics on 3-dimensional Lie groups. Rend. Mat. Appl. (7) 17, no. 1, 129 -155, 1997.
[5] Dumitrescu, S., Zeghib, A.; Géométrie Lorentziennes de dimension 3: classification et complétude, Geom. Dedicata (2010) 149, 243-273.
[6] Goze, M., Piu, P.; Classification des métriques invariantes à gauche sur le groupe de Heisenberg, Rend. Circ. Mat. Palermo (2) 39 (1990), no. 2, 299 -306.
[7] Goze, M., Piu, P.; Une caractérisation riemannienne du groupe de Heisenberg. Geom. Dedicata 50 (1994), no. 1, 27-36.
[8] Goze, M., Remm, E.; Riemannian Γ-symmetric spaces. Differential geometry, 195-206, World Sci. Publ., Hackensack, NJ, 2009.
[9] Gray, A., Wolf, J. A.; Homogeneous spaces defined by Lie group automorphisms. I, J. Differential Geometry 2 (1968), 77-114.
[10] Hangan, Th.; Au sujet des flots riemanniens sur le groupe nilpotent de Heisenberg. Rend. Circ. Mat. Palermo (2) 35 (1986), no. 2, 291-305.
[11] Kobayashi, Sh.; Nomizu, K., Foundations of differential geometry, volume II. Interscience Publishers John Wiley and Sons, Inc., New York-London-Sydney, 1969.
[12] Kollross, A.; Exceptional $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-symmetric spaces. Pacific J. Math. 242 (2009), no. 1, 113-130.
[13] Kowalski O.; Generalized symmetric spaces. Lecture Notes in Mathematics, 805. Springer-Verlag, Berlin-New-York, 1980.
[14] Lutz, R.; Sur la géométrie des espaces Γ-symétriques. C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 1, 55-58.
[15] Ledger, A.J., Obata, M.; Affine and Riemannian s-manifolds. J. Differential Geometry 21968 451- 459.
[16] Piu P., Remm E.; Riemannian symmetries in flag manifolds. Arch. Math. (Brno) 48 (2012), no. 5, 387-398. DOI: 10.5817/AM2012-5-387
[17] Rahmani, S.; Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, J. Geom. Phys. 9 (1992), no. 3, 295 -302.
[18] Rahmani, N., Rahmani, S.; Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118 (2006), 133-140.

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124 CAGLIARI, ITALIA

E-mail address: piu@unica.it

Laboratoire de Mathématiques et Applications, Université de Haute Alsace, Faculté des Sciences et Techniques, 4, rue des Frères Lumière, 68093 Mulhouse cedex, France.

E-mail address: Michel.Goze@uha.fr, Elisabeth.Remm@uha.fr

[^0]: 2000 Mathematics Subject Classification. 22F30, 53C30, 53C35,17B70.
 Key words and phrases. Γ-symmetric spaces, Heisenberg group, Graded Lie algebras, Riemannian and Pseudo-Riemannian structures.

 The first author was supported by: Visiting professor program, Regione Autonoma della Sardegna Italy. The second author was supported by a Visiting Professor fellowship at Université de Haute Alsace Mulhouse in February 2012 and March 2013 and by GNSAGA(Italy).

