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In causal inference a matching algorithm assigns a subset of control units to each treated
unit. We explore the support of matching algorithms by using combinatorial techniques to
provide counting results, and investigate the role of the dimension of covariates.
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1. Introduction1

In observational studies where the treatment is not randomized the group of treated and control units may have2

systematic differences in covariates which would not appear in an experimental design. Matching methods are a common3

tool for obtaining a subcollection of the data where the distribution of observed covariates looks only randomly different4

across the two groups (see Imbens and Rubin (2016) for a presentation of the classic causal inference framework5

including matchings and other quasi and non-experimental methods, and Stuart (2010) for a comprehensive review of6

matching methods specifically). Usually matching methods are defined rather informally as procedures for pre-treatment7

of observational data (Rosenbaum, 2002) even if they can be identified with the embedded matching algorithm8

Definition 1.1. Let T be the set of treated units and C the set of controls. Amatching algorithm is any function9

✓ : T ! P(C).10

where P(·) denotes the power set. The subset S of T ⇥ P(C) given by S ⌘ {(a, b) | b = ✓ (a)} (i.e. the graph of ✓ ) is called11

matching. The pair (T , B), where B is the multiset of the images of ✓ , where at least one of the images should be nonempty,12

is calledmatched dataset.13

The use of the word matching to indicate the output is consistent with the graph theory literature since S is equivalent14

to the edge set of a matching in the bipartite graph with vertex bipartition T [ C . The expression matched subset can be15

connected to the relevant output of causal inference estimation. In fact, common statistics for evaluation of causal effects16

* Corresponding author.
E-mail addresses:massimo.cannas@unica.it (M. Cannas), gpuggioni@uri.edu (G. Puggioni).
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Fig. 1. Two representations of the matching: t1 ! c2, c3; t2 ! c1, c2. The associated matched dataset is the pair (T , B) ⌘ ({t1, t2}, {c1, c2, c2, c3}).

Fig. 2. All possible 1-1 matchings without replacement for the casem = 2, n = 3. Each vertical pair corresponds to a matched dataset.

are a function of the difference inmeans between the treated and controls. Thus, for inferential purposes, it is irrelevant how 1

treated units are paired to subset of control units, provided that the same treated and control units are selected and each 2

control is repeated the same number of times. Definition 1.1 does not require all subsets to be non-empty. In fact, it is not 3

always possible to find suitable controls for all treated units, which are then eliminated. A matching where all treated units 4

are assigned at least one control unit is a fullmatching, otherwise it is a partial matching. 5

Remark 1.1. The matching can be visualized using common ‘‘point-edge’’ representation for bipartite graphs (Fig. 1, left). 6

An alternative representation is given by a board of dimensionsm ⇥ nwherem is the number of treated, n is the number of 7

controls and matches are represented by darker squares (Fig. 1, right). 8

Remark 1.2. It follows from Definition 1.1 that the same matched dataset arises from several matchings (see Fig. 2), so the 9

number of matched datasets is always less than or equal the number of matchings, but they are not necessarily in fixed 10

proportion. 11

It is apparent that a matching âlgorithm works on a finite matching space (i.e. its support) given by the set of all possible 12

matchings andmatched samples that the algorithm can reach given its specific characteristics. Following Rosenbaum (2002) 13

we distinguish somemajor characteristics of matching algorithms affecting the support size. A matching (algorithm) iswith 14

replacement if a control unit can be assigned tomore than one treated unit, otherwise it iswithout replacement. Furthermore, 15

if the number of control units assigned to each treated unit is the same for all treated units we have a fixed sizematching, the 16

main case being that of size one (1-to-1 matching), otherwise we have a variable matching. Finally, although Definition 1.1 17

does not mention the need of a specific metric, virtually all matching algorithms use a (pseudo) metric to evaluate the 18

similarity between pair of observations in the covariates space. 19

In this paper, we give enumeration results for both matched datasets and matchings as a function of the different 20

specifications of the matching algorithm: with replacement, one to one; with replacement, one to variable; without 21

replacement, one to one; without replacement, one to variable. Sections 2 and 3 cover the full and partial cases, respectively. 22

In Section 4 we show how the number of covariates can shrink the size of the matching space. Section 5 discusses aspects of 23

matching space size and optimality. 24

2. Full matching 25

Let us consider the case where each treated unit has been associated with at least one control unit. A full matching 26

is highly desirable in causal inference studies focusing on the Average Treatment effect on the Treated (ATT), which is a 27

common target parameter. A nice feature of the counting problem being considered here is that all results can be derived 28

using basic combinatorics, such as the addition, multiplication and înclusion–exclusion principles. In order to prove the 29

result we recall a classic result and derive a corollary. 30

Lemma 2.1. The number of solutions of 31

x1 + · · · + x

n

= m (1) 32

in non-negative integers is

�
m+n�1

m

�
. 33

Corollary. The number of solutions of Eq. (1) in non-negative integers, subject to the constraint x

i

� c > 0 for a fixed i, is 34�
m�c+n�1

m�c

�
. 35
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Table 1

Number of matchings and matched d̂atasets from m treated and n controls.

Replacement 1 to 1 1 to variable
Yes Matchings n

m (2n � 1)m

Matched
�
n+m�1

m

� P
mn

k=m

P
n

j=0(�1)j
�
n

j

��
n+k�1�j(m+1)

n�1

�

No Matchings n!
(n�m)!

P
n

k=m

�
n

k

�
S(k,m)m!

Matched
�
n

m

� P
n

k=m

�
n

k

�

Proof. If we add the restriction that one of the x

i

must be greater or equal than c , the problem can be solved by setting1

x

i

= y

i

+ c and counting the number of non-negative integer solutions of the resulting equation using Lemma 2.1. ⇤2

Wecan now state the twomain propositions, concerning the caseswith andwithout replacement, respectively. All results3

are summarized in Table 1.4

Proposition 2.1. Given m treated units and n control units the size of the matching space when matching with replacement ^is5

given in the upper part of Table 16

Proof.7

(i) matchings 1 to 1 For a 1 to 1 matching exactly one out of n controls must be chosen for each of them treated unit so by8

multiplication principle there are n

m total possibilities.9

(ii) matchings 1 to v One out of 2n � 1 non empty elements of P(C) must be chosen for each of them treated and the result10

again follows from multiplication principle.11

(iii) matched 1 to 1 According to Definition 1.1 this is the number of multisets of sizemwhich can be extracted from the set12

of n controls. Let x
i

be the number of times that control i matched, i = 1, . . . , n. Then the number required is
�
m+n�1

m

�
13

by Lemma 2.1.14

(iv) matched 1 to v This case is analogous to the previous one but now the number of matched controls (counted with their
multiplicity) can be any k in {m, . . . ,mn}. Moreover, we further require that x

i

 m for each i since no control can be
matched more than m times. Thus, for fixed k and i, the number of matched datasets can be found from Corollary by
putting c = m and excluding solutions satisfying the constraint. Let a solution have property P

i

if x
i

� m + 1 holds for
exactly i indices, i = 1 · · · n. We are looking for the number of solutions having none of the properties, which can be
found by subtracting from the total number of solutions the number of solutions having at least one P

i

. On using the
înclusion–exclusion principle to avoid overcounting when summing over i we find:

✓
k + n � 1

k

◆
�

"✓
n

1

◆✓
k + n � 1 � (m + 1)

k � (m + 1)

◆
�

✓
n

2

◆✓
k + n � 1 � 2(m + 1)

k � 2(m + 1)

◆
+

· · · + (�1)n�1
✓
n

n

◆✓
k + n � 1 � n(m + 1)

k � n(m + 1)

◆#
.

Summing the previous expression over k = m, . . . ,mn and rearranging the terms gives the result. ⇤15

Proposition 2.2. Given m treated and n control units the size of the matching space when matching without replacement ^is as in16

the lower part of Table 1.17

Proof.18

(i) matchings 1-1 There are n possibilities for matching the first treated unit, n � 1 for the second and so on until themth19

unit, which can be matched in n � m + 1 ways. The result follows by multiplication principle.20

(ii) matchings 1-variable Consider a k-element subset of the controls. Any partition of the subset into m parts gives m!21

different matchings by considering all possible ways of assigning its parts to the treated. Thus, the total number of22

variable matchings using k controls is S(k,m)m!, where S(k,m) is the number of partitions of {1, . . . , k} into m parts23

(i.e. the Stirling number of the second kind). Note that k � m in order to have a full match and there are
�
n

k

�
ways of24

choosing these k distinct controls. The result follows by multiplication principle.25

(iii) matched 1-1 To build a 1-1 matched dataset m distinct controls must be selected from the n available ones. The total26

number of matched datasets is then the number of selections ofm distinct objects from n objects, i.e.
�
n

m

�
.27

(iv) matched 1-variable The previous argument easily extends to the variable case. Here the number of controls to be28

selected is at leastm and no more than n and the result follows from the addition principle. ⇤29
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3. Partial matching 1

If some of the treated units could not be paired with any control units we have a partial matching (and thus a partial 2

matched dataset) that can be considered a particular case of the counting problems introduced so far, if only s treated units 3

can be paired, s = 0, . . . ,m. Hence, it is possible to use the following three step procedure: first, find the number of ways of 4

selecting s treated units, that is
�
m

s

�
; then, find the number of fullmatchings (matched datasets) with s units; finally, multiply 5

the numbers above and sum over s. 6

Example 3.1. Let a(n,m) be the number of 1-1 matched dataset without replacement when drops are allowed. Since there 7

are
�
m

s

�
ways of choosing s treated units and

�
n

s

�
matched datasets with s units, then a(n,m) = P

m

s=0
�
m

s

��
n

s

�
. 8

Although the above procedure is general easier formulae can sometimes be obtained by ad hoc reasoning. In the example 9

above first addm empty controls to the n original ones to allow for the possibility of drops and then observe that in this new 10

setting a matched dataset can be obtained in
�
m+n

m

�
ways. Similarly, it turns out that compact formulae for the number of 11

partial matchings can be obtained using rook polynomials. 12

3.1. Rook polynomials 13

The board representation in Fig. 1 is particularly amenable to be used in conjunction with a nice counting tool, known 14

as the rook polynomial, which was first introduced by John Riordan (see Riordan, 2002, Ch 7) to count permutations with 15

restricted positions. 16

Definition 3.1. The rook polynomial of a board C is 17

r(x, C) = r0(C) + r1(C)x + r2(C)x2 + · · · 18

where r

k

(C) is the number of ways of placing k non-attacking rooks on C . 19

Here non-attacking means that no two rooks can be on the same row or column and so they cannot attack each other 20

under classic chess rules. For example, if C is 2 ⇥ 3 then r(x, C) = 1 + 6x + 6x2 and the coefficient of x2 is the number of 21

ways of putting two non attacking rooks on C (see Fig. 2). For a general m ⇥ n board it can be shown that r
k

(C) =
�
n

k

�
m!

(m�k)! . 22

For our purposes we can slightly extend the notion of rook polynomial to prove the following 23

Lemma 3.1. Let r

nh(C, x) and r

nv(C, x) be the rook polynomials for non-horizontally and non-vertically attacking rooks, 24

respectively. The generic coefficients of these polynomials are 25

r

nv
k

(C) =
✓
n

k

◆
m

k

and r

no

k

(C) =
✓
m

k

◆
n

k. 26

Proof. Note that it is enough to prove the first since rno
k

(C
m⇥n

) = r

nv
k

(C
n⇥m

) by reversing the table. To prove the first consider 27

that the rooks must be on different columns and k different columns can be selected in
�
n

k

�
ways. Then the rooks must be 28

placed in any of them rows and this can be done inm

k ways. The result now follows from multiplication principle. ⇤ 29

We thus have the following proposition: 30

Proposition 3.1. If drops are allowed the number of : (i) 1-1 matchings without replacement is

P
m

k=1
�
n

k

��
m

k

�
m! (ii) 1-variable 31

matchings without replacement is

P
n

k=1
�
n

k

�
m

k (iii) 1-1 matchings with replacement is

P
m

k=1
�
m

k

�
n

k (iv) 1-variable matchings with 32

replacement is

P
mn

k=1
�
mn

k

�
. 33

Proof. The properties of non-row and non-column attacking correspond to the 1-1 and the non replacement features of the 34

matching, respectively. Thus: (i) a 1-1matchingwithout replacement can be obtained putting k = 1, . . . ,m�1 non attacking 35

rooks on C; (ii) a 1-variablematchingwithout replacement can be obtained putting k = 1, . . . , n non column attacking rooks 36

on C; (iii) a 1-1 matching with replacement can be obtained by placing k = 1, . . . ,m non-row attacking rooks on C; and (iv) 37

for a 1-variable matching with replacement just place k = 1, . . . ,mn rooks without requiring the properties. Summing over 38

the suitable rook coefficients gives the results. ⇤ 39

4. The radius matching case 40

The enumeration results obtained so far concerned a general matching space. However, the effective size of thematching 41

support usually depends also on other aspects, such as the number of covariates available.We illustrate this point considering 42

the radius matching procedure first proposed by Rosenbaum and Rubin (1985) and recently reviewed by Huber et al. (2015). 43

In radius matching, euclidean distances between all pairs of treated and control units are calculated. Then, for each treated 44

unit, all controls within a fixed radius ✏ > 0 are used as matches. The maximal support of this algorithm is the set of one 45
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Fig. 3. When n = 3 feasible matchings can have no more than (i) r(n = 3, p = 2) = 7 distinct elements in R2 ; (ii) r(n = 3, p = 1) = 5 distinct elements
in R.

to variable matchings. However, some matchings are unattainable if distances are calculated in a ‘‘low’’ dimensional space.1

In fact, the maximum possible number of distinct subsets of the controls that can appear in a matching depends on the2

dimension of the space where the units are paired and so on the number of covariates p. To clarify this point let us consider3

treated units t
i

and controls c
j

as points in the p-dimensional space and define A

i

⌘ {j| dist(t
i

, c
j

) < ✏} with i = 1, . . . ,m4

as the set of the labels of the controls matched to the ith treated unit.The family A

i

univocally identifies a matching. We call5

the family feasible if there exists such an ✏ > 0.6

The feasibility can be interpreted in terms of Venn diagrams, in which the centers of circles around the control units play7

the role of the c
j

and points t
i

corresponding to treated are placed in regions of overlap/non-overlap of circles according to the8

desired subset A
i

. It iswell known (since Venn, 1880) that in the Euclidean plane themaximumnumber of circles of equal size9

(✏-neighborhoods) that can be arranged to give all possible subsets is three (see Fig. 3). Additional circles might be added10

to such a diagram, but not all possibilities of overlap/non-overlap will be achieved. The generalization to p-dimensional11

Euclidean spaces has been considered in the literature. A result that at most p+1 ‘‘independent’’ (hyper)spheres are possible12

in a p-dimensional space was reported by Rényi et al. (1951) with some corrections given in Grünbam (1975) (this paper13

may be read online, Venn diagrams and independent families of sets). It follows that n � 1 is a sufficiently high dimension14

to allow feasibility of all 2n possible subsets A
i

of {1, . . . , n}. We find that the size of the matching space is smaller than the15

maximal one whenever the number of covariates p is smaller than (n � 1). In fact, we can prove the following16

Proposition 4.1. Let m and n be the number of treated and control units and p be the number of covariates. If (Euclidean) radius17

matching is performed the size of the matching space is not greater than:18

n

m,n,p =
2p+1�1+2p(n�p�1)X

k=1

✓
2n � 1

k

◆
a

k

19

where a1 = 1 and a

j

= j

m �
�
j

1

�
a1 �

�
j

2

�
a2 � · · · �

�
j

j�1

�
a

j�1.20

Proof. Let r be the maximum number of distinct elements in a matching. We say that a matching has property P

i

if it has21

exactly i distinct elements. If we denote by N

P

i

the number of matchings satisfying the ith property we have22

n

m,n,p =
rX

i=1

N

P

i

=
✓
2n � 1

1

◆
a1 +

✓
2n � 1

2

◆
a2 + · · · +

✓
2n � 1

r

◆
a

r

23

where a

k

denotes the number of matchings that can be obtained with k distinct elements. Clearly, a1 = 1. Also, the value of24

a

j

can be found by subtracting from the total number of matchings with j elements the number of matchings with less than25

j distinct elements, so a

j

= j

m � P
s<j

�
j

s

�
a

s

.26

It remains to determine r = r(n, p). In a p-dimensional space there are nomore than p+1 independent circles and then no27

more than (2p+1�1) non emptydistinct regionsA
i

(see Fig. 3). These regions can be generated if there are at least p+1 controls28

and any additional control generates nomore than 2p further regions, so r = (2p+1�1)+2p(n�p�1) = 2p(n�p+1)�1. ⇤29

When p � n � 1 we have r = 2n � 1 and thus n
m,n,p � (2n � 1)m = 0, as expected from Proposition 2.1; otherwise the30

difference is positive and increases as p goes to one. This implies that it is advisable to calculate distances at least on a (p�1)31

dimensional space to avoid undesired shrinking of the matching space, i.e there must be at least (p�1)matching covariates.32

5. Discussion33

In this work we used elementary combinatorics to find themaximal size of thematching space as function of the number34

of treated and controls and we showed that the size of the matching space can shrink when metric matching is performed.35
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Causal inference using observational data requires careful selection of a matched dataset in order to find reliable estimates 1

of causal effects. Usually a ‘‘good’’ matched dataset is found when some measure of covariate imbalance is minimized and 2

validated through reasonable diagnostics. Finding the optimum by enumerating all datasets is almost always impossible 3

when the size of the matching space is too large. In order to mitigate this problem two routes have been chosen. The first is 4

based on classic combinatorial optimization algorithms. An optimal matching procedure based on the Hungarian algorithm 5

was proposed by Rosenbaum (1989). While moving on the whole matching space the method can be computationally 6

intensive. More recently Ming and Rosenbaum (2001) reformulated the optimal search as an assignment problem. The 7

second, perhaps more popular, route involves the basic idea of moving on a subset of the matching space, sacrificing 8

optimality to gain computational feasibility. One or both of the following principles have been followed: moves on a random 9

portion of the matching space; moves on the restricted matching space induced by some kind of covariate compression, for 10

instance the propensity score (PS) (Rosenbaum and Rubin, 1983) or through calipers. 11

The use of ‘‘greedy’’ matching algorithms which do not allow to change an alreadymatched pair is an example of random 12

moving and may imply the loss of the optimal matching. Similarly, the PS forces the matching algorithm to work in a 13

one-dimensional space which is generally smaller than the original one. This shrinking is desired and it is justified by 14

demonstrating the large samples balancing property of the PS. However exact knowledge of the PS is rare in practice and 15

both estimation and replacement increase the variance of causal estimates. Intuitively, the larger the number of covariates 16

pooled into the PS the higher the risk of losing goodmatchings. Rosenbaum recommends an hybrid strategy consisting in the 17

joint use of optimal matching and PS calipers ‘‘to speed the algorithm that finds the optimal match’’ (see section 3.4 ibid.). 18

However, this optimality is generally on the induced restricted matching space. In fact, if all the units inside the caliper are 19

taken as matches this procedure is the optimal version of the radius matching cited in the example of Section 4. 20
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