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Abstract: A significant role in the Internet of Things (IoT) will be taken by mobile and
low-cost unstable devices, which autonomously self-organize and introduce highly dynamic and
heterogeneous scenarios for the deployment of distributed applications. This entails the devices
to cooperate to dynamically find the suitable combination of their involvement so as to improve
the system reliability while following the changes in their status. Focusing on the above scenario,
we propose a distributed algorithm for resources allocation that is run by devices that can perform the
same task required by the applications, allowing for a flexible and dynamic binding of the requested
services with the physical IoT devices. It is based on a consensus approach, which maximizes
the lifetime of groups of nodes involved and ensures the fulfillment of the requested Quality of
Information (QoI) requirements. Experiments have been conducted with real devices, showing an
improvement of device lifetime of more than 20%, with respect to a uniform distribution of tasks.

Keywords: resource allocation; Internet of Things; virtual objects

1. Introduction

In the Internet of Things (IoT) vision, even the most common and simple object is expected to
acquire information from the surrounding ambient and to cooperate with other objects to achieve a
common application goal, fulfilling the expected quality requirements. This is the case for instance of
different cars that are moving in a given urban area that is affected by different congestion points and
that can share the knowledge about the status of the roads so that they can better find the route that
minimizes the driver objects, typically expressed in terms of expected time to reach the destination.
They can also share information about the parking lots occupancy so as to reduce the time needed to
park the car. Another situation is the one of devices that are located in the same geographical area,
either indoor or outdoor, and share the knowledge about the temperature so that the IoT applications
can benefit from a more accurate view of this physical magnitude. Indeed, many are the use-cases
where the devices can collaborate in the implementation of a specific operation of either sensing or
actuation for the benefit of the applications that exploit the relevant services. Clearly, the devices
need to implement a certain level of logic to coordinate in the execution of collaborative actions so
as not to deplete the precious battery energy doing operations performed by other devices uselessly.
Accordingly, the resulting scenario of interest for this paper can be defined as the one where a group of
devices have in common the capability to perform the same tasks (e.g., sensing the temperature in a
given geographical area, measuring the traffic status in a road), which entails for a procedure to decide
about their involvement when an application requires the execution of this task. Important aspects to
be considered herein are: the consumption of the energy and its impact on the network and devices
lifetime; the Quality of Information (QoI), which measures the characterisation, in terms of some
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salient attributes represented in the form of metadata, of the goodness of the data collected, processed
and flowing through a network on the basis of a specific user’s need at a specific time, place, physical
location, and social setting [1,2]. Collaborative approaches in this scenarios are also fostered by the
widespread adoption of cloud computing technologies to augment capabilities of simple and cheap
devices to take part in the deployment of complex applications [3], especially through the introduction
of the Virtual Object (VO) [4] concept, which is the digital counterpart of a physical entity. Accordingly,
the collaboration among devices is typically implemented by the VOs, following either a centralized or
decentralized approach. According to the former, the procedure runs in the cloud, which needs to be
constantly updated about the status of the objects. According to the latter, the devices directly interact
each other and agree on the best solution without the involvement of the central platform.

In this paper, we focus on the decentralized approach and propose a consensus-based sensing
allocation algorithm, which has a twofold objective: (i) considering QoI constraints in the process
of allocating tasks to the IoT objects, so that the fulfillment of application requirements is ensured;
and (ii) optimizing the use of resources of the underlying IoT system by maximizing the lifetime of
the group of devices involved. Experiments have been conducted with real devices, showing that
we can reach an improvement of lifetime of more than 20% and 60%, with respect to the cases of a
uniform distribution of tasks and task assignment to the lowest energy-consuming device, respectively.
The convergence time has also been proved to be quite fast in the range of 200 ms per task.

The paper is organized as follows. Section 2 presents reference works on resource allocation in
the IoT. Section 3 provides a description of the reference architecture and of the problem addressed.
Section 4 describes the proposed consensus-based solution for resource allocation in the IoT and a
computational complexity analysis. Section 6 provides simulations and experimental results. Finally,
conclusions are presented in Section 7.

2. Past Works

The IoT consists of intelligent objects connected to the Internet, which cooperate to support the
execution of complex applications and services [5]. These objects are equipped with sensors and
actuators, which provide context-awareness and enable them to gather, process and exchange data,
in order to react to external stimuli. The need to represent, store, discover, search, exchange and
manage the huge amount of information generated by the objects, motivated the development of
semantic technologies [6].

In the past few years, many well-known IoT middleware architectures based on virtualisation
of real objects have been proposed [4]. The management and resource allocation of these objects is
usually committed to the power of cloud computing, which ensures high reliability, scalability and
autonomy to provide ubiquitous access, dynamic resource discovery and composability of application
tasks [3,7]. According to [8], the physical components of an object can be abstracted and made available
as virtual resources. Meaningful virtualisation models of physical devices can be found in the Wireless
Sensor Networks (WSNs) field, as described in [9–11]. Virtualisation allows the higher layers of the IoT
architecture to: (i) interface with devices; (ii) provide devices with the required commands, adapted to
their native communication protocol; and (iii) monitor their activities and connection capabilities.
The result of virtualisation, i.e., the VO, is defined by [12] as the virtual counterpart of one or more
real objects, and, as such, it inherits all their functionalities, characteristics and acquired information.
In [13], the authors propose a framework for sensor Cloud in a Smart City context, to enable the
necessary resources, storage and computing capabilities for large amounts of heterogeneous and
personalized data coming from distributed sources in a transparent and secure manner. However,
reaching the cloud to manage network nodes is not always a good solution, especially for real-time
applications, nor is it a convenient solution in terms of energy consumption. This issue is partially
solved in [14], where fog computing is used to virtualise real world object characteristics and resources,
and to allocate application tasks to them.
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Resource allocation has been extensively studied in WSNs, particularly with reference to network
lifetime. In [15], a distributed task allocation that focuses on the reduction of the overall energy
consumption and task execution time into a heterogeneous WSN is proposed, with attention to nodes’
residual energy. A similar approach is studied in [16], where a distributed algorithm based on particle
swarm optimization is proposed. Since the main criticality of wireless networks is their lifetime,
all of these algorithms mainly focus on maximizing this resource. Nevertheless, IoT nodes have
more heterogeneous characteristics and capabilities, including residual memory, processing capacity
and throughput.

As far as IoT networks are concerned, distributed resource allocation is an open issue. Most of
the existing studies on resource allocation for IoT are focused on IoT service provisioning, such as
in [17,18]. In these studies, the aim is to allocate the resources that enable service execution. However,
they do not focus on finding the best configuration that corresponds to an optimal resource allocation.
None of the works found in the literature tries to find the optimal resource allocation associated to
the lowest impact of the application assigned to the network. Additionally, QoI is not taken into
account [19].

3. Reference Scenario and Problem Statement

We refer to the Cloud-based IoT model that relies on virtualization technologies [20] and includes
three levels, as shown in Figure 1. A Real World Object (RWO) is a device that has the ability to observe
the real world phenomena and to perform measurements or operate on other objects. The Virtual
Object [4] is its digital representation and guides its involvement in the implementation of the deployed
IoT applications, by providing a description of the RWO with also semantic enrichment. It also supports
discovery and a mash up of services, improving the objects’ energy management efficiency, as well
as addressing heterogeneity and scalability issues. Each VO is instantiated with a template that
should match the type of RWO to which it is associated (e.g., smartphone model, embedded device
type, temperature sensor), along with the functionalities that it is able to provide. A new VO
template is instantiated anytime a new RWO is discovered by the system, and its characteristics
are changed dynamically when any possible RWO’s change is experienced (e.g., new geographic
location, a change in the amount of available resources, and new functionalities provided). Depending
on the RWO capabilities and use-cases, the VO processes are run in the cloud, gateway or RWO
physical devices. Scenarios where the VO functionalities are distributed among these locations are also
possible. The Service Level receives user application requests, translates them in computer language
and sends them to the VO level, which maps them dynamically to the appropriate VOs, which take
charge of their accomplishment by involving the relevant RWOs.

CLOUD

SERVICE 

LEVEL

VO 

LEVEL

RWO

Figure 1. The reference IoT cloud architecture.
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These deployment processes need to take into consideration the applications’ QoI. QoI is the
characterisation, in terms of some salient attributes represented in the form of metadata, of the
goodness of the data collected, processed and flowing through a network [1]. QoI concerns the
information that meets a specific user’s need at a specific time, place, physical location, and social
setting. Some examples of QoI requirements are data sampling rate, precision, and provenance [2].

An important component of this architecture is the Information Model, which is implemented by
the VO template and encodes all the information that is used for their appropriate involvement in the
IoT application deployment and delivery. A great effort in the definition of the Information Model
has been done by the iCore FP7 project [21]. However, we needed to extend this model to be effective
for our target, and we modified it, taking into account the mobility of objects, their temporal features
and their characteristics of QoI. This enhancement is meant to improve the VO search, discovery and
selection processes that enable the task’s assignment to the most appropriate VOs, with a QoI-oriented
perspective. Figure 2 shows the new elements in dashed border boxes:

• Indoor Location: It is particularly useful in cases of closed environments. This could be an
element that enhances the scalability of the system. It permits the model to be used not only in
large-scale distributed environments (metropolitan areas or neighbourhoods), but also in small size
environments and internal locations (such as buildings or structures in which a geo-localization of
the nodes is not enough).

• Temporal Features: The use of the temporal features, both in terms of date and time range,
allows for knowing the activity phases of a device associated with its VO. Knowing the date and
time in which a mobile device is located in a given place and helps the association process among
ICT (Information and Communications Technology) and non-ICT objects. It also ensures the ability
to know in advance when a particular resource is available, when it is possible to refer to it, and
how long it has not been updated.

• QoI Parameters: The Information Model, on which the selection processes are based, includes a
field dedicated solely to the QoI parameters. The values in this field are named uniquely based
on their characteristics. In addition, it introduces their descriptive aspects that allow their
identification. The parameters stored in this field will therefore be examined in the selection
phase and allow an optimised choice of the resources to use.

VIRTUAL OBJECT

ICT-OBJECT

GEOLOCATION

NON-ICT OBJECT

INDOOR LOCATION

TEMPORAL FEATURE

DATE RANGE TIME RANGE

QoI PARAMETERS

VO FUNCTION & PARAMETERS

I/O PARAMETERS

OWNER

Figure 2. Virtual Object Information Model used. Solid border boxes correspond to elements included
in the iCore VO Information Model. Dashed border boxes are new elements introduced by the
proposed architecture.

When a new application has to be deployed, the service level sends a request to the VO level to
search, among the available VO instances, those that are able to perform the relevant tasks based on
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the appropriate templates and other parameters (e.g., position, ownership). To this, the Information
Model becomes vital to implement an effective search function. As a result, for each requested task k,
a group of VOs capable of performing it are identified. At this point, there is the need to decide how
they should contribute to the execution of this task while considering the required QoI level. In the
following, we consider that the target QoI level is a required execution frequency Fre f

k . However,
the proposed solution can be generalized to other QoI requirements.

In order to explain the process more clearly, we introduce an explanatory example: we suppose
that the service level receives a request for the evaluation, every minute, of human presence
inside office A, in the building located at coordinates {x,y}, with an error no higher than 99%,
minimising processor usage. Therefore, the service level sends this request to the VO level, which
analyses the request and determines the VO Information Model that can respond to it. Hence, the VO
level starts searching for VO instances characterised by an Information Model with parameters equal
to those described by Figure 3. Suppose that the VO level finds three VOs that match the queried one,
which correspond to the following RWOs: a PIR (Passive Infra Red) sensor, which captures human
movements; a camera, which uses pattern recognition to detect human faces; and a thermal sensor,
which detects body heat. The fact that the same service can be provided by such heterogeneous devices
using so different functionalities, is completely transparent to the VO level, which can manage all of
them simply by managing their VOs and related attributes. At this stage, the VO level sends a request
for human presence detection to one of the VOs, including also the required frequency Fre f = 1/60 Hz,
and the resource to minimise, i.e., processor usage. The VOs can then start reaching consensus using
the approach described in Section 4, regardless of their localisation with respect to their related RWO.

Virtual Object

ICT Object

Geolocation

Coordinates: {x,y}

Indoor Location

Description: Office A

VO Function & 

Parameters

Function: Human 

Detection

QoI Parameters

Error: <99%

Figure 3. VO Information Model required to respond to the query coming from the Service Level,
in the reference example.

3.1. Location of the Virtual Objects

The decentralized approach introduced in our proposal has the advantage of being able to better
follow the changes of RWOs’ status. This is possible when the VO task allocation functionalities are
implemented in the RWOs. We base on the consideration that nodes that are assigned to the same task
are usually located close to each other, and thus they can be able to form a connected group relying
on short-range communication technologies, as shown in Figure 4a. In this scenario, RWOs reside in
the same area and are characterised by sufficient computational power and energy. The optimisation
process can be distributed on RWOs, in such a way that the management of resources is as close as
possible to the point where they are used.

In case RWOs do not have sufficient computing power, the VO task allocation functionalities are
implemented in the gateways, and fog/edge computing technologies are used [22] (Figure 4b). Since
we are considering devices that are connected to local networks, gateways can take charge of VOs’
functionalities and run the optimisation process, involving all the RWOs interested in the connection.
Once VOs reach consensus on the gateway, they send the resulting execution frequency to their RWOs.
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In both cases, the optimisation mechanism does not pass through the Internet network, i.e., it does
not introduce overhead outside of the local network, and it is faster, characterised by lower latency,
less expensive from an energy point of view, and incurs in no connectivity issues.

VO

RWO

VO

RWO

VO

RWO

UPDATE UPDATE

(a) Optimisation in the RWOs

RWORWO RWO

GATEWAY

VOVO VO
UPDATE UPDATE

(b) Optimisation in the gateway

RWORWO RWO

CLOUD

VOVO VO
UPDATE UPDATE

(c) Optimisation in the cloud

Figure 4. Location of the proposed algorithm into three typical IoT scenarios with reference to objects’
resource allocation.

If the devices selected to perform the task are not in the same area, but they are located in
different places and at a great distance, their communication can take place only through the Internet.
In this case (Figure 4c), the optimisation process is carried out in the Cloud. Although the Cloud is
characterised by higher resources, communication between VOs and RWOs has to pass through the
Internet. Since VOs have to be frequently updated about the status of RWOs’ resources, having VOs
located remotely from RWOs would increase the amount of resources needed to synchronise them.
Furthermore, higher latency is experienced. Therefore, the first two solutions are preferable.

4. The Resource Allocation Model

4.1. Resource Model

In this paper, we focus on the main resources that represent an issue for IoT systems: object lifetime,
storage capacity, and processor and data throughput.

4.1.1. Lifetime

As defined in [23], the lifetime of a node is defined as the time until it depletes its battery.
Applying this to our case, the lifetime of the node associated to VO i at time t is

τ
l f tm
i (t) =

Eres
i (t)

∑k Ec
ik · fik(t)

(1)

where Eres
i (t) is its residual energy, Ec

ik is the energy consumed by the RWO associated to VO i to
perform task k, and fik(t) is the frequency at which VO i performs task k. This means that the lifetime
of a node depends on the frequency at which the tasks assigned to it are performed.

4.1.2. Storage Capacity

The storage capacity of a node decreases according to the frequency at which data are stored in it
and to the amount of data stored. Analogously to the definition of node lifetime, we define the storage
capacity depletion time of the node associated to VO i as:

τstor
i (t) =

Mres
i (t)

∑k Dk · fik
(2)
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with Mres
i (t) residual memory expressed in bits, and Dk amount of data to be stored for task k. Note that

residual memory can change over time, not only because of its usage, but also because its stored data
can be moved to another location.

4.1.3. Processor

The time needed to perform a task is in inverse proportion to the processing speed of the node
that is performing it, and in direct proportion to the number of instructions required by the task.
Calling texec

ik the time needed by the node associated to VO i to perform task k, it can be stated that

texec
ik =

Ninstr
k

Sproc
i

(3)

where Ninstr
k is the number of instructions that need to be processed to perform task k, and Sproc

i is the
processing speed for the node associated to VO i. If task k is performed at a frequency fik(t), this means
that the processor of the node associated to VO i will be busy for a ratio of time equivalent to

θ
proc
ik (t) = texec

ik · fik(t) (4)

Generalising for all the tasks performed by i, we define the total processor occupancy as:

Θproc
i (t) = ∑

k
texec
ik · fik(t) (5)

which is the ratio of time for which the processor is busy, considering all the tasks.

4.1.4. Bandwidth

Analogously to the analysis made for the processor occupancy, and considering that the
bandwidth needed by the node associated to VO i to transmit the output data for task k is proportional
to the Dk bits of data to transmit and to the frequency fik(t) at which they are transmitted, we define
the bandwidth occupancy as:

ΘBW
i (t) = ∑k Dk · fik(t)

Btot
i

(6)

where Btot
i is the available bandwidth for i.

4.2. Consensus-Based Resource Allocation Optimisation

The resource optimisation strategy proposed in this paper relies on a consensus-based algorithm,
where VOs decide the amount of resources to allocate to a task, according to the constraints requested
by the higher layers.

We generalise the equation that describes the use of a resource by VO i as:

Θi(t) = ∑
k

αik · fik(t), with αik(t) =


Ec

ik/Eres
i (t), if Θi(t) = 1/τ

l f tm
i (t),

Dk/Mres
i (t), if Θi(t) = 1/τstor

i (t),

texec
ik , if Θi(t) = Θproc

i (t),

Dk/Btot
i , if Θi(t) = ΘBW

i (t).

(7)

From the analysis carried out in the previous section, it is evident that optimising the use of the
resources belonging to the nodes involved in the system entails adjusting the use that VOs make of
them, so that nodes are not overloaded. In other words, the frequency at which each node performs
the tasks assigned to it needs to be adjusted so that the effort put by each node to contribute to
the execution of tasks needed by the system is equally shared among all of them. This means that,
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given two VOs i and j that received an activation request for task k, at time tc when the algorithm
converges, Θi(tc) = Θj(tc). Therefore,

∑
k

αik(tc) fik(tc) = ∑
k

αjk(tc) f jk(tc) (8)

Defining the total amount of resource usage contributions with the exception of task k as
δik(t) = ∑l 6=k αil(t) · fil(t), it follows that

f jk(tc) =
αik(tc)

αjk(tc)
· fik(tc) +

δik(tc)− δjk(tc)

αjk(tc)
(9)

According to accuracy constraints provided by the higher layers, the collaborative completion
of a task is required to be performed at a reference frequency Fre f

k = ∑j f jk(tc). Using Equation (9) in
this identity, after some simple computations and multiplying and dividing by the number Nk of VOs
involved in task k, we obtain

αik(tc) · fik(tc) =
ϕ̄k

β̄k(tc)
+

γ̄k(tc)

β̄k(tc)
− δik(tc) (10)

with

ϕ̄k =
Fre f

k
Nk

β̄k(tc) =
1

Nk
·∑

j

1
αjk(tc)

γ̄k(tc) =
1

Nk
·∑

j

δjk(tc)

αjk(tc)

It is easy to notice that they represent mean values evaluated over all the VOs that are able to
perform task k. This fact, along with the consideration that nodes that are assigned to the same task are
usually located close to each other, and thus they can communicate directly without passing through
the cloud, leads to the conclusion that their value can be estimated in a distributed way using an
average consensus algorithm. We suppose to have a system where nodes may not be connected during
the whole convergence process. For this reason, in this paper, the consensus algorithm proposed in [24],
which is robust against topology changes, is used. Since variations of α and δ are negligible over the
time needed by the algorithm to converge (as it will be clarified in the experiments), in the following,
we consider them constant and omit their dependence from time. Nevertheless, if substantial variations
of them are experienced, the algorithm needs to start again.

4.3. Resource Allocation Optimisation Algorithm

As soon as VO i receives an activation request for task k, it initialises its local values ϕik = ϕ0
ik,

βik = β0
ik and γik = γ0

ik. As far as ϕik is concerned, only one VO receives the reference frequency Fre f
k

from the VO level and sets ϕ0
ik to it. The other VOs set it to 0. The initial local values are set as follows:

ϕ0
ik =

{
Fre f

k , if Fre f
k is given

0, otherwise

β0
ik =

1
αik

, γ0
ik =

δik
αik

(11)

and starts the consensus with its neighbours. VO j is a neighbour for VO i if and only if they are directly
connected, i.e., they are one-hop far from each other (note that, since VOs act at a logical level, in order
for them to be one-hop far it is not necessary that their related RWOs are directly connected, but it is
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sufficient that their VOs are logically directly connected). At each step of the consensus algorithm, i.e.,
whenever VO i receives an update from one of its neighbours j ∈ Ni, whereNi is the set of neighbours
of node i, it computes the following updates:

ϕ+
ik = ϕik − λ

ϕ
1 ∑

j∈Ni

(ϕik − ϕjk)− λ
ϕ
2 ∑

j∈Ni

sgn(ϕik − ϕjk), (12a)

β+ik = βik − λ
β
1 ∑

j∈Ni

(βik − β jk)− λ
β
2 ∑

j∈Ni

sgn(βik − β jk), (12b)

γ+
ik = γik − λ

γ
1 ∑

j∈Ni

(γik − γjk)− λ
γ
2 ∑

j∈Ni

sgn(γik − γjk), (12c)

Θ+
i =

ϕ+
ik + γ+

ik
β+ik

f+ik =
1

αik
·
(
Θ+

i − δik
)

, (12d)

where λ
ϕ
1 , λ

β
1 , λ

γ
1 , λ

ϕ
2 , λ

β
2 , and λ

γ
2 are tuning parameters that affect the convergence time and steady-state

accuracy [24], and that will be better explained in the following subsection. If f+ik > 0 and if its value
has changed after the update, the VO sends the updated value of ϕ+

ik , β+
ik and γ+

ik to its neighbours.
It may happen that f+ik ≤ 0. In this case, the VO cannot participate into executing task k. Therefore,
it sets fik to 0 and informs its neighbours, which restart the consensus process. The algorithm can be
considered converged when fik does not change after the updates.

4.4. Convergence Time and Steady-State Accuracy

The proposed consensus protocol represents a discrete-time application of the finite-time
discontinuous average-based consensus algorithm discussed, respectively, in [25] for a network of
connected continuous time integrators and in [26] for networks of perturbed, and possibly switching,
spanned-tree topologies. It follows that, as long as the stability of the linear part of the problem
in Equation (12) is preserved, the convergent properties discussed in [25,26] are in force. Thus,
from [26,27], it is straightforward to derive that

0 ≤ λ
ϕ
1 , λ

β
1 , λ

γ
1 ≤

1
maxi |Ni|

(13)

where |Ni| denotes the number of neighbours of node i. Note that Equation (13) derives straightforward
from considerations on discrete-time consensus and Perron matrices, which, however, go beyond the
scope of this research. Further details can be found in [27,28]. If condition (13) holds, then the results
of [26] are directly applicable for the characterization of the convergence properties of the discrete-time
collective multi-agent dynamic in Equation (12).

Thus, following Assumption 1 of [25], let ε and T, with ε ≤ T being two positive constants,
where T defines the length of a receding horizon time interval I(t) = (t, t + T), and ε is the total length
of the subinterval S(t) ≤ I(t) given by the union of the subintervals during which the network is
connected (see Figure 5 for a graphical explanation of the interval I(t) and S(t)), it results that, for the
problem in Equation (12), consensus will be reached in finite time if

λ
ϕ
2 , λ

β
2 , λ

γ
2 ≥ 2 · T

ε
+ µ2 (14)

with µ 6= 0. If condition (14) holds, the convergence is reached with accuracy Γ after, at most,
a transient time tr that is proportional to the maximum deviation of the agents’ states at the start-up
(i.e., when t = 0) of the algorithms

tr ≤
(

T
εµ2

)
·max

i,j
|x0

i − x0
j |

Γ = 2 · (T − ε) + ξ

(15)
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where ξ > 0 is an arbitrary infinitesimally small parameter, and x0
i , x0

j are the initial values for VOs i
and j of the generic consensus variables, which, in our case, are those specified by Equation (11).

As it is specified in [24], the tuning parameters of the update functions need to be set to:

λ
ϕ
1 , λ

β
1 , λ

γ
1 ≥ 0

λ
ϕ
2 , λ

β
2 , λ

γ
2 ≥

2T ·Π
ε

+ µ2, µ 6= 0
(16)

where: ε and T are positive constants, and T is a horizon time interval such that the involved
VOs are connected at least for an ε amount of time (ε ≤ T); and Π and µ are weight parameters.
Appropriately choosing the tuning parameters affects the accuracy of the solution of the algorithm,
as well as the convergence time, as follows:

Accuracy = [2 · (T − ε) + ξ] ·Π

Convergence time ≤
(

T
εµ2

)
·max

i,j
|x0

i − x0
j |

(17)

where ξ > 0 is an arbitrary infinitesimally small parameter, and x0
i , x0

j are the initial values for VOs
i and j of the generic consensus variables, which, in our case, are those specified by Equation (11).
These conditions ensure that the algorithm converges to a solution in a finite time with an accuracy
that depends on the tuning parameters.

t1

I(t)

t2 t3

S(t) = t1+t2+t3 = e

Time

t t+T

Subintervals where VOs are connected

Subintervals where VOs are not connected

Figure 5. Communication constraints for the consensus algorithm to converge [25].

Supposing that T = ε, i.e., the VOs are always connected during the consensus process:

tr ≤
(

1
µ2

)
·max

i,j
|x0

i − x0
j |

Γ = ξ.
(18)

5. The Proposed IoT System

In this section, the whole IoT resource allocation system proposed in this paper is described.
Algorithm 1 provides the pseudo-code for the whole process. As soon as the service level receives a
request for a task, it translates it into computer language, generating the query Qk, which is sent to the
VO level. Based on Qk, the VO level finds the VO Information Model that best fits the characteristics
required by Qk. The VO level than starts a search for the set Sk of VO instances that correspond to
the required VO Information Model, i.e., the set of VOs that can respond to the query. Then, the VO
level selects one of the VOs to whom forwarding the request, i.e., the candidate VO VO0. Since the
candidate VO has to perform some additional operations with respect to the other VOs, the VO level
tries to choose the one that is likely to have more resources. For this reason, if in Sk there is at least one
VO that is located in the cloud, the candidate VO is chosen randomly among them; otherwise, if there
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is at least one VO that is located in an intermediate gateway, the candidate VO is chosen to be the one
located in the closest gateway; if all the VOs are located remotely, the candidate VO is chosen to be the
closest one. The VO level sends to the candidate VO a messageMk, including the reference frequency,
the set of VOs, the resource to be optimally allocated and the time interval Tk during which the task
has to be continuously performed:Mk = {F

re f
k ,Sk, resource, Tk}.

Algorithm 1 The Proposed IoT System

1: The service level receives a request for task k
2: The service level translates the task request into query Qk
3: The service level sends Qk to the VO level
4: The VO level finds the appropriate VO Information Model to respond to Qk
5: The VO level finds the set Sk of VOs corresponding to the required VO Information Model
6: if at least one VO ∈ Sk is in the cloud then
7: Set it as VO0
8: else if at least one VO ∈ Sk is in an intermediate gateway then
9: Set the VO in the closest intermediate gateway as VO0

10: else
11: Set the closest VO as VO0
12: end if
13: The VO level sends messageMk to VO0
14: VO0 evaluates Equation (20)
15: if Equation (20) is false then
16: VO0 assigns fik = Fre f

k /|Sk|, ∀i ∈ Sk
17: else
18: VO0 sends the activation request and initialization message for task k to the nodes in Sk
19: for each i ∈ Sk do
20: if An initialization message is received then
21: Initialize ϕik, βik and γik values according to Equation (11)
22: end if
23: if An update message is received then
24: Compute ϕ+

ik , β+
ik , γ+

ik and f+ik values according to Equation (12)
25: if f+ik >0 then
26: if f+ik 6= fik then
27: i sends ϕ+

ik , β+
ik and γ+

ik values to all j ∈ Ni
28: end if
29: else
30: i sets fik = 0 and sends an initialization message to all j ∈ Ni
31: end if
32: end if
33: end for
34: end if
35: if Any substantial change is experiences by VOs then
36: Go to step 14
37: end if

After receiving the request from the VO level, the candidate VO has to choose whether or not
the consensus algorithm is convenient to be started. Indeed, since the consensus process requires a
certain amount of resources, before proceeding with it, it is important to evaluate if it is convenient
to the system, i.e., if the amount of resources saved thanks to consensus is higher than the amount
of resources needed to reach a consensus. It is trivial to demonstrate that, if Tk = ∞, i.e., task k’s
duration is not specified by the request, the consensus execution is always convenient. If Tk is limited,
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the candidate VO has to evaluate how much the consensus algorithm costs in terms of resources,
with respect to the requested task. We call αcons

i the amount of resource consumed to perform a single
step of the consensus algorithm, i.e., the value of αik computed according to Equation (7) considering
not a single execution of task k, but a single execution of a step of the consensus algorithm. Let Nstep be
the average number of steps required by consensus to converge. Performing consensus is convenient
if the following condition is satisfied:

αcons
i · Nstep � αik · fik · Tk. (19)

Approximating fik with Fre f
k /|Sk| , where |Sk| is the number of VOs in Sk, it is possible to

approximate the condition above as follows:

αcons
i < αik ·

Fre f
k
|Sk|
· Tk

Λ · Nstep , (20)

where Λ is an arbitrarily high design parameter. Considering, for example, 10 VOs, αcons
i = αik,

Fre f
k = 0.1 Hz, Λ = 20 and Nstep

= 7 (which, as shown in Section 6, is a reasonable value), the condition
in Equation (20) is met for Tk > 3.8 h. If the amount of saved resources is not expected to be sufficient,
the process is not started at all, and frequencies are assigned to the nodes in Sk according to a static
assignment, e.g., they are set to Fre f

k /|Sk| for each node. Otherwise, the candidate VO sends the
activation request and initialization message for task k to the nodes in Sk and the algorithm described
in Section 4.3 is started. Note that it is not necessary that nodes in Sk are directly connected: it is
sufficient that their VOs are connected (either physically or logically) by a limited number of hops).

After the frequency values have been assigned to the appropriate VOs, the task is performed by
them for the amount of time that was required in the original request. If any substantial changes were
experienced by VOs (e.g., depletion of the allocated resource, change in position of one of the VOs,
a new VO with the appropriate characteristics is detected), the candidate VO is informed of them,
and the algorithm starts again from the step where the candidate VO evaluates Equation (20).

6. Experiments

The proposed algorithm has been implemented to run in the Arduino Mega 2560 (Arduino SRL,
Torino, Italy) [29] device, whose microcontroller is an ATmega 2560. The local network was created
through XBee S1 802.15.4 modules, by Digi International (Digi International Inc., Minnetonka, MN,
USA) [30]. These modules use the IEEE 802.15.4 networking protocol for fast point-to-multipoint
or peer-to-peer networking. The XBee modules are ideal for low-power and low-cost applications.
The XBee modules have been connected to Arduino via serial port, using Xbee USB serial adapters by
DF Robot (DFRobot, Shanghai, China) [31]. Tests were performed considering up to 10 real devices
participating in the optimisation process for the allocation of up to 10 tasks. Devices are connected
in a mesh fashion, i.e., they are all connected, and neither disconnections nor noise is experienced.
Therefore, tuning parameter are set to λ

ϕ
1 , λ

β
1 , λ

γ
1 = 1/|Sk| (remind that |Sk| is the number of VOs

involved in task k) and λ
ϕ
2 , λ

β
2 , λ

γ
2 = 0. We supposed that tasks with different complexities are assigned

to nodes one at a time. Nodes have a residual energy ranging from 2 to 3 kJ. We also supposed to
know the energy consumption value associated to each task at each node. According to it, energy
consumption values for a single execution of each task are assigned randomly to the nodes in the
ranges defined in Table 1. As a term for comparison, typical energy consumption values to transmit
data using XBee modules are ∼ 0.3 mJ/byte [30,32], while approximately 7 µJ are needed, on a typical
board, to execute a simple application such as the average of five numbers [33].
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Table 1. Energy consumption values per task’s single execution.

Task ID Task 1 Task 2 Task 3 Task 4 Task 5

Ec
ik value [mJ] 6.82÷ 12.27 7.50÷ 13.49 9.70÷ 17.46 6.17÷ 11.11 5.11÷ 9.20

Task ID Task 6 Task 7 Task 8 Task 9 Task 10

Ec
ik value [mJ] 6.51÷ 11.71 8.49÷ 15.28 9.13÷ 16.43 5.68÷ 10.23 9.07÷ 16.33

Figure 6 shows in an explanatory example how three devices reach consensus for five different
tasks. Each line style is associated with a different device. Whenever a new task is activated, the devices
that can perform that task initiate the consensus process. The initialisation instants correspond to the
peaks in the figures and are marked by the respective label. It is possible to see how, for each task,
the convergence is reached in just a few steps. On average, the algorithm takes only less than seven
steps per task to converge. For each task activation, the lifetime values of the three devices converge,
as the frequency of execution is distributed in an optimised manner to reach the reference frequency.
In the example, task 4 can be performed by only two devices out of three. Thus, only two devices take
charge of the workload related to task 4, and their lifetime value converges toward a lower value than
that of the other device. After the algorithm has run for task 4, it could be run again for the tasks whose
frequency has already been assigned, in order for the devices to equally redistribute the workload
and reach the same lifetime value again. Nevertheless, we believe that the benefit introduced by this
process would not be enough, especially considering that the following tasks will have the same result
of making the devices converge to the same lifetime. Indeed, in the example, once the fifth task is
activated, frequencies are divided one more time and devices reach the same lifetime value again.
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Figure 6. Example plot for algorithm convergence.

To evaluate the performance of the algorithm, we compared three different approaches:

• Network lifetime achieved using the proposed algorithm (indicated with label optτ);
• Network lifetime when each task is entirely assigned to the node with the lowest energy

consumption value related to that task (label minE);
• Network lifetime when the task’s reference frequency Fre f

k equally divided by the number of
devices available to run it (label eqF).

Figures 7 and 8 show the average network lifetime and related confidence interval, using the three
different approaches, for different numbers of assigned tasks and nodes (indicated, respectively,
with labels K and N). The graphs show that the optimal resource allocation algorithm always
outperforms the other approaches, especially with respect to minE. The gap is particularly evident
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when the amount of available resources is higher than that of required resources, i.e., when the number
of nodes is high, or when the number of assigned tasks and reference frequency are low. This is
motivated by the fact that, with the non-optimized solutions, if the number of tasks is lower than the
number of involved nodes, the probability to have an unfair distribution of energy among nodes is
higher with respect to that of a high number of tasks. Therefore, the higher the amount of available
resources, the better the behaviour of the resource allocation algorithm. The lifetime improvement of
the optimal resource allocation algorithm goes from 12% to 60.3% for the minE approach and from
6.5% to 20.8% for the eqF approach.

The behaviour of the algorithm was also evaluated from the time performance point of view.
The convergence times measured during the testing phase and related confidence interval are shown
in Figure 9 as a function of the number of tasks to be assigned. It goes from 440 ms when only two
tasks are assigned to 2.14 s when 10 tasks are assigned, with an average convergence time of 214 ms
per task.
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Figure 7. Average values of network lifetimes when the number of tasks increases, for a number of
available nodes equal to 3 (star marker), 6 (circle marker) and 9 (triangle marker). Results are shown
for reference frequency values equal to 1 (a); 2 (b); 3 (c) and 4 (d).
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Figure 8. Average values of network lifetimes when the number of nodes increases, for a number of
assigned tasks equal to 3 (star marker), 6 (circle marker) and 9 (triangle marker). Results are shown for
reference frequency values equal to 1 (a); 2 (b); 3 (c) and 4 (d).
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Figure 9. Average values of convergence time.

7. Conclusions

We proposed the use of VOs to control and manage the heterogeneous resource-constrained
objects that characterise the IoT, so as to find those that are able to perform some given tasks ensuring
the required QoI. We then introduced a consensus-based algorithm where the resources of these
objects, specifically their residual battery charge, are assigned to the execution of tasks so that the
workload is distributed in a fair way. Tests on real devices showed that we can reach an average
lifetime improvement of more than 20% using up to 10 devices, which decreases when the amount of
available resources decreases.
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