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Abstract

Quantum computational logics are special examples of quantum logic where formulas are supposed to denote pieces of quantum

information (qubit-systems or mixtures of qubit-systems), while logical connectives are interpreted as reversible quantum logical

gates. Hence, any formula of the quantum computational language represents a synthetic logical description of a quantum circuit.

We investigate a many-valued approach to quantum information, where the basic notion of qubit has been replaced by the more

general notion of qudit. The qudit-semantics allows us to represent as reversible gates some basic logical operations of Łukasiewicz

many-valued logics. In the final part of the article we discuss some problems that concern possible implementations of gates by

means of optical devices.

 2016 Published by Elsevier B.V.

Keywords: Quantum logics; Quantum tomography; Logical gates

1. Introduction

The mathematical formalism of quantum theory has inspired the development of different forms of non-classical

logics, called quantum logics. In many cases the semantic characterizations of these logics are based on special

classes of algebraic structures defined in a Hilbert-space environment. The prototypal example of quantum logic

(created by Birkhoff and von Neumann) can be semantically characterized by referring to the class of all Hilbert-space

lattices, whose support is the set P(H) of all projections of a Hilbert space H. The question whether the class of all

Hilbert-space lattices can be axiomatized by a set of equations is still open. What is known is that the variety of all

orthomodular lattices (which gives rise to a semantic characterization of a logic often termed “abstract quantum logic”)

does not represent a faithful abstraction from the class of all Hilbert-space lattices. A characteristic example of an
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equation that holds in all Hilbert-space lattices, being possibly violated in orthomodular lattices is the orthoarguesian

law [1,3].

Interesting generalizations of Birkhoff and von Neumann’s quantum logic are the so called unsharp (or fuzzy)

quantum logics that can be semantically characterized by referring to different classes of algebraic structures whose

support is the set of all effects of a Hilbert space. According to the standard interpretation of the quantum formal-

ism, any projection P ∈ P(H) represents a sharp physical event to which any possible state of a physical system

S (associated with the space H) assigns a probability-value. Such events are called “sharp” because they satisfy the

non-contradiction principle: P ∧ P⊥ = O (the infimum between P and its orthogonal projection P⊥ is the null pro-

jection O). Effects, instead, represent unsharp physical events that may violate the non-contradiction principle.

The set E(H) of all effects of a Hilbert space H is defined as the largest set of linear bounded operators E for which

a Born-probability can be defined. In other words, for any density operator ρ of H (representing a possible state of a

physical system S whose associated Hilbert space is H), we have:

Tr(ρE) ∈ [0,1] (where Tr is the trace-functional).

The number Tr(ρE) represents the probability that a quantum system S in state ρ verifies the physical event repre-

sented by the effect E. Of course, E(H) properly includes P(H). Different kinds of algebraic structures have been

induced on the set E(H), giving rise to various forms of unsharp quantum logics [2,3].

A different approach to quantum logic has been developed in the framework of quantum computational logics, in-

spired by the theory of quantum computation [4]. While sharp and unsharp quantum logics refer to possible structures

of physical events, the basic objects of quantum computational logics are pieces of quantum information: possible

states of quantum systems that can store and transmit the information in question. Maximal pieces of information

(which cannot be consistently extended to a richer knowledge) correspond to pure states, mathematically represented

as unit vectors |ψ〉 of convenient Hilbert spaces. At the same time, pieces of information that do not necessarily

express a maximal knowledge correspond to mixed states (or mixtures), mathematically represented as density op-

erators ρ. Of course any pure state |ψ〉 corresponds to a special case of a density operator: the projection P|ψ〉 that

projects over the (one-dimensional) closed subspace determined by |ψ〉.
In this article we will investigate particular examples of quantum computational logics based on a “many-valued

approach” to quantum information, where the fundamental notion of qubit has been replaced by the more general

concept of qudit.

2. Qubits and qudits

As is well known, the basic concept of quantum information is the notion of qubit (or qubit-state): a possible pure

state of a single quantum system, mathematically represented as a unit-vector |ψ〉 of the two-dimensional Hilbert

space C
2 (based on the set of all ordered pair of complex numbers). Accordingly, any qubit can be described as a

superposition

|ψ〉 = c0|0〉 + c1|1〉,
where |0〉 = (1,0) and |1〉 = (0,1) (the two elements of the canonical basis of C2) represent, in this framework, the

two classical bits (0 and 1) or, equivalently, the two classical truth-values (Falsity and Truth). From an intuitive point

of view, a qubit c0|0〉 + c1|1〉 can be regarded as an “uncertain answer” to a given question; an answer that might be

false with probability |c0|2 and might be true with probability |c1|2.

A natural “many-valued generalization” of qubits is represented by qudits: unit-vectors living in a space Cd , where

d ≥ 2. The elements of the canonical basis of Cd can be regarded as different truth-values, which can be conventionally

indicated in the following way:

|0〉 = | 0
d−1

〉 = (1,0, . . . ,0)

| 1
d−1

〉 = (0,1,0, . . . ,0)

| 2
d−1

〉 = (0,0,1,0, . . . ,0)

...

|1〉 = | d−1
d−1

〉 = (0, . . . ,0,1).
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While |0〉 and |1〉 represent the truth-values Falsity and Truth, all other basis-elements correspond to intermediate

truth-values.

A particularly interesting example of a qudit-space is the qutrit-space C3, where the truth-values are:

|0〉 = | 0
2
〉 = (1,0,0)

| 1
2
〉 = (0,1,0)

|1〉 = | 2
2
〉 = (0,0,1).

From a physical point of view, this space can be naturally used to represent the spin-values of bosons. The eigenval-

ues of the observable Spinz (the spin in the z-direction, corresponding to the z-component of the angular momentum)

can be associated to the elements of the canonical basis; while the spin-observables in all other directions can be

associated to different bases of the space.

Like classical bits, qudits represent atomic pieces of information: answers (which, in the quantum case, are gen-

erally uncertain) to single questions. At the same time, complex pieces of quantum information can be naturally

represented as possible states of composite quantum systems that can store the information in question. Accord-

ingly, by using the quantum-theoretic formalism for the mathematical representation of composite systems (based

on tensor-products), any piece of quantum information can be identified with a possible (pure or mixed) state of a

quantum system: a density operator ρ living in a tensor-product space

H
(n)
d = C

d ⊗ . . .⊗C
d

︸ ︷︷ ︸
n-times

, where n≥ 1.

While d represents the number of truth-values, n represents the number of the components of the quantum system that

stores the information ρ.

The canonical basis of H
(n)
d (whose elements are called registers) is the following set:

{
|v1, . . . , vn〉 : |v1〉, . . . , |vn〉 are elements of the canonical basis of Cd

}

(where |v1, . . . , vn〉 is an abbreviation for the tensor product |v1〉 ⊗ . . .⊗ |vn〉). A quregister of H
(n)
d is a pure state,

represented by a unit-vector |ψ〉 (or, equivalently, by the corresponding density operator P|ψ〉).

In any space H
(n)
d , each truth-value | j

d−1
〉 determines a corresponding truth-value projection P

(n)
j
d−1

, whose range is

the closed subspace spanned by the set of all registers |v1, . . . , vn〉 where vn = j
d−1

. From an intuitive point of view,

P
(n)
j
d−1

represents the property “having the truth-degree
j
d−1

”. In particular, P
(n)
0 and P

(n)
1 represent the Falsity-property

and the Truth-property, respectively. On this basis, one can naturally apply the Born-rule and define for any state ρ

(of H
(n)
d ) the probability that ρ satisfies the property P

(n)
j
d−1

:

p j
d−1
(ρ) := Tr

(
ρ P

(n)
j
d−1

)
.

The probability tout court of ρ can be then defined as the weighted mean of all truth-degrees.

Definition 1. The probability of a density operator ρ of H
(n)
d .

p(d)(ρ) := 1

d − 1

d−1∑

j=1

j p j
d−1
(ρ).

We have:

p(d)(ρ)= Tr

(
ρ (I(n−1) ⊗E)

)
,

where I(n−1) is the identity operator (of H(n−1)) and E is the effect (of Cd ) represented by the following matrix:
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0 0 0 · · · 0

0 1
d−1

0 · · · 0

0 0 2
d−1

· · ·
...

...
...

...
. . . 0

0 0 · · · 0 1




In the particular case where ρ corresponds to the qubit |ψ〉 = c0|0〉 + c1|1〉, we obtain that p(2)(ρ)= |c1|2.

Due to the properties of the quantum-theoretic formalism, pieces of quantum information turn out to satisfy the

characteristic holistic features of quantum states. Generally quantum information flows from a whole to its parts, and

not the other way around, as happens either in classical information or in the semantics of many important logics (like

classical logic, intuitionistic logic or standard fuzzy logics).

Consider a quregister |ψ〉 representing the pure state of a composite quantum system S consisting of n subsystems

S1, . . . , Sn (say, an n-electron system), and let H
(k1+...+kn)
d be the Hilbert space associated to S. According to the

quantum formalism |ψ〉 determines the reduced states

Red
(1)
[k1,...,kn](P|ψ〉), . . . ,Red

(n)
[k1,...,kn](P|ψ〉)

of the subsystems S1, . . . , Sn. Generally, the state |ψ〉 of the global system S cannot be represented as the factorized

state corresponding to the tensor-product of the states of the subsystems S1, . . . , Sn. We may have:

P|ψ〉 6=Red
(1)
[k1,...,kn](P|ψ〉)⊗ . . .⊗Red

(n)
[k1,...,kn](P|ψ〉).

It may also happen that the states of all subsystems are one and the same proper mixture (while |ψ〉 is a pure state).

Consequently, the states of the parts of S turn out to be indistinguishable. Furthermore, the information about the

global system is more precise than the information about its parts. In such a case |ψ〉 is called an entangled pure

state. Entanglement-phenomena (which have for a long time been described as mysterious and potentially paradox-

ical) represent today a powerful resource in quantum information; they are currently used, for instance, in quantum

teleportation-experiments and in quantum cryptography.

3. Quantum logical gates

Quantum information is processed by quantum logical gates (briefly, gates) that transform pure and mixed pieces

of quantum information in a reversible way. When applied to quregisters of a qudit-space H
(n)
d a gate is a unitary

operator G(n): a reversible map that transforms all vectors of the space, preserving their length. At the same time, any

unitary operator G(n) can be canonically extended to a unitary operation DG(n) that transforms all density operators

ρ of the space in a reversible way. We have:

DG(n)(ρ) :=G(n)ρG(n)
†

,

where G(n)
†

is the adjoint of G(n). In the particular case where ρ is a pure state P|ψ〉, we obtain:

DG(n)(P|ψ〉)= PG(n)|ψ〉.

For the sake of simplicity, we will call gate either a unitary operator G(n) or the corresponding unitary operation
DG(n).

Why is reversibility so important in quantum computation? The reason depends on the form of Schrödinger’s

equation, where unitary operators play an essential role. And, from a physical point of view, any quantum computation

can be described as the time-evolution of a particular quantum system that transforms a given information-input into

an information-output.

In the semantics of classical logic and of many important non-classical logics (including Birkhoff and von

Neumann’s quantum logic) the basic logical operations are generally dealt with as irreversible operations. In the

(two-valued) classical semantics negation only is defined as a reversible truth-function:

v′ := 1 − v, for any truth-value v ∈ {0,1} .

giuseppesergioli
Nota
full stop after the matrix
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A the same time, both the conjunction ⊓ and the disjunction ⊔ are defined as irreversible truth-functions (for any pair

of truth-values u,v):

u ⊓ v := min(u, v); u ⊔ v := (u′ ⊓ v′)′ = max(u, v).

For our aims it is expedient to recall what happens in the semantics of many-valued Łukasiewicz logics (which

represent special examples of fuzzy logics). In this case the set TV of truth-values is identified either with the real

interval [0,1] or with a finite subset thereof (conventionally indicated as a set
{

0
d−1

, 1
d−1

, . . . , d−1
d−1

}
, where d ≥ 2).

The negation is defined like in the classical case:

v′ := 1 − v, for any truth-value v ∈ TV.

At the same time the conjunction is split into two different irreversible operations, the min-conjunction ⊓ (also called

lattice-conjunction) and the Łukasiewicz-conjunction ⊙:

u ⊓ v := min(u, v), u⊙ v := max(0, u+ v− 1), for any u,v ∈ TV.

While ⊓ and ⊙ are the same operations in the two-valued semantics, when d > 2 our two conjunctions turn out

to satisfy different semantic properties. The min-conjunction gives rise to possible violations of the non-contradiction

principle. We may have:

v ⊓ v′ 6= 0.

Hence, contradictions are not necessarily false, as happens in the case of most fuzzy logics whose basic aim is model-

ing ambiguous and unsharp semantic situations. At the same time, ⊓ behaves as a lattice-operation in the truth-value

partial order (TV,≤). The Łukasiewicz-conjunction, instead, is generally non-idempotent. We may have:

v⊙ v 6= v.

Apparently, one is dealing with a kind of conjunction that can be usefully applied to model semantic situations where

“repetita iuvant!”(“repetitions are useful!”).

As expected, the two conjunctions ⊓ and ⊙ allow us to define two different kinds of disjunctions (via de Morgan-

law):

u ⊔ v := (u′ ⊓ v′)′ = max(u, v); u⊕ v := (u′ ⊙ v′)′ = min(1, u+ v).

All these logical operations (which are usually dealt with as irreversible) can be simulated in the many-valued

approach to quantum information by means of convenient (reversible) gates. Let us first consider pure pieces of

quantum information: quregisters living in some qudit-spaces. In such a case, gates correspond to particular examples

of unitary operators.

The logical negation has a natural gate-counterpart: the unitary operator NOT(n), which is defined in any qudit-space

H
(n)
d , where d ≥ 2 and n≥ 1.

Definition 2. The negation-gate of H
(n)
d .

The negation-gate of H
(n)
d is the linear operator NOT(n) that is defined for every element of the canonical basis of

as follows:

NOT
(n)|v1, . . . , vn〉 := |v1, . . . , vn−1〉 ⊗ |1 − vn〉.

In the particular case of H
(1)
d = C

d we obtain:

NOT
(1)|v〉 := |1 − v〉.

Thus, NOT(1) behaves as the standard fuzzy negation.

How to deal, in this framework, with the irreversible conjunctions ⊓ and ⊙? A reversible counterpart for these

operations can be obtained by using two special versions of a gate that plays an important role in quantum computation:

the Toffoli-gate. Let us first recall the definition of the Toffoli-gate for qubit-spaces.
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Definition 3. The Toffoli-gate of a qubit-space.

For any m,n,p ≥ 1, the Toffoli-gate T(m,n,p) of the qubit-space H
(m+n+p)
2 is the linear operator that is defined for

every element of the canonical basis as follows:

T
(m,n,p)|u1, . . . , um, v1, . . . , vn,w1, . . .wp〉 := |u1, . . . , um, v1, . . . , vn,w1, . . . ,wp−1〉 ⊗ |(um · vn) +̂2wp〉,

where +̂2 is the addition modulo 2.

Apparently the smallest qubit-space where the Toffoli-gate is defined is the space H
(3)
2 . In this case we have:

T
(1,1,1)|u,v,w〉 = |u,v, (u · v) +̂2w〉.

The Toffoli-gate can be generalized to qudit-spaces in different ways. We will consider here two different gates

that will be called the Toffoli-gate and the Toffoli–Łukasiewicz gate, respectively.

Definition 4. The Toffoli-gate of a qudit-space.

For any m,n,p ≥ 1, the Toffoli-gate T(m,n,p) of the qudit-space H
(m+n+p)
d is the linear operator that is defined for

every element of the canonical basis as follows:

T
(m,n,p)|u1, . . . , um, v1, . . . , vn,w1, . . .wp〉 := |u1, . . . , um, v1, . . . , vn,w1, . . . ,wp−1〉 ⊗ |(um ⊓ vn) +̂d wp〉,

where +̂d is the addition modulo d .

Definition 5. The Toffoli–Łukasiewicz gate of a qudit-space.

For any m,n,p ≥ 1, the Toffoli–Łukasiewicz gate TŁ(m,n,p) of the qudit-space H
(m+n+p)
d is the linear operator

that is defined for every element of the canonical basis as follows:

TŁ(m,n,p)|u1, . . . , um, v1, . . . , vn,w1, . . .wp〉 := |u1, . . . , um, v1, . . . , vn,w1, . . . ,wp−1〉 ⊗ |(um ⊙ vn) +̂d wp〉.

Clearly, T(m,n,p) and TŁ(m,n,p) are the same gate when d = 2.

By using the unitary operations DT(m,n,p) and DTŁ(m,n,p) (which correspond to the unitary operators T(m,n,p) and

TŁ(m,n,p), respectively) one can now define two different kinds of reversible conjunctions for any (pure or mixed)

state of a qudit-space.

Definition 6. The Toffoli-conjunction in a qudit-space.

For any m,n ≥ 1 and for any density operator ρ of a qudit-space H
(m+n)
d the Toffoli-conjunction AND(m,n) is

defined as follows:

AND
(m,n)(ρ) := D

T
(m,n,1)(ρ ⊗ P|0〉).

Definition 7. The Toffoli–Łukasiewicz conjunction in a qudit-space.

For any m,n ≥ 1 and for any density operator ρ of a qudit-space H
(m+n)
d the Toffoli–Łukasiewicz conjunction

ŁAND(m,n) is defined as follows:

ŁAND(m,n)(ρ) := D
TŁ(m,n,1)(ρ ⊗ P|0〉).

In the definition of both conjunctions the projection P|0〉 (which corresponds to the bit 0) plays the role of an

ancilla, which is transformed by the gates DT(m,n,1) and DTŁ(m,n,1) into the final truth-value of the conjunction.

In the particular case of density operators corresponding to registers of H
(2)
2 we obtain:

AND
(1,1)(P|u,v〉)= PT(1,1,1)|u,v,0〉.

Hence:

AND
(1,1)(P|u,v〉)=

{
P|u,v,1〉, if u= v = 1;
P|u,v,0〉, otherwise.

(In agreement with the classical truth-table of conjunction.)
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In the general case, both the Toffoli and the Toffoli–Łukasiewicz conjunctions represent holistic forms of conjunc-

tion that reflect the characteristic holistic features of the quantum-theoretic formalism. Let |ψ〉 be a quregister of a

space H
(m+n)
d . We may have:

AND
(m,n)(P|ψ〉) 6= AND

(m,n)(Red
(1)
[m,n](P|ψ〉)⊗Red

(2)
[m,n](P|ψ〉));

ŁAND(m,n)(P|ψ〉) 6= ŁAND(m,n)(Red
(1)
[m,n](P|ψ〉)⊗Red

(2)
[m,n](P|ψ〉)).

In other words, the conjunction over a global piece of information (consisting of two parts) does not generally coincide

with the conjunction of the two separate parts. Interesting counterexamples arise with entangled quregisters. Consider,

for instance, the following (entangled) Bell-state:

|ψ〉 = 1√
2
(|0,0〉 + |1,1〉).

We have:

T
(1,1,1)(|ψ〉 ⊗ |0〉)= 1√

2
(|0,0,0〉 + |1,1,1〉).

Hence,

AND
(1,1)(P|ψ〉)= P 1√

2
(|0,0,0〉+|1,1,1〉),

which is a pure state. At the same time,

Red 1
[1,1](P|ψ〉)=Red 2

[1,1](P|ψ〉)=
1

2
I
(1).

Thus,

AND
(1,1)(Red

(1)
[1,1](P|ψ〉)⊗Red

(2)
[1,1](P|ψ〉))= D

T
(1,1,1)(Red

(1)
[1,1](P|ψ〉)⊗Red

(2)
[1,1](P|ψ〉)⊗ P|0〉),

which is a proper mixture.

The gates Negation, Toffoli and Toffoli–Łukasiewicz are also called “semiclassical gates”, because they are unable

to “create” superpositions. Whenever the information-input is a register, also the information-output will be a register.

Quantum computation, however, cannot help referring also to “genuine quantum gates” that can transform classical

inputs (represented by registers) into genuine superpositions. And it is needless to stress how superpositions play an

essential role in quantum computation, being responsible for the characteristic parallel structures that determine the

speed and the efficiency of quantum computers.

Let us first recall the definition of two important genuine quantum gates of the qubit-space H
(1)
2 = C

2.

Definition 8. The Hadamard-gate of H
(1)
2 .

The Hadamard-gate (also called square-root of identity) is the linear operator
√
I
(1)

that is defined for every

element of the canonical basis of H
(1)
2 as follows:

√
I
(1)|v〉 := 1√

2
((−1)v|v〉 + |1 − v〉).

Definition 9. The square-root of negation of H
(1)
2 .

The square-root of negation is the linear operator
√
NOT

(1)
that is defined for every element of the canonical basis

of H
(1)
2 as follows:

√
NOT

(1)|v〉 := 1

2
((1 + i)|v〉 + (1 − i)|1 − v〉),

where i is the imaginary unit.
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Apparently, both
√
I
(1)

and
√
NOT

(1)
transform classical pieces of information (corresponding to the truth-values

Falsity and Truth) into genuine superpositions. We have:

√
I
(1)|0〉 = 1√

2
(|0〉 + |1〉);

√
NOT

(1)|0〉 = 1

2

(
(1 + i)|0〉 + (1 − i)|1〉

)
.

√
I
(1)|1〉 = 1√

2
(|0〉 − |1〉);

√
NOT

(1)|1〉 = 1

2

(
(1 − i)|0〉 + (1 + i)|1〉

)
.

In this way, all certain answers (Falsity or Truth) are transformed into maximally uncertain answers that assign

probability-value 1
2

either to the Falsity or to the Truth.

The gates
√
I
(1)

and
√
NOT

(1)
satisfy the following characteristic properties that have suggested their names

(“square-root of identity” and “square-root of negation”):

√
I
(1)√

I
(1) = I

(1);
√
NOT

(1)√
NOT

(1) = NOT
(1).

Both
√
I
(1)

and
√
NOT

(1)
can be generalized to any qubit-space H

(n)
2 .

Definition 10. The Hadamard-gate and the square-root of negation of H
(n)
2 .

1. The Hadamard-gate is the linear operator
√
I
(n)

that is defined for every element of the canonical basis of H
(n)
2

as follows:

√
I
(n)|v1, . . . , vn〉 := |v1, . . . , vn−1〉 ⊗ 1√

2

(
(−1)vn |vn〉 + |1 − vn〉

)
.

2. The square-root of negation is the linear operator
√
NOT

(n)
that is defined for every element of the canonical basis

of H
(n)
2 as follows:

√
NOT

(n)|v1, . . . , vn〉 := |v1, . . . , vn−1〉 ⊗ 1

2

(
(1 + i)|vn〉 + (1 − i)|1 − vn〉

)
.

How can
√
I
(n)

and
√
NOT

(n)
be generalized to qudit-spaces? A natural generalization of the Hadamard-gate for

the space H
(1)
d = C

d is represented by the Vandermonde-operator, which generalizes the Walsh–Hadamard matrix

used for discrete Fourier transforms.

Definition 11. The Vandermonde-gate of H
(1)
d .

The Vandermonde-gate is the linear operator V(1) that is defined for every element | k
d−1

〉 of the canonical basis of

H
(1)
d as follows:

V
(1)

∣∣∣∣
k

d − 1

〉
= 1√

d

d−1∑

j=0

ω j k
∣∣∣∣
j

d − 1

〉
,

where ω= e
2πi
d .

Lemma 1. The gate V(1) of H
(1)
d satisfies the following conditions:

1) V(1) =
√
I
(1)

, if d = 2.

2) V(1)V(1)V(1)V(1) = I(1).

3) V(1) transforms each element of the canonical basis of H
(1)
d into a superposition of all basis-elements, assigning

to each basis-element the same probability-value.

Conditions 1)–3) of Lemma 1 clearly show that V(1) represents a “good” generalization of the Hadamard-gate for

the qudit-space Cd . In particular, condition 2) explains the reason why V(1) is also termed the “fourth root of identity”.

giuseppesergioli
Evidenziato

giuseppesergioli
Nota
add a space
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Another possible generalization of the Hadamard-gate to qudit-spaces is an operator that will be called the

Hadamard-gate restricted to the first two truth-values, indicated by
√
I
(1)
[2] . Unlike V(1), which transforms all basis-

elements into genuine superpositions, the gate
√
I
(1)
[2] only acts on the first two basis-elements

(
| 0
d−1

〉, | 1
d−1

〉
)

.

Definition 12. The Hadamard-gate restricted to the first two truth-values of H
(1)
d .

The Hadamard-gate restricted to the first two truth-values is the linear operator
√
I
(1)
[2] that is defined for every

element |v〉 of the canonical basis of H
(1)
d as follows:

√
I
(1)

[2] |v〉 =





1√
2
(|0〉 + | 1

d−1
〉), if v = 0;

1√
2
(|0〉 − | 1

d−1
〉), if v = 1

d−1
;

|v〉,otherwise.

Of course, for the qubit-space C
2 we have:

√
I
(1)

[2] =
√
I
(1)
.

In a similar way, the (restricted) square-root of negation can be generalized to any qudit-space.

Definition 13. The square-root of negation restricted to the first two truth-values of H
(1)
d .

The square-root of negation restricted to the first two truth-values is the linear operator that is defined for every

element |v〉 of the canonical basis of H
(1)
d as follows:

√
NOT

(1)

[2] |v〉 :=





1
2
((1 + i)|0〉 + (1 − i)| 1

d−1
〉), if v = 0;

1
2
((1 − i)|0〉 + (1 + i)| 1

d−1
〉), if v = 1

d−1
;

|v〉, otherwise.

The three gates V(1),
√
I
(1)
[2] and

√
NOT

(1)

[2] can be naturally generalized to any qudit-space H
(n)
d .

Definition 14. The gates V(n),
√
I
(n)

[2] ,
√
NOT

(n)

[2] of H
(n)
d .

Let |v1, . . . , vn〉 be an element of the canonical basis of H
(n)
d .

1) V(n)|v1, . . . , vn〉 := |v1, . . . , vn−1〉 ⊗ V(1)|vn〉.
2)

√
I
(n)

[2] |v1, . . . , vn〉 := |v1, . . . , vn−1〉 ⊗
√
I
(1)
[2] |vn〉.

3)
√
NOT

(n)

[2] |v1, . . . , vn〉 := |v1, . . . , vn−1〉 ⊗
√
NOT

(1)

[2] |vn〉.

4. Representing quantum information in Bloch-hyperspheres

It is customary to represent the density operators of the qubit-space C
2 as vectors of the three-dimensional

Bloch-sphere BS[3] of radius 1. Let D(C2) represent the set of all density operators of C
2. For any ρ ∈ D(C2),

the corresponding Bloch-vector bρ is determined as follows:

bρ = (b
ρ
1 , b

ρ
2 , b

ρ
3 ),

where b
ρ
1 = Tr(ρ σ 1), b

ρ
2 = Tr(ρ σ 2), b

ρ
3 = Tr(ρ σ 3). The operators σ 1, σ 2, σ 3 are the three Pauli-matrices that are

defined as follows:

σ 1 =
[

0 1

1 0

]
; σ 2 =

[
0 −i
i 0

]
; σ 3 =

[
1 0

0 −1

]
.
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Viceversa, for any Bloch-vector b = (b1, b2, b3) the corresponding density operator ρb is determined by the fol-

lowing matrix:

1

2

[
1 + b3 b1 − ib2

b1 + ib2 1 − b3

]
.

We have:

ρbρ = ρ; bρ
b = b.

Via the Bloch-representation, any density operator ρ of C2 can be canonically represented as a combination of four

unitary operators (of C2): the identity operator I(1) and the three Pauli-matrices. For any ρ we have:

ρ = 1

2
(I(1) + b

ρ
1 σ 1 + b

ρ
2 σ 2 + b

ρ
3 σ 3).

The Pauli-representation can be generalized to any qudit-space. Let us first introduce the generalized Pauli-matrices

of a space C
d (with d ≥ 2).1 For the sake of simplicity, in the following, we will also write |j 〉 instead of | j

d−1
〉.

Definition 15. The generalized Pauli-matrices of Cd .

Let j, k, l be three natural numbers such that: 1 ≤ j ≤ d2 −1 and 0 ≤ k < l ≤ d−1. The generalized Pauli-matrices

σ j of C2 are defined as follows:

σ j =





|k〉〈l| + |l〉〈k|, if j ≤ d(d−1)
2

and j = k(1−k)
2

+ (d − 2)k + l;

−i|k〉〈l| + i|l〉〈k|, if d(d−1)
2

< j ≤ d(d − 1) and j = d(d−1)+k(1−k)
2

+ (d − 2)k + l;
√

2
l(l+1)

(∑l−1
k=0 |k〉〈k| − l|l〉〈l|

)
, if j > d(d − 1) and j = d(d − 1)+ l.

As expected, in the particular case of the space C
2 the three generalized Pauli-matrices σ 1,σ 2,σ 22−1 turn out to

coincide with the three standard Pauli-matrices.

Like in the qubit-case, any density operator ρ ∈ D(Cd) can be canonically represented as a combination of the

identity operator and of the generalized Pauli-matrices σ 1, . . . ,σ j , . . . ,σ d2−1. We have:

ρ = 1

d

(
I
(1) +

√
d(d − 1)

2

d2−1∑

j=1

bjσ j

)
,

where bj =
√

d
2(d−1)

Tr(ρ σ j ) ∈R.

On this basis, any density operator ρ of Cd can be associated to a vector

bρ = (b
ρ
1 , . . . , b

ρ
j , . . . , b

ρ

d2−1
)

of the (real) Bloch-hypersphere BHS
[d2−1]
R

, whose radius is 1 and whose dimension is d2 − 1. Notice that, unlike the

case of C2, not all vectors of the hypersphere BHS
[d2−1]
R

correspond to density operators.

Another interesting representation of the density operators of Cd can be obtained in terms of the Weyl-operators

(which have been used in quantum teleportation-experiments and in the study of the geometry of entanglement).

Definition 16. The Weyl-operators of Cd .

Let j be a natural number such that 0 ≤ j ≤ d2 − 1. The Weyl-operators Wj of Cd are defined as follows:

Wj =
d−1∑

m=0

ωkm|m〉〈m +̂d j |,

where ω= e
2πi
d , k = ⌊ j

d
⌋ (the integer part of

j
d

).

1 We recall that |ψ〉〈ϕ| denotes the linear operator A that satisfies the following condition for any vector |χ〉: A|χ〉 = 〈ϕ|χ〉|ψ〉, where 〈ϕ|χ〉 is

the inner product of |ϕ〉 and |χ〉.
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In the case of the qubit-space C
2 we obtain:

(W1,W2,W3)= (σ 1,σ 3, iσ 2).

In some applications an important role is played by the first Weyl-operator W1, which turns out to be described by

the following matrix:

W1 =




0 1 0 · · · 0

0 0 1
. . .

...
...

... 0
. . . 0

0 0
...

. . . 1

1 0 0 · · · 0




As happens in the case of the Pauli-representation, all density operators ρ of Cd can be canonically represented as

combinations of the identity operator and of the Weyl-operators. We have:

ρ = 1

d

(
I
(1) +

√
d − 1

d2−1∑

j=1

bjWj

)
,

where bj = 1√
d−1

Tr(ρ W
†
j ) ∈C.

On this basis, any density operator ρ ∈ D(Cd) can be associated to a vector

bρ = (b
ρ
1 , . . . , b

ρ
j , . . . , b

ρ

d2−1
)

of the complex Bloch-hypersphere BHS
[d2−1]
C

, whose radius is 1 and whose dimension is d2 − 1.

In spite of their mathematical interest, both the Pauli and the Weyl-representations turn out to be “non-economical”,

since they essentially refer to d2 − 1 gates, whose implementation might be highly complicated. The following the-

orem allows us to simplify such situation, showing that the probabilistic behavior of three gates only determines a

tomographic reconstruction of any state of Cd . Let B(Cd) represent the set of all bounded operators of the space C
d .

Theorem 2. Let ρ be a density operator of a qudit-space C
d . There exist d2 − 1 unitary operators U1, . . . ,Ud2−1

(defined on C
d ) and a function f : [0,1]d2−1 7−→ B(Cd) that satisfy the following conditions:

1) Each Uj (with 1 ≤ j ≤ d2 − 1) is a finite combination of the three following gates:
√
I
(1)
[2] ,

√
NOT

(1)

[2] , W1 (defined

on C
d ).

2) For any sequence (p1, . . . , pj , . . . , pd2−1) ∈ [0,1]d2−1 such that pj = p(d)(DUj (ρ)), we have:

ρ = f (p1, . . . , pj , . . . , pd2−1)

(where p(d) is the probability-function defined in Section 2).

Proof. (Sketch) It is expedient to distinguish the case where d = 2 from the case where d > 2.

1) Let ρ ∈D(C2). Consider its Pauli representation and let b =



b1

b2

b3


 the Bloch-vector that corresponds to ρ. Define

the operators U1,U2,U3 as follows:

U1 =
√
I
(1)

[2] , U2 =
√
NOT

(1)

[2] , U3 = W1.

Consider the following three equations:

p(2)(DU1(ρ))= p1, p(2)(DU2(ρ))= p2, p(2)(DU3(ρ))= p3.

giuseppesergioli
Nota
insert a full stop after the matrix
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We have:

1 − b1

2
= p1,

1 − b2

2
= p2,

1 + b3

2
= p3.

Hence, Ab +Ac = p, where:

A=




− 1
2

0 0

0 − 1
2

0

0 0 1
2


 , c =




−1

−1

1


 , p =



p1

p2

p3


 .

Define f : [0,1]3 → B(C2) as follows (for any e1, e2, e3 ∈ [0,1]):

f (e1, e2, e3) :=
1

2

(
I
(1) + (1 − 2e1)σ 1 + (1 − 2e2)σ 2 − (1 − 2e3)σ 3

)
.

We obtain: ρ = f (p1,p2,p3).

2) Let ρ ∈ D(Cd) (with d > 2). For any h such that 1 ≤ h≤ d2 − 1, define Uh as follows:

Uh = W
m
1

√
I
(1)

[2] W
m†
1 W

n
1

√
NOT

(1)

[2] W
n†
1 ,

where Wm1 = W1 . . .W1︸ ︷︷ ︸
m-times

, W n1 = W1 . . .W1︸ ︷︷ ︸
n-times

,m= ⌊h
d
⌋ (the integer part of h

d
) and n= h mod d (h modulo d). Consider

the following d2 − 1 equations:

p(d)(DUh(ρ))= ph.

We have: Ab +Ac = p, where A, b, c are matrices defined like in the C
2-case.

Define f : [0,1]d2−1 → B(Cd) as follows (for any e ∈ [0,1]d2−1):

f (e) := 1

d

(
I
(1) +

√
d(d − 1)

2
(A−1e − c)Tσ

)
.

We obtain: ρ = f (p). ✷

5. Many-valued quantum computational logics

Quantum computational logics are special examples of quantum logic based on the following semantic idea: lin-

guistic formulas are supposed to denote pieces of quantum information, while logical connectives are interpreted as

particular gates that play an important logical role [4]. Accordingly, any formula of the quantum computational lan-

guage can be regarded as a synthetic logical description of a quantum circuit. We will consider here a many-valued

version of the quantum computational semantics, where, for any choice of a truth-value number d , the meaning of

any formula α is identified with a density operator ρ living in a qudit-space H
(n)
d , whose dimension depends on the

linguistic complexity of α.

Let us first introduce the formal language: a “minimal” many-valued quantum computational language L, whose

alphabet contains atomic formulas (q,q1,q2, . . .) including two privileged formulas t and f that represent the truth-

values Truth and Falsity respectively. The connectives of L are at least the following: the negation ¬ (corresponding

to the gate NOT(n)), the ternary Toffoli-connective ⊺ (corresponding to the gate T(m,n,p)), the ternary Toffoli–

Łukasiewicz connective ⊺Ł (corresponding to the gate TŁ(m,n,p)), the square root of identity
√
id (corresponding

to the gate
√
I
(n)

).

The notion of formula of L is inductively defined as follows: 1) atomic formulas are formulas; 2) if α, β, γ are

formulas, then ¬α,
√
id α, ⊺(α,β, γ ), ⊺Ł(α,β, γ ) are formulas. Recalling the definition of the two holistic conjunc-

tions AND(m,n) and ŁAND(m,n) (given in Section 3), two binary connectives ∧ and ∧Ł can be defined in terms of the

two Toffoli-connectives:

α ∧ β := ⊺(α,β, f); α ∧Ł β := ⊺Ł(α,β, f)
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(where f plays the role of a syntactical ancilla). On this basis two binary disjunctions (∨ and ∨Ł) can be defined (via

de Morgan-law) in the expected way.

By atomic complexity of a formula α we mean the number At(α) of occurrences of atomic subformulas in α. For

instance, the atomic complexity of the formula α = q ∧ ¬q = ⊺(q,¬q, f) is 3. The number At(α) plays an important

semantic role, since it determines, for any choice of a truth-value number d , the semantic space Hα
d = H

(At (α))
d , where

any density operator representing a possible meaning of α shall live. We have, for instance, H
⊺(q,¬q,f)
d = H

(3)
d .

Any formula α can be naturally decomposed into its parts giving rise to a special configuration, called the syntac-

tical tree of α (ST reeα). Roughly, ST reeα can be represented as a sequence of levels consisting of subformulas of α.

The bottom-level is (α), while all other levels are obtained by dropping, step by step, all connectives occurring in α.

Hence, the top-level is the sequence of atomic formulas occurring in α. As an example consider again the formula

α = ⊺(q,¬q, f). In such a case, ST reeα is the following sequence of levels:

Levelα3 = (q,q, f)

Levelα2 = (q,¬q, f)

Levelα1 = (⊺(q,¬q, f))

For any α and for any choice of a truth-value number d , ST reeα uniquely determines the gate-tree of α: a sequence

of gates all defined on the space Hα
d . As an example, consider again the formula, α = ⊺(q,¬q, f). In the syntactical

tree of α the second level has been obtained (from the third level) by repeating the first occurrence of q, by negating the

second occurrence of q and by repeating f; while the first level has been obtained (from the second level) by applying

the Toffoli-connective. Accordingly, the gate-tree of α can be naturally identified with the following gate-sequence:

(DI(1) ⊗ D
NOT

(1) ⊗ D
I
(1),DT(1,1,1)).

This procedure can be naturally generalized to any α, whose gate-tree will be indicated by (DGαn−1, . . . ,
DGα1 ) (where

n is the number of levels of ST reeα).

We consider here a holistic version of the quantum computational semantics, where entanglement can be used as

a “semantic resource” [5]. Generally, the meaning of a compound formula determines the contextual meanings of its

parts (and not the other way around, as happens in the case of most compositional semantic approaches).

As expected, all basic notions of the many-valued quantum computational semantics depend on the choice of the

truth-value number d . The concept of (d-valued) model of L is based on the notion of (d-valued) holistic map for L.

This is a map Hold that assigns to each level of the syntactical tree of any formula α a density operator living in the

semantic space of α. We have:

Hold(Level
α
k ) ∈ D(Hα

d ).

Suppose that Levelαk = (βk1
, . . . , βkr ). It is natural to describe ρ = Hold(Level

α
k ) as a possible state of a composite

quantum system consisting of r subsystems. Hence, the contextual meaning (Holαd (βkj )) of the occurrence βkj (in

ST reeα) can be identified with the reduced state of ρ with respect to the j -th subsystem. Accordingly, we can write:

Hol
α
d (βkj )=Red

(j)

[At(βk1 ),...,At (βkr )]
(ρ).

The concepts of model, truth and logical consequence (of the d-valued semantics) can be now defined as follows.

Definition 17. Model.

A model (or interpretation) of the language L is a holistic map Hold that satisfies the following conditions for any

formula α:

1) Hold assigns the same contextual meaning to different occurrences of one and the same subformula of α (in

ST reeα).

2) The contextual meanings of the true formula t and of the false formula f are the Truth P
(1)
1 and the Falsity P

(1)
0 ,

respectively.

3) Hold preserves the logical form of α by interpreting the connectives of α as the corresponding gates. Accordingly,

if (DGαn−1, . . . ,
DGα1 ) is the gate-tree of α, then Hold(Level

α
k )= DGαk (Hold(Level

α
k+1)).

giuseppesergioli
Nota
add a full stop here
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On this basis we put:

Hold(α) := Hold(Level
α
1 ), for any formula α.

Notice that any Hold(α) represents a kind of autonomous semantic context that is not necessarily correlated with

the meanings of other formulas. Generally we have: Hol
γ

d (β) 6= Holδd(β). Thus, one and the same formula may

receive different contextual meanings in different contexts.

Definition 18. Truth.

A formula α is called true with respect to a model Hold iff p(d)(Hold(α))= 1.

Definition 19. Logical consequence.

A formula β is called a logical consequence of a formula α iff for any formula γ such that α and β are subformulas

of γ and for any model Hold :

p
(d)(Hol

γ

d (α)) ≤ p
(d)(Hol

γ

d (β)).

Apparently, both Truth and Logical consequence are, in this semantics, probabilistic notions that essentially depend

on the probability-function pd . For any choice of d , the notion of logical consequence of the d-valued semantics

characterizes a special example of logic, called d-valued holistic quantum computational logic (indicated by dHQCL).

All logics dHQCL give rise to violations of some important logical implications (which hold for many stan-

dard logics).2 For instance, both conjunctions ∧ and ∧Ł are generally non-idempotent, non-commutative and non-

associative, although the corresponding truth-value operations (⊓, ⊙) do satisfy commutativity and associativity. This

can be explained by recalling the contextual behavior of quantum meanings. It may happen that for some context γ :

Hol
γ

d (α ∧ β) 6= Hol
γ

d (β ∧ α) and p
(d)(Hol

γ

d (α ∧ β)) > p
(d)(Hol

γ

d (β ∧ α)).
Accordingly, different forms of holistic quantum computational logics (also in a first-order version) can be naturally

applied to represent semantic phenomena (even far from microphysics), where contextuality, ambiguity and fuzziness

play an essential role (as happens in the case of natural languages or in the languages of art) [6,7].

6. Physical implementations by optical devices

Physical implementations of quantum logical gates represent the basic issue for the technological realization of

quantum computers. Among the different choices that have been investigated in the literature we will consider here

the case of optical devices, where photon-beams (possibly consisting of single photons) move in different directions.

Let us conventionally assume that |0〉 represents the state of a beam moving along the x-direction, while |1〉 is the

state of a beam moving along the y-direction.

In the framework of this “physical semantics”, one-qubit gates (like NOT(1),
√
I
(1)

,
√
NOT

(1)
) can be easily imple-

mented. A natural implementation of NOT(1) can be obtained by a mirror M that reflects in the y-direction any beam

moving along the x-direction, and vice versa. Hence we have:

|0〉 M |1〉; |1〉 M |0〉
(the mirror transforms the state |0〉 into the state |1〉, and vice versa).

An implementation of the Hadamard-gate
√
I
(1)

can be obtained by a symmetric 50 : 50 beam splitter BS. We

have:

|0〉 BS

1√
2
(|0〉 + |1〉); |1〉 BS

1√
2
(|0〉 − |1〉).

Accordingly, any beam that goes through BS is split into two components: one component moves along the

x-direction, while the other component moves along the y-direction. And the probability of both paths (along the

x-direction or along the y-direction) is 1
2

. Also the gate
√
NOT

(1)
can be implemented in a similar way.

2 Counterexamples in the framework of the qubit-semantics have been described in [5].
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Fig. 1. The Mach–Zehnder interferometer.

Other apparatuses that may be useful for optical implementations of gates are the relative phase shifters along a

given direction. A particular example is described by the following unitary operator.

Definition 20. The relative phase shifter along the y-direction.

The relative phase shifter along the y-direction is the linear operator UPS that is defined for every element of the

canonical basis of C2 as follows:

UPS|v〉 = c|v〉, where c=
{
eiπ , if v = 1;

1, otherwise.

We obtain:

UPS|0〉 = |0〉; UPS|1〉 = −|1〉.
Let us indicate by PS a physical apparatus that realizes the phase shift described by UPS.

Relative phase shifters, beam splitters and mirrors are the basic physical components of the Mach–Zehnder inter-

ferometer (MZI), an apparatus that has played a very important role in the logical and philosophical debates about the

foundations of quantum theory. The physical situation can be sketched as follows (Fig. 1).

A beam (which may move either along the x-direction or along the y-direction) goes through the relative phase

shifter PS of MZI. We have:

|0〉 PS |0〉; |1〉 PS −|1〉
(the phase of the beam changes only in the case where the beam is moving along the y-direction). Soon after the beam

goes through the first beam splitter BS1. As a consequence, it is split into two components: one component moves

along the interferometer’s arm in the x-direction, the other component moves along the arm in the y-direction. We

have:

|0〉 BS1

1√
2
(|0〉 + |1〉); −|1〉 BS1

1√
2
(−|0〉 + |1〉).

Then, both components of the superposed beam (on both arms) are reflected by the mirrors M. We have:

1√
2
(|0〉 + |1〉) M

1√
2
(|0〉 + |1〉); 1√

2
(−|0〉 + |1〉) M

1√
2
(|0〉 − |1〉).

Finally, the superposed beam goes through the second beam splitter BS2, which re-composes the two components.

We have:

1√
2
(|0〉 + |1〉) BS2

|0〉; 1√
2
(|0〉 − |1〉) BS2

|1〉.

Accordingly, MZI transforms the input |0〉 into the output |0〉, while the input |1〉 is transformed into the output |1〉.
One is dealing with a result that has for a long time been described as deeply counter-intuitive. In fact, according

to a “classical way of thinking” we would expect that the outcoming photons from the second beam splitter should be

detected with probability 1
2

either along the x-direction or along the y-direction.
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The Mach–Zehnder interferometer clearly represents a physical implementation of the following quantum logical

circuit:

√
I
(1)
NOT

(1)
√
I
(1)

(called “the Mach–Zehnder circuit”). In the framework of quantum computational logics such circuit can be naturally

described by the “Mach–Zehnder formula”:

√
id¬

√
id q,

where q is a generic atomic formula. Any interpretation Hold (of the quantum computational language) that assigns

to q a meaning (a qubit living in the space C
2) will determine a meaning for the Mach–Zehnder formula.

While optical implementations of one-qubit gates are relatively simple, trying to implement many-qubit gates

may be rather complicated. Consider the case of a gate that plays an important logical and computational role: the

Toffoli-gate T(1,1,1) (defined on the space H
(3)
2 = C

2 ⊗C
2 ⊗C

2).

Mathematically we have:

T
(1,1,1)|v1, v2, v3〉 =

{
|v1, v2, v1 ⊓ v2〉, if v3 = 0;
|v1, v2, (v1 ⊓ v2)

′〉, if v3 = 1,

where v1, v2, v3 ∈ {0,1}.
The main problem is finding a device that can realize a physical dependence of the target-bit (v1 ⊓ v2 or (v1 ⊓ v2)

′)
from the control-bits (v1, v2). A possible strategy is based on an appropriate use of the optical “Kerr-effect”: a sub-

stance with an intensity-dependent refractive index is placed into a given device, giving rise to an intensity-dependent

phase shift.

Let us first give the mathematical definition of a unitary operator that describes a particular form of conditional

phase shift.

Definition 21. The relative conditional phase shifter.

The relative conditional phase shifter of the space H
(3)
2 = C

2 ⊗C
2 ⊗C

2 is the unitary operator UCPS that is defined

for every element of the canonical basis as follows:

UCPS|v1, v2, v3〉 = |v1, v2〉 ⊗ c|v3〉,

where c=
{
eiπ , if v1 = 1, v2 = 1 and v3 = 0;

1, otherwise.

Let us indicate by CPS a physical apparatus that realizes the phase shift described by the operator UCPS. Clearly,

CPS determines a conditional phase shift. For, the phase of a three-beam system in state |v1, v2, v3〉 is changed only in

the case where both control-bits (|v1〉, |v2〉) are the state |1〉, while the ancilla-bit |v3〉 is the state |0〉. From a physical

point of view, such a result can be obtained by using a convenient substance that produces the Kerr-effect.

In order to obtain an implementation of the Toffoli-gate T(1,1,1,) we will now consider a “more sophisticated”

version of the Mach–Zehnder interferometer that will be called “Kerr–Mach–Zehnder interferometer” (indicated by

KMZI). Besides the relative phase shifter (PS), the two beam splitters (BS1, BS2) and the mirrors (M), the Kerr–

Mach–Zehnder interferometer also contains a relative conditional phase shifter (CPS) that can produce the Kerr-effect

(Fig. 2).

While the inputs of the canonical Mach–Zehnder interferometer are single beams (whose states live in the

space C
2), the apparatus KMZI acts on composite systems consisting of three beams (S1, S2, S3), whose states live

in the space H
(3)
2 = C

2 ⊗ C
2 ⊗ C

2. For the sake of simplicity we can assume that S1, S2, S3 are single photons that

may enter into the interferometer-box either along the x-direction or along the y-direction. Let |v1, v2, v3〉 be the

input-state of the composite system S1 + S2 + S3. Photons S1, S2 (whose states |v1〉, |v2〉 represent the control-bits)

are supposed to enter into the box along the yz-plane, while photon S3 (whose state |v3〉 is the ancilla-bit) will enter

through the first beam-splitter BS1.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: M.L. Dalla Chiara et al., A many-valued approach to quantum computational logics, Fuzzy Sets Syst. (2016),

http://dx.doi.org/10.1016/j.fss.2016.12.015

JID:FSS AID:7148 /FLA [m3SC+; v1.242; Prn:3/01/2017; 8:21] P.17 (1-18)

M.L. Dalla Chiara et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

Fig. 2. The Kerr–Mach–Zehnder interferometer.

Mathematically, the action performed by the apparatus KMZI is described by the following unitary operator (of the

space H
(3)
2 ):

UKMZ := (I⊗ I⊗
√
I
(1)
) ◦ (I⊗ I⊗ NOT(1)) ◦ UCPS ◦ (I⊗ I⊗

√
I
(1)
) ◦ (I⊗ I⊗ UPS).

In order to “see” how KMZI is working from a physical point of view, it is expedient to consider a particular

example. Take the input |v1, v2, v3〉 = |1,1,0〉 and let us describe the physical evolution determined by the operator

UKMZ for the system S1 + S2 + S3, whose initial state is |1,1,0〉. We have:

(I⊗ I⊗ UPS)|1,1,0〉 = |1,1,0〉.
The relative phase shifter along the y-direction (PS) does not change the state of photon S3, which is moving along

the x-direction.

(I⊗ I⊗
√
I
(1)
)|1,1,0〉 = |1,1〉 ⊗ 1√

2
(|0〉 + |1〉).

Photon S3 goes through the first beam splitter BS1 splitting into two components: one component moves along the

interferometer’s arm along the x-direction, the other component moves along the arm in the y-direction (like in the

case of the canonical Mach–Zehnder interferometer). At the same time, photons S1 and S2 (both in state |1〉) enter

into the interferometer-box along the yz-plane.

UCPS(|1,1〉 ⊗ 1√
2
(|0〉 + |1〉))= |1,1〉 ⊗ 1√

2
(−|0〉 + |1〉).

The conditional phase shifter CPS determines a phase shift for the component of S3 that is moving along the

x-direction; because both photons S1 and S2 (in state |1〉) have gone through the substance (contained in CPS) that

produces the Kerr-effect.

(I⊗ I⊗ NOT
(1))(|1,1〉 ⊗ 1√

2
(−|0〉 + |1〉))= |1,1〉 ⊗ 1√

2
(|0〉 − |1〉).

Both components of S3 (on both arms) are reflected by the mirrors.

(I⊗ I⊗
√
I
(1)
)(|1,1〉 ⊗ 1√

2
(|0〉 − |1〉))= |1,1,1〉.

The second beam splitter BS2 re-composes the two components of the superposed photon S3.

Consequently, we obtain:

UKMZ|1,1,0〉 = |1,1,1〉 = T
(1,1,1)|1,1,0〉.

In general, one can easily prove that UKMZ and T(1,1,1) are one and the same unitary operator.

Lemma 3. For any element |v1, v2, v3〉 of the canonical basis of the space H
(3)
2 ,

UKMZ|v1, v2, v3〉 = T
(1,1,1)|v1, v2, v3〉.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: M.L. Dalla Chiara et al., A many-valued approach to quantum computational logics, Fuzzy Sets Syst. (2016),

http://dx.doi.org/10.1016/j.fss.2016.12.015

JID:FSS AID:7148 /FLA [m3SC+; v1.242; Prn:3/01/2017; 8:21] P.18 (1-18)

18 M.L. Dalla Chiara et al. / Fuzzy Sets and Systems ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

Although, from a mathematical point of view, UKMZ and T(1,1,1) represent the same gate, physically it is not guar-

anteed that the apparatus KMZI always realizes its “expected job”. All difficulties are due to the behavior of the

conditional phase shifter. In fact, the substances used to produce the Kerr-effect generally determine only stochastic

results [8]. As a consequence one shall conclude that the Kerr–Mach–Zehnder interferometer allows us to obtain an

approximate implementation of the Toffoli-gate with an accuracy that is, in some cases, very good.

So far we have considered possible optical implementations of gates in the case of qubit-spaces. The techniques

we have illustrated can be also generalized to qudit-spaces. The main idea is using, instead of single beams, systems

consisting of many beams (corresponding to different truth-values) that may move either along the x-direction or along

the y-direction. The problems concerning physical implementations for the many-valued quantum computational

semantics will be investigated in a future article.
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