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ABSTRACT 

The evidence linking aging and cancer is overwhelming. Findings emerging from the field of 

regenerative medicine reinforce the notion that aging and cancer are profoundly interrelated in their 

pathogenetic pathways. We discuss evidence to indicate that age-associated alterations in the tissue 

microenvironment contribute to the emergence of a neoplastic-prone tissue landscape, which is able 

to support the selective growth of pre-neoplastic cell populations. Interestingly, tissue contexts that 

are able to select for the growth of pre-neoplastic cells, including the aged liver microenvironment, 

are also supportive for the clonal expansion of normal, homotypic, transplanted cells. This suggests 

that the growth of normal and pre-neoplastic cells is possibly driven by similar mechanisms, implying 

that strategies based on principles of regenerative medicine might be applicable to modulate 

neoplastic disease.  
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INTRODUCTION 

The evidence linking aging and cancer is overwhelming, to the point that the question pertaining to 

the possible basis of such strong relationship is unescapable for researchers involved in both fields. 

However, finding answers to this question has revealed particularly difficult, largely due to the 

biological intricacies of both the aging and the neoplastic processes. In this context, it is of paramount 

importance to consider whether aging and cancer represent two chronologically parallel, but 

biologically unrelated processes, or whether they result from shared etiologies and/or pathogenetic 

mechanisms. If in fact the latter is true, a better understanding of basic alterations associated with 

aging may help elucidating major biological driving forces leading to the emergence of the neoplastic 

phenotype; most importantly, strategies aimed at delaying the aging process may also have a 

beneficial impact on the morbidity and/or mortality from neoplastic disease.  

 

Aging and tissue function 

A precise definition of aging remains elusive: it is commonly described as a progressive accumulation 

of cell and tissue damage, leading to decreased functional proficiency and increased susceptibility to 

disease1. At cellular level, alterations in all macromolecular components have been reported. The 

yellow-brown granular pigment lipofuscin was one of the first to be described: it consists of 

aggregates of oxidized lipids covalently linked to proteins and contributes to the typical “brown 

atrophy” of tissues found in aged individuals2. In fact, spontaneous non-enzymatic biological side-

reactions, including glycation, have been proposed to represents a main mechanism of aging in higher 

animals, as part of the more general free radical theory of aging3,4.  

In more recent years, a decline in the efficiency of proteostasis, i.e. the integrated systems that oversee 

cellular, tissue and organismal protein quality control, has gained centre stage as a candidate driver 

of biological aging5. Intracellular proteostasis is normally ensured by the activity of chaperones and 
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two complimentary proteolytic pathways: the ubiquitin-proteasome and the autophagy systems. 

Changes in each step of these pathways have been reported with age. Chaperons are essential for 

initial protein folding and during transferring of proteins across cellular organelles6, a process 

requiring ATP, whose availability may be limited in old age7. Furthermore, repair of damaged 

proteins may be compromised in aging, due to decreased activity of dedicated enzymes8. Similarly, 

both proteasomal function and autophagy decline with age9, increasing the risk for the piling up of 

aggregates both inside and outside the cell5,9.  

Aging is also associated with epigenetic changes, such as altered DNA methylation patterns and 

histone modifications, which lead to the progressive and profound alteration of transcriptional profiles 

of coding and non-coding RNA10,11. Experimental evidence suggests that such large-scale alterations 

are linked to the inflammatory status and are in response to environmental stimuli and/or nutrient 

availability12. The decline of the proliferative capacity in aging cells is tightly associated with a 

general loss of histones, and with an imbalance between activating and repressive histone 

modifications13,14. In addition, DNA methylation patterns are modified with age, and methylation 

status of some specific regions (termed clock CpGs) can accurately predict age15,16. A recent study 

reported that, in senescent cells, >30% of chromatin is dramatically reorganised, including the 

formation of large-scale domains of H3K4me3 H3K27me3 over lamin-associated domains, as well 

as large losses of H3K27me3 outside these domains10, which is linked to the transcriptional 

downregulation of lamin B1 in senescence10,17,18. In general, age is associated with global DNA 

hypomethylation and local hypermethylation in some specific regions12. This, together with histone 

modification changes associated with inflamm-aging and oxidative stress, can affect the activation or 

the repression of specific transcriptional programs, including those involved in the expression of 

cytokines, oncogenes and tumor suppressor genes, thus predisposing the tissue to chronic 

inflammatory diseases associated with age and cancer11,19. 
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On the other hand, the hypothesis that aging might be sustained by chronic and progressive damage 

accrued on the molecular repository of the genetic information, i.e. DNA, has historically received 

special attention20-23. Both endogenous and exogenous sources of DNA damage can contribute to 

genotoxicity, including the recently reported uptake of circulating nucleic acids, which can act as 

mobile genetic elements, possibly fuelling mutagenesis and promoting cellular aging24. While most 

spontaneous or induced DNA alterations are short lived, a small fraction, including double-strand 

breaks and inter-strand crosslinks, are more difficult to repair and may persist25,26 leading to changes 

in chromatin structure and deregulated transcription27,28.  

Irrespective of the specific altered targets, be they membrane lipids, proteins or DNA, the underlying 

implication is that the gradual increase in macromolecular derangement translates into a decreased 

fitness at cellular and tissue level, which is the a main hallmark of aging29-31. As an example, 

regenerative capacity in vertebrates, which is an integrated complex functional response, declines 

with age in several organs32, including liver33. Based on these premises, any hypothesis postulating a 

pathogenetic link between aging and cancer should consider whether and how a decreased cell/tissue 

fitness, such as found in old age, could favour the emergence of a neoplastic phenotype.  

 

Aging vs. neoplastic disease 

As mentioned above, two opposing paradigms have been proposed to account for the association 

between aging and cancer. A widely entertained view is that aging and cancer represent parallel, but 

unrelated biological processes. This possibility is in fact implied in a mainstream paradigm, which 

proposes to explain the increased risk of neoplastic disease associated with age as a direct 

consequence of DNA damage occurring in rare cells34,35. According to this interpretation, the main 

target and rate-limiting step in the origin of age-associated neoplasia is the time-dependent 

appearance of rare cells harboring critical genetic (oncogenic) alterations. In this view, emphasis is 

placed on chronological aging (more time is available for mutagenesis in rare cells), while little or no 
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relevance is attributed to widespread molecular changes, including genetic and epigenetic changes, 

occurring in the bulk of the aging tissue, which underlies functional decline (biological aging).  

On the other hand, it is now widely recognized that the pathogenesis of neoplastic disease is heavily 

dependent on cues emanating from the tissue and/or systemic environment where the process 

occurs36,37. Within this conceptual framework, the role of age-related changes in the origin of cancer 

has often been referred to the progressive waning of effector mechanisms of immune-surveillance38, 

which are thought to be relevant for the clearance of putative pre-neoplastic cells39,40. However, the 

question regarding the precise role of immune-surveillance in controlling the growth of cancerous 

and/or pre-cancerous lesion is still open, given the known ability of cancer to induce tolerance41,42. 

An alternative, albeit not mutually exclusive hypothesis builds on the assumption that a landscape of 

decreased tissue fitness may provide the opportunity for the selection of mutant cells with oncogenic 

potential, increasing the risk of cancer through a process of “adaptive oncogenesis”43,44.  

 

The tumour promoting effect of a chemically-induced low-fitness tissue environment 

Taking advantage of an experimental model developed in our laboratories, several years ago we 

investigated the role of a severely growth-constrained tissue environment on the expansion of pre-

neoplastic and neoplastic cell populations. Experiments were conducted in rats treated with 

pyrrolizine alkaloids (PAs), a class of naturally-occurring compounds which are known for their 

ability to impose a long-lasting block in the cell cycle of hepatocytes45. Initial studies indicated that 

a brief exposure to retrorsine (RS), a commercially available PA, given in two doses, was able to 

suppress the capacity of the liver to restore liver mass after 2/3 partial hepatectomy (PH), and the 

effect persisted for at least several months46. Such an experimental setting was then used as a model 

system to test the growth behaviour of transplanted pre-neoplastic hepatocytes. The latter were 

isolated from chemically-induced liver nodules and injected, via portal vein, into the liver of rats pre-

treated with RS, as described above. The fate of donor-derived cells in the recipient liver was 
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monitored over time using the dipeptidyl-peptidase type IV-deficient (DPPIV-) syngenic rat system 

for hepatocyte transplantation, in which donor animals express the DPPIV enzyme (DPPIV+), while 

host rats are DPPIV-. Results were clear-cut: nodular hepatocytes grew very rapidly, giving rise to 

large liver nodules and hepatocellular carcinoma within 4-6 months upon transplantation in animals 

treated with RS47. By contrast, the same cells were unable to expand to any extent when transferred 

into the liver of normal young hosts not exposed to RS47. Thus, the growth-compromised tissue 

environment induced by the alkaloid was able to sustain the expansion of pre-neoplastic hepatocytes; 

moreover, and very importantly, the liver microenvironment of healthy, untreated young recipients 

was not permissive for the growth of the same pre-neoplastic cell population.  

Conceptually related results were reported by Marusyk et al. in mouse hematopoietic tissue, where it 

was shown that exposure to irradiation leads to a decline in fitness of hematopoietic stem cells and 

promotes selection of precursors harbouring advantageous oncogenic mutations, thereby contributing 

to leukemogenesis8.  

Similar to radiation, PAs, including RS, are genotoxic compounds49. Moreover, exposure to RS 

generates persistent DNA adducts in vivo50, a possible contributing factor to the long lasting block 

on cell cycle exerted by this alkaloid46. In line with such interpretation, subsequent studies indicated 

that the phenotype induced by RS on rat hepatocytes in vivo is consistent with the chronic activation 

of a DNA damage response51. It also displays several markers of cell senescence, including the 

senescence-associated β-galactosidase (SA-β-gal), the phosphorylated form H2A histone family, 

member X (γ-H2AX), p53 binding protein 1 (53BP1), and the ataxia-teleangiectasia-mutated (ATM) 

gene product, among others51.  

Cell senescence implies a stable cell cycle arrest and has long been regarded as a fail-safe mechanism 

to limit the risk of neoplastic transformation following genotoxic insult52. However, it is now evident 

from several studies that the presence of senescent cells in tissues can also fuel carcinogenesis, 

possibly via components of the senescence associated secretory phenotype (SASP), which includes 
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cytokines, growth factors and matrix-remodelling enzymes53, and/or through release of extracellular 

vesicles or cytoplasmic bridging, which have also been reported to occur in cell senescence54-56. 

Thus, cell senescence and the concomitant SASP stand as possible mediators for the growth 

stimulation of transplanted nodular hepatocytes in RS-exposed liver tissue50. 

 

The tumour promoting effect of the aged tissue environment 

The finding of cell senescence in a chemically-induced tissue environment that is supportive for the 

growth of pre-neoplastic cell populations raises an important question: are aged organs, which 

typically harbour senescent cells, also characterized by the emergence of a neoplastic-prone tissue 

landscape, i.e. conducive to selection of altered/pre-neoplastic cells? Studies reported by McCullough 

et al. over 20 years ago suggested such possibility57. Neoplastically transformed epithelial cell lines, 

generated in vitro and transferred into the liver of syngeneic recipients of different age, expressed 

their full tumorigenic potential only in aged hosts, while their growth was suppressed upon injection 

into young animals57. These results were highly intriguing. However, their interpretation in the 

context of the present discussion is rather difficult, given that cells were already neoplastic at the time 

of transplantation, and their responsiveness to any tissue environmental cues might therefore be 

different compared to pre-neoplastic counterparts. Furthermore, they were of in vitro origin, adding 

uncertainty to their potential relevance to the process as it occurs in vivo. Nevertheless, this type of 

evidence laid the grounds for a direct testing of the hypothesis that advancing age might be associated 

with alterations in the tissue environment, which are conducive to the selective growth of putative 

pre-neoplastic cells.  

Taking advantage of the experimental setting described in the preceding paragraphs, we have recently 

explored this possibility. Cells isolated from pre-neoplastic nodules were infused in the liver of rats 

of different age and their fate was followed over time using the histochemical marker DPPIV (see 
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above and ref.47). Results were unequivocal: very limited growth of transplanted primary nodular 

hepatocytes was seen in the liver of young (3 to 5 month-old) hosts over a period of 8 months, as 

reported in previous studies47. On the other hand, the same pre-neoplastic cells formed visible nodules 

in the majority of recipients (17/18) following infusion into the liver of aged (18-20 month-old) 

syngeneic rats58. It should be mentioned that in both groups cells were injected through the portal 

circulation and they were therefore seeded in the liver parenchyma mainly as single hepatocytes, with 

ample possibility to interact with the host tissue environment. 

As expected, aged liver showed increased expression of SA-β-gal. However, other markers which are 

often associated with cell senescence were not found elevated in old recipients. Thus, whether 

senescent cells and/or their SASP components are involved in the promoting effect exerted by the 

aged liver microenvironment on transplanted pre-neoplastic hepatocytes remains an important 

question to be investigated in future studies. 

Once again, some analogies with the above findings are present in studies on mouse leukemogenesis 

carried out in DeGregori’s research laboratories59. It was reported that the reduced fitness of B-

lymphopoiesis associated with aging selects for the emergence of cells with favourable oncogenic 

mutations, increasing the risk of leukaemia in the old animal. Thus, while the decline in the fitness of 

B-lymphopoiesis in aged mice coincided with altered receptor-associated kinase signalling, the fusion 

protein Bcr-Abl provided a much greater competitive advantage to old B-lymphoid progenitors 

compared with young progenitors, restoring kinase signaling pathways. Such enhanced competitive 

advantage translated into increased promotion of Bcr-Abl-driven leukemias Furthermore, a chronic 

inflammatory milieu in the aged bone marrow appears to be involved in the genesis of the reduced-

fitness phenotype of B cell progenitors60.  

A decline in the ability of the aged liver to recover its mass following tissue loss has been reported 

by several studies61,62. Replicative capacity is an important functional attribute of the differentiated 

hepatocyte, given the potential exposure of the liver to dietary-born toxins or metabolic insults63. It 
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is noteworthy that hepatocytes isolated from old donors were found to express a cell-autonomous 

decrease in proliferative potential upon transplantation under strong selective conditions in vivo64. It 

is therefore reasonable to propose that an aged tissue landscape, endowed with reduced cell replicative 

capacity, might facilitate the selective expansion of a more competitive cell population, such as the 

pre-neoplastic hepatocytes. This hypothetical scenario would be in line with the interpretation 

suggested for mouse leukemogenesis59. 

 

The aged liver microenvironment supports the growth of normal transplanted hepatocytes. 

The evidence discussed thus far suggests the existence of a pathogenetic link between a low-

fitness/aged tissue landscape and the selective growth of pre-neoplastic cell populations. The 

microenvironment of an aged/growth-constrained liver appears able to generate stimuli that are 

conducive to the emergence of altered cells, increasing the risk of neoplastic disease. A crucial 

question at this point is whether these stimulatory signals bear any specificity towards altered/pre-

neoplastic hepatocytes or, alternately, they can also sustain the growth of normal cell counterparts. 

Answering this question is important on two grounds. (i) It may shed light on the nature of phenotypic 

differences between normal and pre-neoplastic hepatocytes and/or (ii) it may help defining biological 

and molecular mechanisms mediating the stimulatory effect of the aged microenvironment on the 

growth of pre-neoplastic cells. For example, if cell senescence and/or SASP have a major role in this 

phenomenon, one would expect to observe some specificity of the effect towards pre-neoplastic cells. 

In fact, several reports associate the secretory activity of senescent cells to promotion of 

carcinogenesis65,66. However, no studies thus far have linked SASP components and/or other 

phenotypic features of senescent cells to normal tissue proliferation and/or regeneration. 

Given such premises, the fate of normal hepatocytes transplanted in the liver of either young or old 

recipients becomes a significant issue. Results obtained by our research group provided the first 

evidence that the microenvironment of the aged rat liver is indeed able to foster the clonal expansion 
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of transplanted normal hepatocytes, while the same cells displayed very limited growth upon infusion 

into the liver of young hosts67. Analogous findings were reported later by Menthena et al.68. They 

transplanted cells isolated from fetal rat liver in syngeneic recipients of different age and observed a 

4-5-fold increase in the size of donor-derived cell clusters in older hosts.  

From the foregoing, it is justified to conclude that the same tissue environment of the aged liver, 

which is able to promote the growth of pre-neoplastic hepatocytes, exerts a seemingly comparable 

effect on bona fide normal hepatocytes (figure 1). Importantly, no signs of neoplastic transformation 

were seen with the latter cell type after over two years of observation67,68.  

The above conclusion is further supported by the striking results obtained when normal hepatocytes 

are transplanted into the growth-constrained/low fitness microenvironment induced in the liver 

following exposure to RS. As mentioned in the preceding discussion, such treatment imposes a long 

lasting block on hepatocyte cell cycle and generates a powerful driving force for the rapid expansion 

of transplanted pre-neoplastic hepatocytes, leading to their progression to cancer. When normal 

hepatocytes are infused in RS-treated liver, they also proliferate extensively, setting out a most 

remarkable process, which culminates in the massive repopulation of the host liver by the donor-

derived cell progeny69. Furthermore, the repopulated liver shows a normal histology and performs 

normal functions for the entire lifespan of the recipient animal70. 

Taken together, these findings strongly indicate that both the age-associated and the RS-induced low 

fitness liver microenvironments, which represent neoplastic-prone tissue landscapes, are also 

supportive for the growth of phenotypically normal cells. In light of such evidence, it is reasonable 

to conclude that similar mechanisms are likely to be involved in the selective expansion of both 

normal and pre-neoplastic hepatocytes under the experimental conditions referred to above69. If cell 

senescence and/or SASP components do play a role in this context51, this would imply that they are 

also able to exert an effect on normal cell and tissue regeneration, adding a possible new facet to the 

biological significance of cell senescence.  
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On the other hand, the emergence of either normal or pre-neoplastic hepatocytes in a background of 

decreased tissue fitness suggests that mechanisms of cell competition could be at play. This was in 

fact suggested by Menthena et al. to explain the selective expansion of fetal hepatic cells in the liver 

of aged recipients67. Cell competition is now recognized as a pervasive biological mechanisms 

allowing for clearance of cells that, although viable, are less fit than their neighbours71. As such, it is 

thought to be involved in several physio-pathological processes72. Interestingly, it has been reported 

that in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells 

via cytoskeletal proteins by a process that has been referred to as epithelial defence against cancer 

(EDAC), which is interpreted as a form of cell competition73. However, in a tissue landscape with 

widespread decreased fitness in “normal” cells, rare “mutants” with favourable alterations may take 

the lead and set in motion a process that could result in “adaptive oncogenesis”43,44. Within this 

conceptual framework, it is noteworthy that normal cells, endowed with normal fitness, can also act 

as efficient competitors when tissue function is compromised, as documented in the preceding 

discussion.  

 

Normal cell transplantation delays carcinogenesis. 

As an important corollary to the above interpretation, it is possible to predict that normal cells could 

in fact be exploited in a cell competition strategy to counteract the emergence of altered/pre-

neoplastic cells, under conditions of overall decreased tissue fitness, most notably with reference to 

proliferative capacity. Stated otherwise, regenerative medicine could come to the rescue by abolishing 

or limiting the competitive advantage of altered cells in a growth compromised tissue landscape.  

Recent findings suggest such possibility74. Animals were initially exposed to a protocol for the 

induction of hepatocellular carcinoma (HCC) followed by transplantation of normal hepatocytes. The 

latter resulted in extensive repopulation of the host liver and a prominent decrease in the incidence of 

both pre-neoplastic and neoplastic lesions compared to control group not receiving transplantation 
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(figure 2)74. Further studies revealed that extensive hepatocyte senescence was induced by the 

carcinogenic protocol in the host liver; however, senescent cells were largely cleared and replaced 

following infusion of normal hepatocytes and this was associated with a decrease in the levels of the 

inflammatory cytokine (and main SASP component) IL6(74).  

Clearly, the above results cannot be taken to suggest that regenerative medicine, by means of normal 

cell transplantation, is a realistic option to be applied in the context of neoplastic disease, either in 

experimental models or, more to the point, in the clinical setting. However, they serve to reinforce 

the notion that strategies aimed at normalizing a neoplastic-prone tissue landscape, including age-

associated tissue microenvironments, can modulate the evolution of neoplastic disease.  

 

CONCLUSION 

We have discussed evidence to indicate that age-associated alterations in the tissue microenvironment 

contribute to the emergence of a neoplastic-prone tissue landscape, which is able to promote the 

selective growth of pre-neoplastic cell populations. Possible mechanisms responsible for this effect 

are the accumulation of senescent cells and/or their release of secretory products, including pro-

inflammatory cytokines and growth factors. Alternately, or in combination, an age- associated 

progressive decrease in tissue fitness, notably proliferative fitness, may favor the emergence of more 

competitive cell variants, which might harbor pro-neoplastic genetic/epigenetic alterations. This 

process can be interpreted as “adaptive oncogenesis”. 

Interestingly, tissue contexts that are able to select for the growth of pre-neoplastic cells, including 

the aged liver microenvironment, are also supportive for the clonal expansion of normal, homotypic, 

transplanted cells. This suggests that the growth of normal and pre-neoplastic cells is probably driven 

by similar mechanisms, implying that strategies based on principles of regenerative medicine might 

be applicable to modulate neoplastic disease.  
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As it has been aptly remarked, if aging is the strongest risk factor for cancer, the immediate 

implication is that the best protection against cancer is to be young75. Most importantly, the finding 

that aging and cancer are not just coincidentally associated, but are profoundly interrelated in their 

pathogenetic pathways, leads to the suggestion that a most effective strategy to prevent cancer is by 

promoting healthy chronological aging and delaying biological aging76. 
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FIGURE LEGENDS 

 

Figure 1. Neither normal, nor primary pre-neoplastic hepatocytes grow to any significant extent upon 

transplantation into the liver of young syngeneic hosts. However, selective expansion of both cell 

types is seen in the liver of aged recipients (see48,57 for details). 

 

Figure 2. Normal hepatocyte transplantation delays chemically-induced liver carcinogenesis (See64 

for details).  
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