An unifying framework for compacting Petri
nets behaviors*

Giovanni Casu and G. Michele Pinna

Dipartimento di Matematica e Informatica, Universita di Cagliari, Cagliari, Italy
giovanni.casu@unica.it, gmpinna@unica.it

Abstract. Compacting Petri nets behaviors means to develop a more
succinct representation of all the possible executions of a net, still giving
the capability to reason on properties fulfilled by the computations of
the net. To do so suitable equivalences on alternative executions have to
be engineered. We introduce a general notion of merging relation, cover-
ing the existing approaches to compact behaviors of nets, and we state
some properties this kind of relations may satisfy. The classical merging
relations, defined on unfoldings, do not in general satisfy the properties
one may be interested in, and we propose how to add information to the
executions in order to enforce some of these properties.

The behavior of a Petri net can be described in many ways, e.g using the
marking graph, or the set of firing sequences, or its unfolding (see [1,2] among
many others). The notion of unfolding of a net N, a net where places (called
conditions) and transitions (called events) are labeled with the places and tran-
sitions of N ([3,4]), is particularly relevant as it allows to record conflicts and
dependencies among the activities modeled with the Petri net N. Furthermore,
the possibility of finding a finite representation of it (the prefix), has given prof-
itability to the notion, otherwise confined to the purely theoretical modeling
realm ([5,6]). However the size of a finite unfolding, even of the prefix, can be
too large, hence manageable only with big efforts. Prefixes are obtained cutting
the unfolding in such a way that each execution represented in the unfolding
can be recovered in the prefix itself. The cutting procedure allows to eliminate
unnecessary duplications. Still some information may be redundant, for instance
the existence of conflicting components leading to isomorphic futures, but with
alternative pasts, forces to represent all the possible futures, introducing in this
way some avoidable duplications.

The identification of conflicting conditions seems to be a good basis for
compacting nets’ behaviors. Following this idea some approaches have been

* Work partially supported by Aut. Region of Sardinia under grant P.I.A. 2013 “NOMAD” and by
MIUR PRIN 2010-11 “Security Horizons”

Copyright © by the paper’s authors. Copying permitted for private and academic pur-
poses.

V. Bil6, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7-9 2016, pp. 245-250
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720


http://ceur-ws.org/Vol-1720

246 G. Casu & G.M. Pinna

proposed, and these are based on giving precise criteria to identify conflicting
conditions in nets which are acyclic, i.e. the transitive and reflexive closure
of the flow relation is a partial order. In the case of merged process ([7]) the
criterion is that the conditions must be equally labeled and have the same token
occurrence (i.e. they represent the same token, in the collective token philosophy
of [8]) whereas in the case of trellis processes ([9]) the criterion is the distance of
the equally labeled conditions from the initial conditions (measuring the time).
Once conditions have been identified, isomorphic futures can be identified as
well. The identification of conflicting conditions has a semantics counterpart:
the identification induces an equivalence relation on the different computations
leading to these conditions, equivalence driven by the common futures of these
computations.

We pursue this idea further, casting it in a general framework. We start
choosing a representation of nets behaviors less constrained with respect to the
usual notion of causal net on which unfoldings are based. Causal nets are acyclic
safe nets where conditions may have at most one incoming arc. The uniqueness
of incoming arcs, together with the safeness, guarantee that dependencies can
be uniquely identified. Conflicts are deduced from conditions having more than
one outgoing arcs (implying that various alternatives use that condition). We
drop the assumption that each condition has at most one incoming arc, and we
add the requirements that each transition in the net can be executed at most
once (which is syntactically enforceable) and that restricting the net to all the
transitions in a execution we obtain an acyclic net, where each condition has
at most one incoming and one outgoing arc. Dependencies can be captured by
looking at executions, and some conflicts may still be retrieved by looking at
multiple outgoing arcs. We call these nets unravel nets. This notion covers the
one of causal nets, as these are indeed unravel nets, whereas unravel nets may not
be causal ones. Together with the notion of unravel net, we introduce a notion
of conflict that it is not based on the syntax, like in causal nets, but on the
semantics (the executions of the net), simply stipulating that two conditions are
in conflict if they never appear together in an execution.

We can now put forward the general framework, that consists in taking a
representation of the behaviors of a given net (in our case a labeled unravel net)
and an equivalence relation defined on conditions of the chosen representation of
the behaviors. The minimal requirement we put on this relation, which is called
merging relation is that two different conditions in the relation should be equally
labeled and in conflict.

E+-@—E-@—[—O—E-®

f-@-E-@-E-@-E-O



An unifying framework 247

Consider the unravel net N;. Conditions ¢y and c3 are in conflict and they
have the same label p, and similarly for conditions ¢; and ¢4 (here the label is q).
In the net above the merging relation (denoted with ~) stipulates that ca ~ 3,
€1 ~ ¢4, cg ~ c7 and ¢5 ~ cg (reflexive pairs omitted). The relation is identified
pictorially with different colors. This is not the unique merging relation definable
on this net, we could have chosen this other relation: ¢y ~ ¢7, ¢1 ~ ¢4, cg ~ c3
and ¢5 ~ cg (again reflexive pairs omitted), and clearly the identity relation
is a merging relation. Once that a merging relation is fixed, we can compact
the behavior by merging the conditions in the same equivalence classes and
identifying the equally labeled transitions having the same preset and postset.

The result of this procedure is the
net shown on the left. The condi-
tion 0 is the equivalence class of cq,
1 is the equivalence class of ¢ and
N @ ¢ c3, 2 the one of ¢; and ¢4, 3 of ¢
and c¢7; and finally 4 the one of c5
and cg. Transitions with the same
labels are not identified as none of
them has the same preset and postset.
We observe that the net obtained iden-
tifying equivalent conditions is not any
longer an unravel net. In the execution
@—' eg|d e followed by e3 and e4 the condition
c D 1 is marked twice violating the require-
ment of being acyclic. The fact that eg

should be followed by e5 and not e4 has been lost in the compaction process.

The notion of merging relation covers
the criteria used in merged and trellises
processes. In the case of merged and trel-
lises processes the starting point is always
a branching process, hence a labeled causal
net where dependencies and conflicts can @_. .—*.
be found syntactically. The criterion to use
in case of merged processes is to consider
two equally labeled conflicting conditions c; ‘@_._@
and c; as equivalent is that they have the
same token occurrence, which is defined as
the number of conditions labeled as ¢; and
¢;j that are encountered going back to the initial conditions, comprising ¢; and c;.
In the net N7 the conditions c¢g and the condition ¢; have both one condition in
their past which has the same label, namely ¢ and c3 respectively, hence their
token occurrence is 2. In the case of trellises processes the starting point is not
only a branching processes, but here the nets considered are called multi-clocks

nets. Multi-clocks nets are the product of various automata where only one place
is initially marked and each reachable marking is such that each component has



248 G. Casu & G.M. Pinna

just one place marked. Due to this feature it is possible to identify, for each
condition and each execution, the exact time in which the condition holds. The
criterion is then the one of considering two equally labeled conflicting conditions
¢; and ¢; as equivalent is that they have the same time, which is defined as the
number of conditions that are encountered going back to the initial conditions,
comprising ¢; and c¢;. In the unravel net N3, the conditions c3 and ¢4 have the
same label p and have the same distance from the initial conditions, and similarly
cs5 and cg. By identifying these conditions also the transitions e; and eg have
to be identified, resulting in the net N4. 1 is the equivalence class containing c3
and ¢4, 2 the one with ¢5 and cg and finally € is the transition obtained fusing
es and ey, has these two transitions have the same preset, the same postset and
are equally labelled, thus they share the same future.

The criteria used to obtain merged
and trellises processes may be general-
ized equipping the unravel net with a N @ q
mapping that associate to each condi- 4
tion a unique number, which we can call

b
the measure. Thus a merging relationis 4 @_
obtained making equivalent all the con- a
ditions having the same labels, the same @_.@
measure and being pairwise conflicting. > >
:
a

For the compaction process to be of
real interest one would like to obtain a
net which is possibly an unravel one, or
that has strong relations with the unravel net we started with. In fact we devise
two characteristic the compaction process may have. The first one is that to each
execution in the compact net, at least an execution in the original one should
correspond. The merging relation used to obtain Ny out of N7 does not fulfil
this property, whereas it does the merging relation used to obtain N, out of Njs.
When a merging relation fulfil this property we say that it is a reflecting merging
relation. Clearly a reflecting merging relation always exists, as the identity relation
is reflecting.

The property of being reflecting, adopting as the measure the token occurrence,
can be enforced by enriching the starting unravel net. In the net N; conditions
are used both to represent dependencies and conflicts, and by fusing some of
them the dependencies may be lost. Thus the idea is to add some conditions that
captures the dependencies. These conditions are easily obtainable by considering
the whole token count for each transition of net. The net N7 can be enriched as
shown in the net N5, and the added conditions are labeled with the condition
representing the dependency.



An unifying framework 249

&
T N

FOTSTOTO

Among the added conditions, in this case, there is no equivalence, as all of
them have a different measure, the measure in this case being the one represented
by the whole token count for the transitions (details on how to determine this
measure can be found in [10], where the theory is applied to multi-clock nets).
The result of the compaction process is
the net Ng. Now the execution e; fol-
lowed by es and e4 is no longer possible
and ez is followed by e5 only.

Beside looking for reflecting merg-
ing relation, one could be interested in
preserving some characteristic of the
net. For instance, one may be inter-
ested in preserving the fact that the re-
sulting net is still an unravel one (and
the measure induced by the time in
the compaction done with trellis pro-
cesses has this characteristic) or being
acyclic when restricted to a certain sub-
set of conditions (again, when consider-
ing the conditions belonging to an au-
tomata this is the case in trellis pro-
cesses). When properties fulfilled by the
net we start with are preserved by the compaction process we say that the merg-
ing relation is preserving. The merging relation giving the net Ng preserves the
property that, when only the added conditions are considered, the whole net is
acyclic, and verification can be performed easily.

a q

References

1. Desel, J., Reisig, W.: The concepts of Petri nets. Software and System Modeling
14(2) (2015) 669-683

2. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013)

3. Winskel, G.: Event Structures. In: Petri Nets: Central Models and Their Properties.
LNCS 255 (1987) 325-392

4. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6) (1991)
575-591

5. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In: CAV ’92. LNCS 663 (1993) 164-177



250 G. Casu & G.M. Pinna

6. Esparza, J., Romer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 20(3) (2002) 285-310

7. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged Processes: a new
condensed representation of Petri net behaviour. Acta Informatica 43(5) (2006)
307-330

8. van Glabbeek, R.J.: The individual and collective token interpretation of Petri
nets. In: CONCUR, 2005. LNCS 3653 (2005) 323-337

9. Fabre, E.: Trellis processes : A compact representation for runs of concurrent
systems. Discrete Event Dynamic Systems 17(3) (2007) 267-306

10. Casu, G., Pinna, G.M.: Flow unfolding of multi-clock nets. In: PETRI NETS 2014.
LNCS 8489 (2014) 170-189



	An unifying framework for compacting Petri nets behaviors 

