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ARTICLE INFO ABSTRACT

Multiproxy analysis composed of biostratigraphy and pollen analysis allowed reconstructing the palaeoecolo-
gical and palaeoenvironmental evolution of the Tirso river coastal plain in Sardinia (NW Mediterranean) in the
last 6 millennia. We demonstrated that interplay between littoral and fluvial processes have significantly con-
trolled the environmental evolution of the area and have played a key role in the pattern of historical and
prehistorical settlements of this wide portion of western Sardinian coastline. At the end of Neolithic period (ca.
6.0 to 5.5 cal. ka BP) the area close to the shoreline was most likely characterized by large coastal lagoons
intermittently connected to the open sea. Such saltwater influence is corroborated by faunal and pollen as-
semblages found in the landward portion of the Tirso coastal plain up to 2 km inland from the modern shoreline.
Our data robustly document the end of the transgressive trend at ca. 5.5 cal. ka BP, and a dominant fluvial
sedimentation since Final Neolithic period. At this time, a progradational trend started, causing the seaward
migration of shoreline and, consequently, of the barrier-lagoon system. The major landscape modification
tracked along the last 6 millennia may also explain the low density of historical and prehistorical remains in the
Tirso coastal plain, especially if compared to the nearby rocky area of Sinis Peninsula densely inhabited since the
Neolithic. Our data further provide new insights into the Relative Sea Level (RSL) evolution in this sector of the
Mediterranean. In particular, we improved the mid-Holocene RSL record in Sardinia, where only scarce data
were previously available.
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parameters, sea level changes or modification of fluvial regimes) and
anthropogenic (i.e. deforestation, fires, agriculture) factors majorly

1. Introduction

Mediterranean coast have represented great places for relations and
exchanges among peoples, especially in historical and proto-historical
periods (e.g., Masters and Flemming, 1982; Anzidei et al.,, 2014;
Marriner et al., 2014b). In the last six millennia (i.e. mid to late Ho-
locene) the combined effects of the slowing of sea-level rise and the
increase of sediment input caused by both climatic and anthropogenic
factors (e.g., Butzer, 2005; Anthony et al., 2014; Ghilardi et al., 2017)
allowed the formation of large Mediterranean coastal plains that were
heavily colonized by civilizations in the different pre-historical and
historical periods (e.g., Briickner et al., 2006; Fontana et al., 2017,
Giaime et al., 2016). Thus, coastal plains represent a very important
archive of the man-environment interactions along the Mediterranean
coastal landscape especially in mid to late Holocene. However, it is not
easy to identify which of the natural (i.e. changes in climatic
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influenced the landscape evolution, especially in the last 6 millennia
(e.g., Hooke and Le, 2000; Briickner, 2003; Fontana et al., 2017). The
aim of this study is to reconstruct the mid to late Holocene pa-
laeoenvironmental evolution of the Tirso coastal plain, in western
Sardinia, the second largest Mediterranean Island.

Sardinia, located in the center of the western Mediterranean, has
always occupied a strategic position as testified by the large amount of
archaeological records found along its coasts, especially from the
Bronze Age to the Late Antiquity (e.g., Lilliu, 1999; Bondi, 2000;
Antonioli et al., 2007). Furthermore, despite the continuous changes
related to marine and fluvial dynamics, several Sardinian coastal plains
have been densely settled since the Neolithic period. However, studies
on the Holocene evolution of its coastal plains are seldom reported
(e.g., Orru et al., 2004). In this study, we investigated the evolution of
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the Tirso coastal plain over the last six thousand years and its possible
influence on the human settlement in the area. The Tirso coastal plain,
the largest of the Island, hosts the Sa Osa archaeological site, an im-
portant settlement of the Nuragic period (i.e. 3.6-2.5 cal. ka BP, see
Section 2). Further, the broad Tirso area was densely settled in the past,
as testified by the impressive remains of the city of Tharros, founded by
Phoenician (ca. 2.6-2.5 cal. ka BP) and subsequently occupied by Ro-
mans up to Late Antiquity (ca. 2.3 cal. ka BP, Del Vais et al., 2006).

Here we present an assessment of the environmental evolution of
this important coastal area based on a multiproxy analysis of a new set
of sediment cores that were chronologically constrained by *C dates.
We analysed both morphological and environmental evolution of the
landscape integrating sedimentological, biostratigraphical and palyno-
logical data. The results allowed elucidating the major landscape
modifications of the area and their impacts on human societies in the
last 6000 years. Finally, we assessed the sea-level evolution in the area
by producing a new set of relative sea-level (RSL) datapoints.

2. Study area

The study area is located in the Tirso river coastal plain, in the
northern part of the Oristano Gulf (mid-western Sardinia, Fig. 1a). The
gulf represents the western boundary of the Campidano graben, a
Pliocene - Quaternary structural depression oriented NW-SE (De Falco
et al., 2015), filled by transitional, marine and continental deposits. The
area is part of the transitional environment, bounded seaward by sandy
shoreline and eastward by the Tirso alluvial plain. Several lagoons, salt
and freshwater marshes, abandoned meander and backshore dunes
characterize this coastal environment. Such geomorphological setting
makes the whole area extremely vulnerable to sea-level rise (e.g.,
Antonioli et al., 2017). The tidal range is small and does not ex-
ceed = 0.2 m (De Falco et al., 2015). In the nearby area of Sinis Pe-
ninsula, Late Pleistocene deposits (MIS 5.5, Carboni and Lecca, 1985;
Ulzega and Hearty, 1986) were measured at ca. 6 m above present
mean sea-level (msl). This implies negligible (i.e. < 0.05mma~ D)
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tectonic vertical movements in the last ca. 125ka (Ferranti et al.,
2006).

The broad area of the Oristano gulf was intensely settled, especially
in the last four millennia (Depalmas and Melis, 2010). The first evi-
dence of intense frequentation is mainly localized in the nearby Sinis
Peninsula with traces of Neolithic settlements around the Cabras La-
goon (Fig. 1a). The density of settlements increased during the Nuragic
civilization (3.6-2.5 cal. ka BP). Peaks of frequentation are reported in
the Middle Bronze Age (3.6-3.2 cal. ka BP), and from the Final Bronze
Age to the Early Iron Age (3.1-2.7 cal. ka BP). The Nuragic age ended
with the establishment of Punic settlements (ca. 2.5 cal. ka BP) along
the coast and on the Campidano plain. Since the first Roman occupation
(ca. 2.2 cal. ka BP) the area experienced a slow Romanization, which
lasted for several centuries. On the contrary, the area was sparsely
populated in the Middle Ages (Tore and Stiglitz, 1987; Stiglitz, 1998)
due to the barbarian incursions. The pattern of prehistoric and historic
settlements indicates a significant discrepancy between the Tirso
coastal plain and the surrounding rocky area of Sinis Peninsula (Fig. 1a;
Depalmas and Melis, 2010). In fact, the Sa Osa archaeological site re-
presents the sole settlement presently found in the coastal plain
(Fig. 1b). It represents a particular Nuragic settlement, built without
external walls in the middle of the coastal plain and presently buried by
fluvial sediments (Usai et al., 2012).

3. Materials and methods

We drilled 7 boreholes (S1 to S7) down to a maximum depth of
10 m, between the shoreline and the Sa Osa archaeological site
(Fig. 1b). Elevation of the cores with respect to the current mean sea
level was obtained coupling GPS surveys with high resolution
(= 0.5m) Digital Elevation Model available for the whole area
(Regione Sardegna, 2017). The palaeoenvironmental reconstruction
was performed trough a multidisciplinary analysis of sedimentological
parameters, faunal assemblages and pollen content of the cores, as al-
ready carried out on several other cases throughout the central
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Fig. 1. a) Location of the study area in the central-west coast Sardinia and distribution of archaeological sites (modified from Depalmas and Melis, 2010). The box shows the location of
the Tirso coastal plain; b) Schematic geomorphological map (DEM, Regione Sardegna, 2017), location of the cores and Sa Osa site in the Tirso coastal plain. Lat/long are provided in

WGS84.

30



R.T. Melis et al.

Mediterranean (e.g., Di Rita et al., 2011; Amorosi et al., 2013; Curras
et al., 2017). This multiproxy approach provided the framework to
identify major stratigraphic units as well as to define the palaeoecolo-
gical and palaeoenvironmental changes across the study area.

3.1. Definition of the stratigraphic units

A preliminary facies description (e.g., colour, lithofacies) was car-
ried out under standardized laboratory conditions (see Marriner et al.,
2012). Then, the 7 cores were sampled at regular 0.5 m interval. Dry
sediments were weighed and washed through two mesh sizes, 2 mm
and 63 pm, to separate out the gravels (> 2 mm), sands (2 mm to
63 um) and silts and clays (< 63 um) fractions. Full data are provided
in Supplementary Figs. S1, S2, S3, S4, S5, S6 and S7. The different
fractions were plotted against stratigraphic logs in percentages.

A biostratigraphic analysis of mollusc assemblages as well as the
identification of foraminifera and ostracods along the cores was un-
dertaken. For the macro and microfauna analysis a total of 21 samples
were considered. These were collected in the most significant lithos-
tratigraphic levels. The fraction = 500 pm of 20 samples of the 7 cores
was used for molluscan analyses while the fraction between 63 and
500 um was observed under a stereoscopic microscope for foraminifera
and ostracods identification.

Molluscs identification and definition of the ecological assemblages
were performed according to the Pérés and Picard (1964), D'Angelo and
Gargiulo (1978) and Doneddu and Trainito (2005) classification sys-
tems. Species determination of foraminifera and ostracods was mainly
based on studies concerning the Mediterranean benthic fauna (e.g.,
Sgarrella and Moncharmont Zei, 1993; Fiorini and Vaiani, 2001;
Fiorini, 2004). We defined the palaeoenvironmental significance of the
different assemblages following the methodology used for several se-
dimentary archives along the central Mediterranean coasts (e.g.,
Donnici and Serandrei Barbero, 2002; Carboni et al., 2002; Frezza and
Carboni, 2009). Full data are provided in Supplementary Tables A, B, C
and D.

3.2. Chronology of the stratigraphic units

The age of the samples was established by a series of new 17 AMS
14C radiocarbon dates taken from organic rich sediments and vegetable
remains (Table 1). Because the production of atmospheric radiocarbon
has varied through geological time, radiocarbon ages were calibrated to
provide dates in calendar years before present. All samples were cali-
brated using CALIB 7.1 (Stuiver et al., 2016). In calibrating the samples
of sediment, we considered that the original depositional environment

Table 1
Radiocarbon dating results.
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was a transitional zone in the back-coastal area, influenced by fluvial
processes as well as by input of marine water. Therefore for some dates
a mixed IntCall13/Marinel3 calibration method was applied according
with the methodproposed in Di Rita et al. (2011) and Di Rita and Melis
(2013). Local deviations of the marine reservoir effect were taken into
account by using a AR value of 46 * 40, which is the closest AR value
(Bastia, Corsica), included in the Marine Reservoir Correction dataset
(http://calib.org/marine; Stuiver et al., 2016).

3.3. Pollen analysis

Pollen analysis was carried out on 21 samples, which were selected
as follows: 8 samples between 3.9 and 2.5 m from core S2, 5 samples
between 8.22 and 7.2 m from core S5, and 8 samples between 6.78 and
6 m from core S7. They were chemically treated with HCI (37%), HF
(40%) and NaOH (20%), following standard procedures. Pollen con-
centration values were estimated by adding Lycopodium tablets to
known weights of sediment. Pollen grains were identified by means of a
light microscope at 400 and 640 magnifications, with the help of both
pollen morphology atlas (e.g., Reille, 1992; Beug, 2004) and the re-
ference collection of the Laboratory of Palaeobotany and Palynology of
Sapienza University of Rome. The main percentage sum is based on
terrestrial pollen excluding pollen of aquatics, spores of ferns and other
non-pollen palynomorphs. The computer program Psimpoll 4.27
(Bennett, 2009) was used to plot the percentage pollen diagrams.

3.4. Relative sea-level reconstruction

Results of the palaeoenvironmental reconstructions revealed facies
typical of marine, fluvial and lagoonal environments. Coastal lagoons
represent a very common feature along the Sardinian coast (e.g., Di Rita
and Melis, 2013; Orru et al., 2004; Beffa et al., 2016; Buosi et al., 2017)
and water depth seldom exceeds 2 m, consistently with most of the
western Mediterranean lagoons (e.g., Vacchi et al., 2016). In this study,
we produced RSL index points (crf. Shennan, 1986) using samples de-
posited in lagoonal facies according to the standard recently proposed
for the Mediterranean region (Vacchi et al., 2016). Notably, the asso-
ciated indicative range for samples found open lagoon facies (i.e. high
diversity in micro and meiofaunal assemblages dominated by marine
and lagoonal taxa with presence of Cerastoderma glaucum, often asso-
ciated with Cerithium vulgatum and Loripes lacteus) is from 0 to
—2mmsl (Lambeck et al., 2004, 2011; Vacchi et al., 2016). The in-
dicative range decreases from 0 to — 1 m msl for those samples found in
semi-enclosed lagoon facies (i.e. lower diversity in the micro and
meiofaunal assemblages typical of brackish estuarine and, in minor

Lab ID Sample Material Depth (m) Depth s.l.m. 14C age 813X0 Calibration dataset % marine cal. BP (25)
age

DSH5656 Sla Sediment -6.70 —3.60 3247 + 38 -28 Intcall3 3476 + 86
DSH5661 S1b Sediment -7.10 —4.00 3528 + 38 -17 Mixed Marine NoHem 32% 3691 = 127
DSH5792 Slc Sediment —8.80 -5.70 4915 + 52 -8 Mixed Marine NoHem 68% 5216 = 171
DSH6611 S2a Sediment —2.07 -1.0 1187 + 37 -2 Mixed Marine NoHem 92% 743 = 105
DSH6612 S2b Sediment -3.30 —-2.20 947 + 32 -29 Intcall3 859 + 66
DSH5859 S2c Sediment —-2.90 —-1.80 851 = 29 —54 Intcall3 794 + 102
DSH5650 s2d Sediment -6.20 -5.10 5360 = 47 -13 Mixed Marine NoHem 48% 5883 = 136
DSH5657 S2e Sediment —8.00 - 6.90 6698 + 57 -17 Mixed Marine NoHem 32% 7452 = 116
DSH5659 Saf Sediment —9.85 —-8.75 6949 + 69 -17 Mixed Marine NoHem 32% 7680 = 121
DSH5653 S3 Sediment -3.25 —-1.55 2280 *= 31 -23 Mixed Marine NoHem 8% 2249 = 94
DSH5658 S4B Sediment —5.80 —4.70 5556 = 44 -9 Mixed Marine NoHem 64% 6060 = 128
DSH6610 S5a Sediment —-7.20 —-5.15 5035 = 63 -3 Mixed Marine NoHem 88% 5414 = 159
DSH5788 S5b Sediment -8.15 -6.10 4778 + 35 —-51 Intcall3 5463 = 130
DSH6541 S5¢ Sediment —8.45 —6.40 4995 + 24 -15 Mixed Marine NoHem 40% 5544 = 68
DSH6995_S S7a Sediment —2.60 —-0.4 2662 *+ 68 8 Intcall3 2744 + 205
DSH6996_S S7b Sediment —6.05 —-3.85 4887 + 35 —40 Intcall3 5647 = 63
DSH6997_S S7c Sediment —6.80 —4.60 5402 = 24 -18 Mixed Marine NoHem 28% 6065 = 112
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terms, freshwater environment, Marriner et al., 2014a; Vacchi et al.,
2016, 2017). Modern water depth of this type of brackish lagoons
nearby the coring sites (such as Mistras lagoon, Di Rita and Melis, 2013)
does not exceed 0.5 m being coherent with the proposed indicative
range. Due to the difficulty in establish a direct relationship with the
former msl, we used samples deposited in marine (i.e. infralittoral
sands) or freshwater (fluvial sediments) environment to produce
marine and terrestrial limiting points, respectively. Reconstructed RSL
must fall above marine limiting points and below terrestrial limiting
points (Vacchi et al., 2014).

We further added to each of these index and limiting points an
additional vertical error including: i) error associated with precision in
calculating the sample altitude (= * 0.5 m for our surveys) and ii) a
coring error ( = 0.15m, Vacchi et al., 2016).

4. Results
4.1. Litho- and bio-stratigraphy

The corings performed on the Tirso coastal plain have elucidated
the sedimentary sequence. Here we describe the litho- and bio-strati-
graphical data based on the cores S1 to S7. The facies have been sub-
divided into Units A, B, C, found in the S1 core, Units E, F, G, H, I found
in the S2, S3, S4, S5, S6 and S7 cores. Full data of grain size analyses are
provided in Supplementary Figs. S1, S2, S3, S4, S5, S6 and. S7. The
faunal assemblage used to define the different units is provided in
Supplementary Tables A, B, C and D respectively.

4.1.1. S1 core

The S1 was drilled in the modern backshore, at ca. 300 m from the
current shoreline (Fig. 2). Three main units, all referring to littoral
environment, were described along this core.

4.1.1.1. Unit A: shallow marine environment (10-6.0 m)

Unit A is mainly characterized by alternating of light gray (2.5Y6/1)
sandy levels and very fine gravelly sands (Fig. 2). This unit was de-
scribed at the bottom of S1 core and the transition to the above Unit B is
very gradual. The silt fraction is poor or absent and sediments are
poorly sorted. Mean grain size ranges between medium to coarse sands.
We observed evidence of the marine seagrass Posidonia. oceanica mixed
with fragments of marine shells, dominated by Bittium reticulatum,
Rissoa sp., Alvania sp., Spisula sp. and Acanthocardia sp. (Supplementary
Table A). In addition, broken remains of echinoids, scaphopods (Den-
talium dentalis) and corals pieces were also found in this unit. Micro-
fossil analysis (Supplementary Table B) indicates that, through much of
the unit, assemblages are dominated by benthic foraminifera (Quin-
queloculina seminula, Ammonia beccarii, Elphidium crispum) and scattered
valves of littoral ostracods (Ponthocythere turbida, Semicytherura spp.,
and rare Loxochonca elliptica). Both sedimentology and the faunal as-
semblages of Unit A are consistent with a shallow littoral environment
between upper shoreface and foreshore with variable energy (Supple-
mentary Fig. S1 and Table B). Three *C dates constrain the age of this
unit from ca. 5.5 cal. ka BP to ca. 3.5 cal. ka BP (Table 1).

4.1.1.2. Unit B: beach littoral environment (6.0-2.6 m)

Unit B is a sandy to fine gravelly unit occurring in S1 core from 6.0
to 2.6 m (Fig. 2). The grain size analysis shows unimodal or bimodal
distribution with sorting ranging between well sorted to poorly sorted.
Similarly, skewness ranged from symmetrical to very fine skewed
(Supplementary Fig. S1). The silicoclastic sediments are composed of
mainly grains of quartz, feldspar, sporadic heavy minerals and rock
fragments. Shell fragments are very scarce and difficult to identify. For
this reason, the definition of the depositional environment of Unit B was
complex. However, according to the sedimentological features, the
mineralogical composition, the roundness of grains we interpreted this
unit as a beach facies, most likely deposited in an environment ranging
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Fig. 2. Log of S1 core, lithostratigraphy and grain size analyses.

from the foreshore to a subaerial berm deposit.

4.1.1.3. Unit C: backshore dunes (2.6-0.0 m)

Unit C is quartzo-feldspathic medium sands unit, showing a very
pale brown colour (10YR 7/4). Sands show unimodal size distribution,
with mean grain size ranging from medium sand to coarse sand
(0,49 + 0,61 mm). Sediments are moderately sorted, with symmetrical
skewness (Supplementary Fig. S1). There is a complete absence of
biological remains in this Unit (Fig. 2). We interpret this facies as a
backshore environment dominated by the wind, likely to be char-
acterized by a system of small dunes. Such environment is very similar
to the present setting of the coring site.
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4.1.2. S2 to S7 cores
These cores were placed in the modern coastal plain, between the Sa
Osa archaeological site and the current shoreline (Fig. 1b).

4.1.2.1. Unit H: alluvial plain (10.0-8.9 m, S5)

Unit H is a sandy to gravelly unit found at the bottom of S5 core
(Fig. 3). This unit shows light yellowish brown colour (2.5Y 6/4) with
mean grain size ranging from very fine gravel to very coarse sand
(3,16 + 1,31 mm). The sediments are poorly to very poorly sorted with
positive skewness (Supplementary Fig. S5). No shells fragments, mi-
crofossils and plant remains were found in this unit. Coarse sediments,
presence of fine matrix and the lack of fossils is characteristic of the
deposition of transported materials in high energy alluvial environ-
ment. The sharp contact between the H and E units indicates a strati-
graphic discontinuity.
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4.1.2.2. Unit I littoral environment (9.0-6.8 m, S7). This unit is only
present at the bottom of core S7 (Fig. 3). Fine sands, partially cemented
by calcium carbonate, characterize Unit I. Grains are well rounded and
are mainly made of quartz and feldspar. Sparse biosclasts
(unidentifiable foraminifera) were also observed. We interpret this
unit as a beachrock (sensu stricto) deposited in a beach environment,
most likely near to the shoreline as testified by the grain cementation
typical of the land-sea interface.

4.1.2.3. Unit G: alluwial plain (10.0-8.5m, 6.0-4.1 m, S3; 10.0-8.7 m,
4.60-2.10m, S4; 7.0-4.0m, S5; 5.1-4.4m, S6; 5.8-3.0m, S7)

Unit G is a coarse light gray and light brownish gray sandy to
gravelly unit. We found it at various depths in S3, S4, S5 and S7 cores
(Figs. 3, 4, 5). Mean grain size range varies from very fine gravel to
coarse sand (2.20 mm + 0.83 mm), and sediments are very poorly
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Fig. 4. Logs of S2 and S4 cores: lithostratigraphy and grain size analyses.

sorted with positive skewness (Supplementary Figs. S3, S4, S5, S6 and
S7). Plant remains and shell fragments are rare or totally absent. We
further observed a significant presence of quartz, feldspar and abundant
lithic of metamorphic, granitic, and volcanic rocks. The grain-size and
compositional characteristics of unit G, the lack of sedimentary struc-
tures (laminations or layers) and the almost total absence of shell
fragments, suggest a medium to high-energy fluvial environment (most
likely a channel fill or a fluvial bar).

Unit G passes gradually upward to unit F (S3, S4, S5, S7 cores), and
generally overlaps on unit E (S4, S5, S6, S7 cores).

4.1.2.4. Unit E: lagoonal environment with marine and fluvial
influence. Unit E is a muddy to sandy unit that was present in all
cores. The grain size composition and the biogenic component of
sediments show variability. Even if irregularly distributed, both
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faunal assemblages and plant remains indicate a brackish lagoonal
environment with variable marine or river influence. For this reason,
we subdivide this unit in three sub-units.

4.1.2.4.1. Sub-Unit E1: brackish lagoonal deposits (3.30-1.85 m, S2;
8.9-7.0m, S5; 6.8-5.8m, S7)

This sub-unit, found in S2, S5 and S7 cores (Figs. 3, 4) (Supple-
mentary Figs. S2, S5 and S7), consists in very dark gray (2.5Y 3/1)
sandy mud with plant and wood fragments and remains of bivalve and
gastropod shells. The transition with the underlying units is sharp in S5
and S7 core. Dominant molluscan species (Supplementary Table C) are
the B. reticulatum (infralittoral sands) and Pavicardium exiguum (la-
goonal). Secondary species include Abra sp. and Hydrobia sp. (la-
goonal). Microfossil analysis (Supplementary Table D) indicates that
foraminifera assemblages are dominated by Ammonia. tepida and Q.
seminula (marine and paralic species) while ostracofauna is mainly
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Fig. 5. Logs of S3 and S6 cores: lithostratigraphy and grain size analyses.

composed by brackish littoral species (Cyprideis torosa and rare Lox-
ochonca elliptica). The fine-grained sedimentology and the faunal as-
semblages evoke a brackish lagoonal environment with intermittent
connection to the open sea.

Six 1C dates constrain the age of this sub-unit between ca. 0.6 and
0.9 cal. ka BP in S2 core, between ca. 5.2 to 5.6 cal. ka BP in S5 core
and from ca. 5.4 to 6.0 cal. ka BP in S7 core.

4.1.2.4.2. Sub-unit E2: backshore lagoonal deposits (10.0-3.3 m, S2;
8.7-4.6 m, S4)
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This sub unit is mainly characterized by gray (Gley 1 5/N) and dark
gray (Gley 1 4/N) silty sands alternated with layers of coarser sands
(Fig. 4) (Supplementary Figs. S2 and S4). Molluscan species are abun-
dant (Supplementary Table C). They are dominated by marine (B. re-
ticulatum, Tellina tenuis) and lagoonal taxa as P. exiguum, rare C.
glaucum, Loripes lacteus while secondary species are Rissoa ventricosa,
Hydrobia sp., Abra sp. Broken pieces of echinoids and scaphopods
(Dentalium sp.) were also observed. Microfaunal assemblages (Supple-
mentary Table D) are mainly represented by benthic foraminifera
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(Ammonia sp., Quinqueloculina sp., Elphidium sp.) and poorly preserved
valves of ostracods (C. torosa and few L. elliptica). This sub-unit shows
higher species diversity compared to the E1 attesting the increase of
marine influence in the lagoonal environment. We interpreted the
presence of coarser layers found within this lagoonal sub-unit as storm
washover deposits in the backshore lagoon. Two *C dates constrain the
age of this sub-unit from ca. 7.7cal. kaBP in S2 core and ca.
6.0 cal. ka BP in S4 core.

4.1.2.4.3. Sub-unit E3: brackish lagoonal deposits with fluvial inputs
(8.50-6.0m, S3; 6.0-5.1 m, S6)

This sub-unit, found in S3 and S6 cores (Fig. 5), shows a large grain
size variability ranging from gray (2.5Y 6/1) sandy gravels to silty
sands. Sediments show a chaotic pattern, they are very poorly sorted
and with skewness varying from positive to negative (Supplementary
Figs. S3 and S6). Shell remains are scarce and mostly fragmented. We
only observed presence of small Bittium sp. associated to unidentifiable
plant remains. Foraminifera and ostracods are mostly scattered, re-
worked and broken. The only species identifiable are Ammonia tepida,
Ammonia. parkinsoniana, C. torosa (Supplementary Table D) with rare
freshwater ostracod (Candona spp.). This is generally indicative of an
oligohaline environment, such as a brackish marsh. However, the lack
of a robust faunal assemblage suggests that the depositional environ-
ment of this sub-unit was probably a brackish water-body influenced by
fluvial inputs.

4.1.2.5. Unit F: floodplain environment

The Unit F is at the top of the stratigraphic record of S3, S4, S5, S6,
S7 cores (Figs. 3, 4, 5). This unit lacks in faunal assemblages and only
unidentifiable plant remains were found. We generally interpret this
unit as floodplain deposits. The silty clay and sandy sediments re-
presents typical deposits of areas inundated by flood events. However,
the variability of the sedimentological parameters allowed defining two
subunits (Supplementary Figs. S3, S4, S5, S6 and S7):

4.1.2.5.1. Sub-unit F2: overbank including crevasse and levee deposits
(4.1-1.6 m, S3; 2.1-1.1 m, S4; 4.0-2.1 m, S5; 4.4-1.5m, S6). This sub-
unit mainly consists of medium-coarse pale brown (10YR 6/3) sands
that gradually decrease upwards to light yellowish brown (2.5Y 6/4)
medium-fine silty sands. Sorting ranges between poorly and moderately
well sorted, whereas skewness is variable according to the content of
fine matrix or some gravels. We interpreted this subunit as result of an
overbank deposition, including crevasse or levee sands deposits in the
lower part of this unit. One '*C date yielded an age of ca. 2.2 cal. ka BP
at 3.25 m core depth in S3.

4.1.2.5.2. Sub-unit F1: fine overbank deposits (1.6-0m, S3; 1.1-O0m,
S4; 2.1-0m, S5; 1.5-0 m, S6; 3.0-0.0 m, S7). This sub-unit is composed
of silty-clay sands gradually passing upward to silty clay or clay sandy.
The grain size analysis shows sediments with texture from sandy loam
to clay loam upwards; the thickness is 1.1 to 3.0 m and the colour varies
from dark grayish brown (10YR 4/2) to light olive brown (2.5Y 5/
3),with the exception of dark gray (10YR 4/1) muddy sands sediments
at 1.8-3.0 m core depth in S7. Along this unit we found few plant
remains in the silty-clay layers. We interpret this sub-unit as the result
of an overbank deposition, corresponding to well drained floodplain
deposits, except for the dark gray sediments in S7, probably related to
poorly drained conditions or to the formation of a small swamp in the
alluvial plain. The overall succession, in all cores, shows a characteristic
fining-upward trend. One '*C date yielded an age for this sub-unit of ca.
2.8 cal. ka BP at 2.6 m core depth in S7.

4.2. Pollen analysis

Pollen analysis was successfully performed on 19 out of 21 samples.
The results are presented in Fig. 6. Each pollen diagram includes: a
percentage pollen record of selected taxa, the Arboreal Pollen (AP)/Non
Arboreal Pollen (NAP) percentage diagram and the total pollen con-
centration. Pollen preservation was generally good, since the number of
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indeterminable grains (degraded, corroded and broken) exceed 5% only
in two samples (7.6 m in core S5 and 3.6 m in core S2). The total pollen
concentration varies between 1000 and 83,000 terrestrial pollen
grains/g. On the whole, 54 taxa were identified; they contribute to
define both the vegetation characteristics and the aquatic environ-
mental conditions of the Tirso river coastal plain at different time in-
tervals.

The pollen record from core S7 (6.78-6 m; ca. 6.0-5.6 cal. ka BP) is
composed of 8 samples. High frequencies of Alnus (27%) suggest that
the Tirso river floodplain was covered by riparian forest formations.

The coastal Alnus-dominated forests are of two main types, the
floodplain forests and the alder carrs. Floodplain forests, excluding
those covering the seepage sites, are only periodically flooded wood-
lands. Their canopies are characterized by the dominance of hardwood
tree species, above all alders (Alnus glutinosa, A. incana), ashes (Fraxinus
angustifolia, F. excelsior), elms (Ulmus laevis, U. minor), poplars (Populus
alba, P. nigra), oak (Quercus robur) and willows (Salix spp.) (Brullo and
Spampinato, 1999; Douda et al., 2015). Alder carrs, instead, represent
almost monospecific forest stands of Alnus glutinosa, occurring at
strongly and permanently waterlogged sites such as lakes, swamps and
waterlogged depressions in floodplains. In large river floodplains, both
floodplain forests and alder carrs can occur next to each other, forming
temporally variable habitat mosaics (Jurko, 1958). Currently, the
ranges of these extremely vulnerable woods are very fragmented and
reduced in size, being confined in narrow stands behind the dunes and
in the interdunal wet environments, but in the past they had a much
wider distribution. Especially between 6.0 and 5.0 cal. ka BP, the
coastal regions of estuarine sites document the development of Alnus-
dominated forest formations in the central Mediterranean region (Di
Rita et al., 2010). This vegetation pattern is the results of more complex
environmental dynamics triggered by a decrease in the rate of sea level
rise that determined deep geomorphic and sedimentological changes in
the river floodplains, consistent with coastal barrier accumulation, la-
goon habitat formations, river mouth modifications, and peat deposi-
tion among others (Di Rita et al., 2015). The regional woodlands were
mostly composed of evergreen Quercus forests and Ericaceae scrub-
lands, rich in other evergreen elements such as Quercus suber, Olea,
Pistacia and Arbutus, as also documented in other coastal sites of Sar-
dinia and Corsica at that time (Reille, 1992; Beffa et al., 2016; Curras
et al., 2017; Poher et al., 2017). Significant frequencies of Chenopo-
diaceae (9%), accompanied by occurrences of foraminiferal linings and
dinocysts, suggest the local presence of a salt-marsh environment,
whose development was influenced by sea water input into the sedi-
mentary basin, as also reported in many other coastal sites in the cen-
tral Mediterranean region (Bellotti et al., 2011; Di Rita, 2013; Di Rita
and Melis, 2013; Poher et al., 2017). The human impact is documented
by the record of cereal type pollen, possibly revealing cultivation ac-
tivities. The record of Olea and Vitis, between ca. 6.0 and 5.6 cal. ka BP,
seems more related to the presence of natural populations than to ex-
ploitation by humans, although they have represented important eco-
nomic plants in the history of the Tirso river coastal region.

The pollen record from core S5 (ca. 8.2-7.2m; 5.4 cal. ka BP) is
composed of 5 samples. The AP values, varying between ca. 55% and
70%, indicate a semi-forested landscape. This was still locally domi-
nated by riparian Alnus formations. The contemporary record of
Chenopodiaceae, foraminiferal linings and cysts of dinoflagellates (di-
nocysts) still point to the presence of brackish/saline aquatic environ-
ment covered by halophilic vegetation communities. In particular, the
increased frequencies in Chenopodiaceae (16%), with respect to the
preceding time-interval, suggest a further spread of salt-marsh vegeta-
tion onto the floodplain. The main evidence of human impact is here
represented by scattered pollen grains of cereal type as possible evi-
dence of cultivation in the region.

The pollen record from core S2 (ca. 3.6-2.0m; ca. 0.91-
0.74 cal. ka BP) is composed of 6 samples. It documents a landscape
dominated by herbaceous vegetation. The particularly high frequencies
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Fig. 6. Pollen percentage diagram of selected taxa from the S2, S5 and S7 cores.

Fig. 7. RSL reconstructions in the Tirso coastal plain. Index points (boxes) are plotted as
calibrated age against change in sea level relative to present. Limiting points are plotted
as terrestrial or marine horizontal lines. Dimensions of boxes and lines for each point
based on 2 s elevation and age errors.
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4.3. Relative sea-level datapoints

Facies analysis allowed the production of a new set of 12 RSL index
points as well as 1 terrestrial and 3 marine RSL limiting points
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(Table 1). The totality of index points derived from lagoonal samples
and gave insights into the RSL evolution between ca. 7.6 and
5.5 cal. ka BP (mid-Holocene). The remaining part of the Holocene is
only constrained by limiting points and by 3 lagoonal index points
(Fig. 7).

We associated an indicative range typical of open lagoon to the
samples dated in the subunit E; and an indicative meaning typical of
brackish semi-enclosed lagoon, to all the samples dated in the subunit
E; (see Section 3.4). We further transform in marine limiting points
samples dated in Unit A (shallow littoral environment) and in terrestrial
limiting point the sample dated in subunit F, (fluvial overbank de-
position).

5. Discussions
5.1. Mid to late Holocene landscape evolution of Tirso coastal plain

Biostratigraphical and pollen data coupled by the '*C ages of the
samples extracted from the 7 cores provide novel information on the
mid to late Holocene landscape evolution of the Tirso coastal plain.
However, due to the dating uncertainty of the two oldest dates (see
Section 5.2), we discuss here only the modification occurring in the last
ca. 6.0 cal. ka BP.

Our stratigraphic data testify the constant interplay between littoral
and fluvial processes in controlling the environmental evolution of the
area. The sole exception is recorded in S1 core (in the modern back-
shore) where littoral processes are the major driver of the environ-
mental changes.

Between ca. 6.0 and 5.5 cal. ka BP the Tirso coastal plain was oc-
cupied by a coastal lagoon connected with the open sea and most likely
subject to frequent storm-related inundation as testified by the marine
sands and gravel interbedded with the lagoonal deposits (Fig. 8). This is
in agreement with the mid-Holocene increase in the storm activity re-
corded in NW Mediterranean (Sabatier et al., 2012). Faunal assem-
blages of Subunit E2 clearly indicate the concomitant presence of open
marine and lagoonal species typical of a calm environment with a
substrate of muddy sands (Péres and Picard, 1964; Carboni et al.,
2010). The foraminifera associations suggest shallow marine to paralic
environments, with some species tolerant to conditions of variable
salinity (Rossi et al., 2011). The age of sub-unit E2 in S4 core (located
ca. 900 m northwest of S2 core; Fig. 4) corroborates the hypothesis that
sea reached its maximal landward influence at ca. 6.0 cal. ka BP. Salt-
water influence is also evident in the landward portion of the Tirso
coastal plain (S3, S5, S6, S7 cores). Notably, the faunal and pollen
evidence retrieved from a dark gray sandy mud (sub-unit E1) indicate
that between ca. 6.0 and 5.5 cal. ka BP the whole area was character-
ized by shallow brackish lagoons and salt-marshes, which extended up
to a maximum of 2 km inland from the modern shoreline (Fig. 8). On
the other hand, microfossils assemblages of sub-unit E1, characterized
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by reworked individuals of benthic foraminifera and poorly preserved
valves of euryhaline ostracods, are consistent with a brackish-water
depositional environments subject to salinity changes (Bellotti et al.,
1994; Murray, 2006; Frezza and Carboni, 2009). This environmental
reconstruction is consistent with the pollen records of both S7 and S5
cores that document an aquatic environment strongly influenced by the
input of sea-water, as reflected by the significant amounts of salt-tol-
erant chenopods and the occurrence of both foraminiferal linings and
dinocysts. At the same time, the high frequencies of Alnus (> 33%)
indicate that the Tirso plain was also covered by riparian forest for-
mations presumably related to the presence of semi-permanent fresh-
water ponds, likely formed by complex geomorphological and sedi-
mentological processes at the Tirso river mouth. The development of
Alnus-dominated forest formations (both of floodplain forests and alder
carrs) between ca. 6.0 and 5.0 cal. ka BP is a common vegetation fea-
ture to other coastal and estuarine regions of the Central and Western
Mediterranean (Di Rita et al., 2010; Curras et al., 2017; Ghilardi et al.,
2017).

In the same period a shallow marine environment was present near
the shoreline (S1 core, Unit A). Since ca. 5.5 cal. ka BP (Final Neolithic
period) stratigraphical data (S1 core) indicate a seaward migration of
the least 300 m from the present day shoreline, when the area was most
likely a protected marine bay.

Between ca. 5.4 and 2.1 cal. ka BP a continuous overbank sediment
deposition developed in most of the study area (Fig. 8), while near the
shoreline a progressive evolution from a shallow marine environment
into a beach environment (Unit B, S1 core) occurred between ca. 3.6
and 3.4 cal. ka BP (Middle Bronze Age). Fluvial sedimentation became
dominant from mid- to late-Holocene (i.e. last 5.5 cal. ka), as indicated
by the development of fluvial and overbank deposits (Unit G and Unit
F), according to stratigraphic data of S3, S4, S5, S6 and S7 cores. The
upward transition from fluvial deposits (Unit G) to floodplain deposits
(Unit F) documents the formation of an alluvial depositional system
from the Final Bronze Age (ca. 2.9 to 2.7 cal. ka BP). Changes in the
fluvial dynamics are testified by the sedimentological characteristics of
the unit F that evokes low-energy alluvial deposition, typical of a
floodplain occasionally affected by river floods.

Between ca. 2.2 and 0.7 cal. ka. BP the landscape of the Tirso
coastal plain was characterized by backshore dunes (Unit C, S1 core)
that most likely isolated the back-coastal areas and promoted the for-
mation of wetlands environments (shallow brackish water environ-
ments or marsh areas) as documented by the sub-unit E1 in S2 core.

5.2. Relative Sea-level evolution

The new dataset of '*C data provides new insights on the RSL
evolution in this sector of western Sardinia. Submerged archaeological
structures (Roman quarry and Phoenicians tombs) near Tharros
(Fig. 1a), provided evidence that the total RSL changes was > 1 m since
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ca. 2.3 cal. ka BP and > 0.79 since ca. 2.0 cal. ka BP (Antonioli et al.,
2007; Lambeck et al., 2011). A sample extracted from a core performed
in Mistras lagoon placed the RSL above — 3.2 m at ca. 4.6 cal. ka (Di
Rita and Melis, 2013). More recently, lagoonal facies found in off-shore
cores in the Gulf of Oristano revealed ca. 28 m of RSL changes in the
last ca.9.4 cal. ka BP (De Falco et al., 2015). Thus, our record sig-
nificantly improved the RSL record in the area providing new insights
into the RSL changes, notably in the mid-Holocene (8.0-4.0 cal. ka BP).
In Fig. 7 we plotted the RSL index and limiting points derived from the
new cores performed in the Tirso coastal plain. Oldest index points
indicate RSL was at —8.0 = 1.25m at ca. 7.7 cal. kaBP (S2f)
(Table 1) and above — 6.2 = 1.25m at ca. 7.4 cal. ka BP (S2e). These
data seem to conflict with RSL position suggested by early Neolithic
burials found in a marine cave in Capo Caccia (NW Sardinia, ca. 80 km
northwards the Tirso coastal plain, Lambeck et al., 2004; Palombo
et al., 2017). The current position of these burials and the dating of the
associated pottery constrain the RSL position below ca. —11 m at ca.
7.3 cal. ka BP (Palombo et al., 2017). Post-depositional uplift can dif-
ficulty account for this misfit, being this area considered tectonically
stable since the last interglacial (i.e. last ca. 125 cal. ka BP, Ferranti
et al., 2006). For this reason, caution should be used in the assessment
of the RSL position indicated by the two oldest samples of our dataset.
At the moment, we cannot exclude aging effects in this lagoonal se-
quence, resulting in apparent older age of these samples (Table 1).
Additional coring in adjacent areas revealed lagoonal sequences at si-
milar depths. Further '“C dating of both lagoonal shells and organic
matter (currently on-going) could provide additional insights into the
RSL position between 8.0 and 7.0. In our opinion, compaction may have
a major role in controlling their current elevation. In fact, ca. 7 m of
alluvial sediments overlays these three 14C dates (subunit E1, S5 core,
(Fig. 3). For this reason, we do not think that RSL index points from S5
core are indicative of the RSL evolution of the area. This is further
confirmed by a marine limiting point placing the RSL above — 5.7 m at
ca. 5.3 cal. kaBP (Slc, Table 1). Our data poorly constrain the re-
maining part of the Holocene. Two marine limiting points (S1b and
Sla) placed the RSL above —4 m at ca. 3.7 cal. ka BP and above
—3.6m at ca. 3.5cal kaBP, respectively. At ca. 2.2 cal. ka BP, one
terrestrial limiting point (S7a) constrains the RSL below — 0.4 m. The
three youngest index points show scatter (Fig. 7). The highest (most
likely less affected by compaction) indicate RSL rose by 0.5 * 0.7 in
the last ca. 0.7 cal. ka BP.

5.3. Environmental control on the settlements of the Tirso coastal plain

The portion of the Gulf of Oristano comprised between the Sinis
Peninsula and the S. Giusta lagoon was densely settled since the
Neolithic period (Depalmas and Melis, 2010). However, there is a clear
disparity in the concentration of settlements between the rocky Sinis
peninsula and the Tirso coastal plain (Fig. 1a). Our results provided
evidence that such difference in the density of settlements was strongly
influenced by the major environmental changes of the Tirso coastal
plain, especially in the last five millennia. We robustly documented the
end of the transgressive trend at ca. 6.0-5.5 cal. ka BP, consistent with
the significant slow of sea-level rising rates recorded along the Medi-
terranean coasts (e.g., Anthony et al., 2014; Maselli and Trincardi,
2013; Amorosi et al., 2017). As a result, during the Eneolithic (ca. 5.5 to
4.2 cal. ka BP) and Bronze age (ca. 4.2 to 2.9 cal. ka BP) the fluvial
activity dramatically increased. It triggered intense lateral and vertical
sedimentation linked to river channel migration, as documented by
accumulation of coarse-grained sand bodies on the lagoon deposits.
Afterward, a progradational trend started, causing the seaward migra-
tion of the shoreline and, consequently, of the barrier-lagoon system.

Due to the discontinuity of our pollen record, we cannot establish
whether human activities exerted an indirect influence on the sedi-
mentological processes enhancement through clearance and exploita-
tion of the local forest cover. The pollen diagrams record two distinct
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temporary phases, from ca. 6.1 to 5.4 cal. ka BP (cores S7 and S5), and
from ca. 0.91 to 0.74 cal. ka BP (core S2), respectively, suggesting that
the Tirso coastal plain experienced a strong reduction of the forest
vegetation. However, there is no information about the local forest
dynamics in between these two phases, especially during the Eneolithic
and Bronze Age. In western Sardinia, the available palynological re-
cords (Di Rita and Melis, 2013; Buosi et al., 2015) and palaeobotanical
data (Bakels, 2002; Sabato et al., 2015; Ucchesu et al., 2015), con-
sidered altogether, indicate that during the Eneolithic and Bronze Age
the impact of agricultural practices was directed towards an already
semi-open landscape, and did not produce any further deforestation
process (Di Rita and Melis, 2013). During the Eneolithic and Bronze
Age, the pollen record from Mistras Lagoon, ca. 6 km far from Tirso
coastal plain, shows a semi-open landscape, characterized by a patch of
Mediterranean maquis and salt-marsh vegetation communities. During
the Nuragic phase (until ca. 2.3 cal. ka BP), the pollen evidence of
agricultural activities suggests a prevailing arable farming economy,
mostly based on Vitis and cereal exploitation, subsequently replaced by
a prevailing stock rearing economy. Despite this intense human impact,
further documented by an increase of fire activity during the Nuragic
phase, no clear forest decline is recorded in the pollen diagram of
Mistras. Similarly, at Sa Curcurica, on the other side of Sardinia, during
the Eneolithic and Bronze Age the pollen evidence of agricultural ac-
tivities was associated to a phase of marked stability in the forest cover,
especially between ca. 5.3 and 3.5 cal. ka BP (Beffa et al., 2016).

This scenario contrasts with the landscape evolution of the Tirso
coastal plain, where a rapid and continuous environmental modifica-
tion during the last ca. 6.0 cal. ka BP did not assure suitable conditions
for the establishment of stable settlements; thus, this may explain the
low density of historical and prehistorical archaeological remains in
this area, especially if compared to the rocky area of Sinis peninsula
(Fig. 1a). However, we cannot exclude that the building technique may
also explain this scarcity of finds. In fact, the structural characteristics
observed during the Sa-Osa archaeological excavations revealed the
sole presence of negative structures without raised stone, which are
very difficult to preserve (Usai et al., 2012).

In the Bronze Age village of Sa Osa, interesting aspects both of
strong exploitation of local resources (river and sea fishing, farming of
pigs and cattle, hunting deer) and specialized production (e.g., viti-
culture, pottery, industry of bone) were recently described (Usai et al.,
2012; Sabato et al., 2015; Ucchesu et al., 2015). They indicate the
strong man-environment interaction and the possibility of adaptation of
the communities of the Bronze Age in critical climatic-environmental
conditions, characterized by instability. Such abundance of resources
may have attracted other settlements both in the floodplain and on the
border of the former coastal lagoons. These hypothetic settlements may
be now no longer visible because covered by river sediments. However,
none of our cores revealed traces of archaeological remains and further
coring campaigns are necessary to confirm or not the above-mentioned
hypothesis.

6. Conclusions

A multidisciplinary analysis including sedimentology, faunal as-
semblages, pollen data and radiocarbon dating allowed reconstructing
the palaeoenvironmental evolution of the largest coastal plain of
Sardinia during the last ca. 6.0 cal. ka BP. We robustly demonstrated
that for most of the mid-Holocene, a large portion of the Tirso coastal
plain was occupied by a coastal lagoon connected with the open sea and
with frequent storm-related marine inundation. After the maximal sea
transgression, recorded at ca. 6.0 cal. ka BP, the river activity became
the predominant factor in controlling the landscape evolution in the
Tirso coastal plain. It triggered a seaward migration of the shoreline of
at least 300 m since the Final Neolitic period (ca. 5.5 cal. ka BP).
Further, fluvial sediments rapidly filled the shallow lagoons and mar-
shes and successively a continuous overbank sediment deposition
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occurred in most of the study area until Punic-Roman period (ca.
2.1 cal. ka BP). Such major landscape modification recorded in the
Tirso coastal plain seems to have had a key role in the pattern of his-
torical and prehistorical settlements of this wide portion of western
Sardinian coastline.

Furthermore, we outlined two distinct temporary phases in the ve-
getational evolution of the Tirso coastal plain. The first (from ca. 6.1 to
5.4 cal. ka BP) showing a semi-forested landscape dominated by an
admixture of local vegetation formations of saltmarsh and riparian
forest, and regional evergreen woodlands. The second (between ca. 0.9
and 0.7 cal. ka BP) showing an open landscape characterized by a
widespread chenopod-dominated saltmarsh. These data are crucial to
define the past vegetation dynamics in Sardinia, especially if con-
sidering the scarcity of natural sedimentary basins suitable for pollen
analysis in this island. Finally, we provide new insights on the RSL
evolution in this sector of the Mediterranean. Notably, we improved the
RSL record in Sardinia between 6.0 and 5.0 ka BP where only scarce
data were previously available.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gloplacha.2017.06.001.
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